
DRM, Trusted Computing and Operating System Architecture

Jason F. Reid William J. Caelli
Information Security Research Centre
Queensland University of Technology

G P O Box 2434, Brisbane, Qld 4001, Australia

jf.reid@qut.edu.au, w.caelli@qut.edu.au

Abstract

Robust technological enforcement of DRM licenses
assumes that the prevention of direct access to the raw bit
representation of decrypted digital content and the license
enforcement mechanisms themselves is possible. This is
difficult to achieve on an open computing platform such
as a PC. Recent trusted computing initiatives namely, the
Trusted Computing Group (TCG) specification, and
Microsoft’s Next Generation Secure Computing Base
(NGSCB) aim in part to address this problem. The
protection architecture and access control model of
mainstream operating systems makes them inappropriate
as a platform for a DRM content rendering client because
decrypted content cannot be protected against a privileged
process. If a DRM client is to be deployed on an open
computing platform, the operating system should
implement the reference monitor concept, which
underpins the mandatory access control model. The TCG
model of trusted computing has important limitations
when combined with an operating system enforcing
discretionary access control. We argue that the TCG
services of sealed storage and remote attestation which
are important in DRM applications, cannot operate in a
secure and efficient manner on such an operating system. .

1 Introduction

Advances in digital compression technology coupled with
the reduced cost and increased capacity of storage media
and network bandwidth have combined to make the
distribution of digital content over the Internet a practical
reality. The owners of copyrighted works, particularly in
the entertainment area, have become increasingly anxious
to ensure that evolving digital technology does not limit
or reduce their capacity to enforce their copyrights for
financial reward. This concern has motivated a steadily
growing interest in the field of Digital Rights
Management (DRM).

DRM has been defined as “the management of rights to
digital goods and content, including its confinement to
authorized use and users and the management of any
consequences of that use throughout the entire life cycle
of the content” (CEN/ISSS, 2003).

Copyright © 2005, Australian Computer Society, Inc. This
paper appeared at the Australasian Information Security
Workshop 2005 (AISW2005), Newcastle, Australia.
Conferences in Research and Practice in Information
Technology, Vol. 44. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

This definition encompasses two distinct aspects of DRM
that are independently recognised as being worthy of
protection in the World Intellectual Property
Organisation’s copyright treaty (WIPO, 1996): firstly,
rights management information, which includes
“information which identifies the work, the author of the
work, the owner of any right in the work, or information
about the terms and conditions of use of the work”, and
secondly, technological enforcement, which encompasses
effective technological mechanisms used to enforce the
terms and conditions of use for a work.

Although these two aspects of DRM cannot be cleanly
separated, it is the second aspect that is the principle
focus of this paper. In particular, we consider the difficult
challenge of technological enforcement on open
computing platforms such as a general purpose personal
computer (PC).

The essential premise of DRM is that a rights owner
wishes to license digital content (which is represented as
binary digits or bits) to a licensee or customer who agrees
to be bound by the terms of the license. Note that the
customer is not buying the bits themselves. Rather, they
are buying the right to use the bits in a defined and
restricted manner, as authorised in the terms of the
license. Hence the license defines a type of usage policy.
A hypothetical license might authorise a single playing of
the content on a nominated platform. Copying, multiple
‘plays’, redistribution and modification may be
prohibited. Technological enforcement is necessary
because the rights owner does not necessarily trust the
customer, yet they would like to have a reasonable level
of assurance that the license terms will be complied with
even though the content is stored and used on devices that
they do not own or control. Digital information can be
protected from unauthorised access in transit and storage
by well-understood cryptographic techniques. As
Schneck (1999) argues, the more complicated challenge
presented by DRM flows from the observation that the
content bits must be in the clear (i.e., not protected by
encryption) on the client platform in order to be rendered
in a manner perceptible to a user. If the decrypted content
bits can be accessed, (for example by using a kernel
debugger or modified device driver) the technological
enforcement of the license conditions can be
circumvented. Once dissociated from its protection, the
content can be freely copied, played, modified and
redistributed, albeit in violation of the license terms.

Consequently, to reliably enforce typical DRM policies, it
must not be possible for the platform user to access the
plaintext bits that represent the content, despite the
practical reality that the platform is under the user’s direct

127

control1. This is an access control problem that cannot be
solved purely by cryptography. On open computing
platforms that can run arbitrary software, it is a difficult
problem to which there is currently no practical, deployed
solution, particularly in terms of ‘software-only’
techniques. Recent trusted computing initiatives, namely
Microsoft’ s Next Generation Secure Computing Base
(NGSCB) (Microsoft, 2004) and the Trusted Computing
Group (TCG) specification, (Trusted Computing Group,
2003) formerly known as TCPA aim in part, to address
this issue through both hardware and software based
methods (Anderson, 2003).

The goal of trusted computing is to deliver systems that
are highly resistant to subversion by malicious
adversaries, allowing them to operate reliably and
predictably in almost any circumstance. Trusted
computing is an important ingredient in DRM because it
provides a sound basis for license enforcement. Given
the way the NGSCB and TCG initiatives have been
promoted, one could be forgiven for thinking that trusted
computing is an entirely new concept. As we discuss in
Section 3.1, trusted computing actually has a long history
but the lessons this history can teach have been largely
ignored over the last 20 years, particularly in the design
of mainstream PC operating systems2. As a consequence,
such systems are fundamentally ill equipped to provide
the level of protection that a robust DRM system
demands.

1.1 Contribution

In this paper we explain in detail why mainstream,
commercial grade operating systems are an inappropriate
platform on which to base a DRM client. We clarify why
DRM platforms require an operating system that can
enforce mandatory access control. We aim to address
common misunderstandings as to the extent to which the
TCG specification implements DRM. A key conclusion
of our analysis is that the addition of TCG components to
a discretionary access control enforcing operating system
does not result in a ‘trusted system’ that can reliably
enforce DRM licenses. We identify problems with DRM
related applications of the TCG sealed storage feature that
flow from the non-deterministic order of execution of a
multi-tasking operating system. We highlight issues that
undermine the effectiveness of the TCG remote

1 An alternative policy enforcement strategy relies on the
detection of policy descriptive watermarks embedded in
content. To be effective, all content rendering devices
must detect these watermarks and process the content
accordingly. Biddle et al. (2003) argue that the
requirement for all computing devices to implement and
enforce such protections is impractical.
2 We adopt the term mainstream operating system to refer
to popular commercial operating systems such as
Windows 95, NT, 2000 and XP from Microsoft Inc.
(USA), Linux from various distributions of this open
source system and various versions of Unix that
implement a discretionary access control policy.

attestation feature when it is deployed on mainstream
operating systems.

1.2 Overview

The remainder of this paper is organised as follows.
Section 2 provides background on the relevance of trusted
systems to DRM. Section 3 examines operating system
properties that are necessary to support secure DRM
client applications, highlighting the deficiency of
mainstream operating systems in relation to these
requirements. Section 4 presents an analysis of the TCG
specification and the degree to which it can improve the
trustworthiness of mainstream operating systems. Section
5 examines Microsoft’ s NGSCB initiative and Section 6
provides conclusions to this analysis.

2 DRM Client Security and Trusted Systems
Stefik (1997) argues that trusted systems are a basic
requirement for robust DRM. Stefik defines a trusted
system as one “that can be relied on to follow certain
rules. In the context of digital works, a trusted system
follows rules governing the terms, conditions and fees for
using digital works.” The rules or license terms are
expressed in a computer-interpretable format, (known as
a rights expression language) and the content rendering
client ensures that the content is protected and
manipulated in a manner consistent with the rules. Stefik
does not describe the properties a trusted system should
have to reliably enforce the rules. However it is implicit
from the functional description that the trusted system
must protect the underlying bit representation of the
content from direct access by a user. If this were not the
case, bypassing rule enforcement would be trivial.

According to Lacy et al. (1997), the license interpretation
and enforcement components of the client’ s content
rendering platform, (which we will refer to as the DRM
client) must be implemented within the boundaries of a
Trusted Computing Base (TCB). Lacy does not consider
the complications that are introduced if the DRM client is
an open computing device capable of running arbitrary
software.

Biddle et al. (2003) identify the following necessary
enforcement properties for a DRM client:

1. The client cannot remove the encryption from
the file and send it to a peer.

2. The client cannot ‘clone’ its DRM system to
make it run on another host.

3. The client obeys the rules set out in the DRM
license.

4. The client cannot separate the rules from the
payload.

When the DRM client is implemented in application
software on a mainstream operating system, Hauser and
Wenz (2003) contend that policy enforcement can be
bypassed with relative ease. They document a number of
successful attacks on deployed schemes. Properties 1, 3
and 4 are particularly difficult to implement in application
level clients that run on mainstream operating systems. In
the next section we discuss reasons for the inadequacy of

128

application level policy enforcement, in the absence of
certain operating system features.

3 DRM, Trusted Systems and Mandatory
Access Control

This section examines the relationship between operating
system architecture and the effectiveness of DRM license
enforcement.

According to Loscocco et al., (1998) “current security
efforts suffer from the flawed assumption that adequate
security can be provided in applications with the existing
security mechanisms of mainstream operating systems.”
They identify two important operating system
mechanisms that are necessary for effective application-
level security policy enforcement: firstly the ability to
enforce a mandatory security policy; and secondly, a
trusted path for user input and output. Since neither
property is implemented in current mainstream operating
systems they argue that the security of applications based
thereon can be nothing more than “a fortress built on
sand”. This contention is certainly consistent with the
results reported by Hauser and Wenz (2003).

The terms mandatory security policy and Mandatory
Access Control (MAC) are used in a broader sense than
their more common association with Multi-Level Security
(MLS) systems that are based on the work of Bell and La
Padula (1973). As Loscocco et al. (1998) describe, a
system must be capable of enforcing a defined security
policy in a mandatory fashion. This means that policy
enforcement must be assured. To achieve mandatory
security, security policy must be established, configured
and maintained by an authorised security policy
administrator (as opposed to Discretionary Access
Control (DAC) systems, which allow ordinary users to
configure access policy). The policy may be expressed in
MLS terms or it may be role based3 or it may be based on
Domain and Type enforcement (DTE)4. The key
requirement is that the operating system and underlying
hardware are designed so that it is not possible for
software or users to reconfigure or subvert the
enforcement of the policy. Loscocco et al., argue that
carefully controlled memory segregation is critically
important in achieving this requirement. When it is
attained, mutually distrustful applications are able to
execute on the same platform without being able to
access each other's resources (if the policy does not allow
it). This is a crucial requirement for DRM clients if
Biddle’ s enforcement properties, as described in Section
2, are to be met.

3.1 Architecture Flaws in Mainstream OSs

A key limitation of mainstream operating systems that
renders them inappropriate as platforms for a DRM client
is their enforcement of an identity based discretionary
security policy rather than a mandatory security policy.
The DAC model is incompatible with the trust

3 See: Ferraiolo, et al. (1995)
4 See: Badger et al. (1995)

relationship that exists between a content provider and a
content consumer, who is not assumed to be trustworthy.
Since content is locally rendered, the content provider is
forced to rely on the customer’ s DRM client to enforce
their license terms but the environment that this client
operates in is under the customer’ s control. In a DAC
system, control of the execution environment gives the
customer the ability to subvert the policy enforcement
mechanisms of their DRM client5. The system owner can
run privileged software such as a modified device driver
that is able to access the memory space of the DRM
client6. In a MAC system based for example on DTE, it is
possible to configure the MAC policy so that the DRM
client’ s memory space cannot be accessed, even by other
parts of the operating system. If the content provider can
evaluate the MAC policy configuration to confirm that it
enforces DRM client isolation, they can establish a
degree of trust in the DRM client’ s ability to enforce the
license terms – on the grounds that the application’ s
technological enforcement measures cannot be tampered
with or bypassed and its address space cannot be snooped
by other privileged processes to copy decrypted content
bits.

A MAC capability provides a sound basis for policy
enforcement through rigorous control over information
flows between subjects and objects (see Badger et al.,
1995). MAC systems rely on the concept of a reference
monitor, (Anderson, 1972) which is responsible for
enforcing the policy. The reference monitor mediates
every access to system resources and data, (collectively
known as objects) deciding whether the requested access
is consistent with the policy. To ensure that every access
is mediated, it must not be possible to bypass the
reference monitor. The reference monitor mechanism also
needs to be protected against tampering to ensure that an
attacker cannot subvert or influence its access decisions.
Finally, the reference monitor needs to be small enough
to allow it to be validated via analysis and testing. These
properties can be achieved by software in concert with
hardware protection mechanisms (Schell et al., 1985).
The totality of software and hardware that is responsible
for enforcing the security policy is known as the Trusted
Computing Base (TCB).

A further critical weakness in mainstream operating
systems is their inability to implement the security
principle of least privilege, described for example, by
Saltzer and Schroeder (1975). As the name suggests, least
privilege requires a program or user to be given only the
minimum set of access rights necessary to complete a
task. To achieve this, a system needs to be able to
express and enforce fine-grained access rights. In today’ s
mainstream operating systems, privileges are bound to so
called user ‘IDs’ so access decisions are based on user
identity. As a consequence, all of a user’ s privileges are
granted to each program running on behalf of that user.

5 A DAC architecture cannot reliably enforce a
mandatory security policy (Harrison et al., 1976).
6 TCG integrity measurement capabilities do not
effectively address this problem. See Section 4.3

129

There is no efficient mechanism to reduce the set of
available privileges to those that are actually needed.

To make matters worse mainstream operating systems
have only two major categories of users: the root or
super-user, and normal users. As the name ‘super-user’
implies, processes with super-user privilege cannot be
constrained by access controls as there is no reference
monitor. This operating system architecture creates a
serious problem for DRM applications, because the
platform owner typically has access to the super-user
account. Without access controls, a DRM license cannot
be enforced against the super-user and plaintext content
bits cannot be reliably protected. Observance of the
principle of least privilege and enforcement of MAC
underpin effective domain confinement through reliable
control over information flows within the operating
system (Saltzer and Schroeder, 1975). A DRM client
based on an open computing platform cannot successfully
maintain Biddle’ s minimum enforcement properties,
(listed in Section 2) without the confinement and
information flow control that a reference monitor enables.

Device drivers in mainstream operating systems present a
particular problem because they must be totally trusted
but they are not necessarily trustworthy. Drivers are
tailored to a specific piece of hardware (e.g., a particular
sound or graphics card) so they are normally provided by
the hardware vendor. This creates a problem of trust.
Solomon and Russinovich (2000) note: “ device driver
code has complete access to system memory space and
can bypass Windows 2000 security to access objects.” So
device driver code is like application code in that it is
supplied by a range of sources. But it is effectively
operating system code since it has unrestricted access to
system resources. To further complicate matters, device
drivers can be dynamically loaded at runtime. Thus, a
malicious or buggy driver can be used for example, to
compromise cryptographic keys and the plaintext of
protected content. A digitally signed driver provided by a
trusted vendor is a common approach to combat this
problem. Unfortunately this offers only a partial solution
because drivers are typically too large and complex to
evaluate to attain a reasonable degree of assurance that
they do not contain exploitable bugs or unexpected
behaviours. A signature does not guarantee correct
operation. It is also difficult to ensure that the integrity of
the signature verification mechanism and signer’ s public
key are protected.

Early trusted systems such as Multics, (Corbato et al.
1972) addressed the device driver trust issue via a
hierarchy of hardware enforced execution domains
known as rings. Building on the Multics approach, Intel
x86 processors have supported a ring based protection
architecture (Figure 1) since the 286 chip. This four level
design, with ring 0 being the most privileged and ring 3
the least, is intended to allow the operating system kernel,
(which implements the reference monitor) to operate at a
higher level of hardware enforced privilege than device
drivers, other operating system components and code
libraries which in turn can have higher privilege than
users and application processes. The higher level of
privilege ensures that the reference monitor mechanism is

more resistant to bypass or tampering by other less
trusted processes running in rings of lesser privilege. The
quantity and complexity of code that must be trusted to
enforce the mandatory security policy is thereby
substantially reduced. This makes it easier to establish
confidence in its correctness. The x86 hardware
architecture is capable of supporting highly secure and
trustworthy operation. When correctly utilised, its ring-
based architecture combined with its fine-grained
memory segmentation allow it to enforce effective
domain separation and confinement at the hardware level.
Unfortunately, with rare exceptions, (e.g. the GEMSOS
OS described in Schell et al. (1985)) the protection rings
and memory segmentation/capability features of the Intel
x86 have not been used by mainstream, general purpose
operating system designers as they were intended.
Mainstream operating systems use only the most and least
privileged rings for system and user space respectively,
emulating two state machines. While PC operating
systems may not have been designed with security as a
high priority, the same cannot be said of the processor on
which they are based.

Figure 1: The Intel x86 Ring Architecture

The failure of mainstream operating systems to correctly
utilise the ring structure of the x86 processor explains
Intel’ s announced intention to release a new chip with
what is effectively a ‘ring –1’ . According to Peinado, et
al., (2004) the reason for this is that Microsoft’ s new
NGSCB trusted computing architecture requires a higher
level of privilege to enable effective domain separation
within ring 0 which, for reasons of backward
compatibility must continue to host device drivers of
questionable provenance and other potentially insecure
operating system components. This is discussed in more
detail in Section 5.

In summary, mainstream operating systems lack the
essential features that are required to protect decrypted
content and thereby support the enforcement of DRM
licenses. They do not enforce a mandatory access policy,
and they fail to observe the principle of least privilege,
which greatly magnifies the threat presented by software
bugs and privileged but malicious code. In addition, the
sheer volume and complexity of privileged code,
(including device drivers) means that there is no
possibility of gaining any reasonable level of assurance
that a platform will obey DRM license terms. Trust
mechanisms based on signed code and drivers do not alter
this situation since the problem flows from the access
control model and operating system architecture.

130

4 Trusted Computing Group - formerly TCPA

In response to myriad problems created by the insecurity
of open computing platforms, the Trusted Computing
Group (TCG) has proposed a trusted computing platform
specification (Trusted Computing Group 2003). In this
section we briefly describe key aspects of the
specification. In the context of a DRM client application,
we analyse the operating system features that are
necessary to make meaningful use of TCG services,
particularly remote attestation and sealed storage.

The Trusted Computing Group (TCG), successor to the
Trusted Computing Platform Alliance (TCPA), is an
initiative led by AMD, Hewlett-Packard, IBM, Intel,
Microsoft, Sony, and Sun Microsystems. The TCG aims
to “ develop and promote open, vendor-neutral, industry
standard specifications for trusted computing building
blocks and software interfaces across multiple
platforms” 7.

The novelty of the TCG architecture lies in the range of
entities that are able to use TCG features as a basis for
trust. These include not only the platform user and owner
but also, remote entities wishing to interact with the
platform. The mechanism of remote attestation allows
remote third parties to challenge a platform to report
details of its current software state. On the basis of the
attestation, third parties can decide whether they consider
the platform’ s configuration to be trustworthy. If
correctly implemented, remote attestation promises to be
an important feature for DRM clients on open platforms
since it may assist a content provider in deciding whether
the client is currently configured to enforce the license
terms reliably before the content is actually provided.

A closely related TCG objective is to provide reliable,
hardware-based protection for secrets such as
cryptographic keys. Since open computing platforms can
run arbitrary software, this objective aims to ensure that
protected secrets will not be revealed unless the
platform’ s software state meets clearly defined and
accurately measurable criteria. TCG’ s sealed storage
feature can be used to bind a protected secret such as a
content decryption key to a particular software
configuration. If the configuration is not as specified, the
sealed key will not be released.

4.1 TCG Architectural Modifications

The architectural modifications required by the TCG
specification include the addition of a cryptographic
processor called a Trusted Platform Module (TPM). The
TPM must be a fixed part of the computing device that
cannot (easily) be transferred to another platform. The
TPM provides a range of cryptographic primitives
including random number generation, SHA-1 hashing,
asymmetric encryption and decryption, signing and
verification using 2048 bit RSA, and asymmetric key pair
generation8. There is also a small amount of protected key

7 See: https://www.trustedcomputinggroup.org/home
8 See: Menezes et al., (1996) for a description of these
terms

storage. Currently available TPMs are based on smart
card processors.

4.2 Integrity Measurement and Reporting

The TCG security services of remote attestation and
sealed storage build on an integrity protected boot
technique that was introduced by Arbaugh et al. (1997).
Integrity protected booting is fundamental to the design
of the TCG architecture. Figure 2 illustrates the process
with numbers in parentheses denoting the sequence of
events.

Figure 2: TCG Integrity Protected Boot Sequence

The boot process starts in a defined state with execution
of the BIOS ‘boot block’ code. The BIOS boot block is
called the Core Root of Trust for Measurement (CRTM).
Since it initiates the booting and measurement process, it
is implicitly trusted. The core idea behind integrity
protected booting is that a precise hash-based
measurement or fingerprint of all executable code in the
boot chain should be taken and securely stored
immediately before that code is given control of the
processor. Accordingly, the CRTM takes a hash of the
BIOS code (1) and stores the value in a protected
hardware register in the TPM (2), called a Platform
Configuration Register (PCR). PCRs cannot be deleted or
arbitrarily overwritten within a boot cycle. They are
‘update only’ using a simple chained hash technique,
based on the SHA1 secure hash algorithm that works as
follows (where || denotes concatenation):

Updated PCR Value=Hash(Previous PCR Value ||
Current Measurement To Store)

This operation is known as extending a PCR. It allows a
practically unlimited number of measurements to be
stored or committed in a fixed size register.

The CRTM then passes control to the BIOS code (3)
which stores measurements of option ROMS, CPU
microcode updates and the OS loader before passing
control to the latter. The boot process continues following
the same pattern until the kernel is loaded. If any
executable stage in this chain has been modified, the
change will be reflected in the hash value. Since the
PCRs can only be extended, not overwritten, the modified
code cannot hide itself when it is given control of the
CPU.

131

Remote attestation allows a TCG enabled platform to
assert the state of its current software environment to a
third party. The TPM uses a certified key pair that
identifies the platform as a genuine TCG platform, to sign
the current PCR values. Figure 3 illustrates the
attestation procedure in a DRM setting. Before
delivering protected content a content provider can
challenge a requesting TCG platform to attest on its
current configuration. The platform sends the signed
PCRs together with a log containing each of the
individual measurements that have been extended into the
PCR hash chains. The provider reviews each individual
measurement to ensure that it corresponds to a component
that it considers ‘trusted’ . If satisfied with the platform’ s
state, the content can be delivered.

Figure 3: TCG Remote Attestation Protocol

4.3 Operating System Support for TCG
Trusted Computing

In this section we examine the types of operating system
support that are necessary to meaningfully make use of
remote attestation and sealed storage features. We
highlight a number of serious challenges in applying TCG
concepts of trusted computing to mainstream operating
systems.

The TCG specification is claimed to be operating system
neutral. It defines lowest common denominator
functionality for a range of platform types including
PDAs, mobile phones and PCs. Consequently, it does not
deal with operating system architecture issues and it does
not mandate or suggest operating system security features
necessary for TCG services to work reliably. The
specification defines requirements as far as the operating
system (or bootstrap) loader. Despite the TCG
specification’ s understandable silence in this regard, we
contend that a multi-tasking operating system cannot
meaningfully implement TCG functions, particularly
remote attestation and sealed storage unless it has the
‘classical’ trusted computing features that were described
in Section 3. The TCG’ s integrity verification approach is
not a substitute for sound operating system architecture.

To understand why this is so, consider a typical DRM
content delivery scenario wherein a TCG enabled DRM
client platform wishes to connect to a content provider to
download and subsequently view a movie. In exchange
for payment, the provider will transfer an encrypted copy
of the movie and a license for a single viewing. The
license prohibits copying, modification and transfer to
other platforms. Note that these license terms implicate

all of Biddle’ s enforcement properties (listed in Section
2). Building on TCG features, the content provider takes
a number of steps to ensure the integrity of the policy
enforcement mechanisms on the client’ s platform. We use
the term integrity to refer to the ongoing ability of the
platform to reliably enforce the license terms. There are
three main types of verification requirement to determine
and preserve integrity:

1. The content provider requires client platforms to
establish via remote attestation that they have
booted according to TCG principles. The content
provider assesses the booted software
environment against a list of ‘trusted’
components to ensure that the client booted into
a trusted state.

2. The content provider must ensure that the client
has not executed untrusted software after the
boot process completed but before the remote
attestation was initiated.

3. The content provider must ensure that a trusted
version of the DRM client is executing at the
time of the remote attestation, and that client
cannot execute untrusted software while the
protected content is being accessed or viewed.

We will now analyse the practical implications of
addressing these requirements in the context of a
mainstream operating system.

The motivation for the first requirement is self-evident.
However, it is worth emphasizing that the TCG design is
based on the premise that a system can be trusted if the
PCR registers match values expected by a relying party.
The expected values must be those of a known secure
configuration. This assumes that a secure and trusted
configuration actually exists and that the configuration is
trusted because it is trustworthy. As we argued in Section
3.1, this assumption is not well founded in the case of
mainstream operating systems because complexity and
architecture defeat assurance of integrity. TCG does not
solve code quality or operating system architecture
problems. This is a critical and often overlooked
limitation of the TCG model of trusted computing.

The second and third requirements reflect the fact that the
integrity of a platform (running a mainstream operating
system) is dependent on its runtime behaviour. A
theoretically trustworthy state immediately post-boot
provides no guarantee that integrity will maintained, since
software executing post-boot can affect the integrity of
the platform. For example, a dynamically loaded kernel
module, device driver or privileged application can
potentially execute at any time and violate protection
requirements. As we noted in Section 3.1, this is possible
because there is no mandatory control over information
flow among and within processes running at the highest
level of privilege.

To support requirements two and three, the operating
system itself needs to be modified to include a measuring
function that fingerprints the executable code and
configuration data of any system or user level process
before it is launched. Sailer et al., (2004) propose a
‘TCG based integrity measurement architecture’ based on

132

Linux in which they describe a number of operating
system modifications to this end. They describe the
instrumentation of functions that initiate the loading of
code and data that may impact platform integrity. In a
DAC-based operating system not enforcing the principle
of least privilege, there are many such places where the
measuring function must be called. Relatively simple
candidates include functions that load kernel modules,
dynamically loadable libraries, and user-level
executables. Other more problematic candidates include
script interpreters, virtual machines, (e.g., the java class
loader) privileged applications and network services. The
instrumentation itself is relatively simple. It requires a
call to a ‘hash and store’ function immediately prior to
code execution. The problem lies in the practical
difficulty of ensuring that all code is instrumented –
particularly privileged application code. The source code
of legacy and proprietary applications is not always
available and software vendors may not be motivated or
able to issue instrumented versions of all software that is
still in use. Arguably, the impracticality of instrumenting
all script interpreters, virtual machines, just in time
compilers, and privileged applications calls into question
the viability of the whole approach. The failure to
instrument results in potential avenues for integrity
violation.

The third requirement is the most challenging since it
requires that the PCR values always reflect the current
configuration. Therefore, to be able to verify the integrity
of any one process all other processes must be measured
on an ongoing basis (Sailer et al., 2004). Since the
integrity of a process may be violated at any moment, an
attestation is only meaningful at the instant of the last
measurement. By the time a challenger has evaluated an
attestation response, the integrity status may have
changed in a material way. The challenger has no way to
know if this has happened except to continually
rechallenge the platform, a highly inefficient and
unsatisfactory option that in any case can only provide
retrospective assurance.

This problem also impacts sealed storage. A platform
may have been in the configuration mandated in a sealed
storage policy (as reflected in the required PCR values) at
the time a protected cryptographic key was released to the
operating system but this configuration can subsequently
change (i.e., within the same boot cycle) putting the key
and decrypted cipher text at risk of compromise.

In the absence of MAC based domain confinement, what
is needed is a reliable way for the platform to revoke its
trusted status and immediately purge any protected
content or keys from memory if an integrity-relevant
change occurs. The insurmountable difficulty lies in
distinguishing a change that should result in trusted status
revocation from an integrity preserving one. The reason
we consider the problem to be insurmountable relates to
how unrecognised fingerprints that have been extended
into PCRs should be handled. This is discussed in the
next section.

4.4 Maintaining Integrity Assurance

In the TCG remote attestation protocol, the challenged
platform sends the current PCR values together with a log
of the individual fingerprints that have been chained
together to produce these values. The challenger can use
the log to determine whether it trusts the components that
are identified by each individual measurement that makes
up a hash chain. To identify any tampering with the log,
it can recalculate the chain to ensure it produces the
reported PCR value. From a challenger’ s perspective, the
presence of any unrecognised fingerprint in the log
should result in the platform being considered
untrustworthy - the unknown fingerprint could be that of
a malicious component such as a modified device driver
or a program that provides the same functionality as an
instrumented program but without the instrumentation,
e.g. a kernel module loader that can violate the integrity
of the platform by loading malicious code that will not be
reflected in the current PCR values.

This will only present a problem if unrecognised
fingerprints can be legitimately expected from an
otherwise ‘trustworthy’ platform. Unfortunately they are
highly likely because loosely structured data, (including
scripting files, configuration files etc.,) must be
fingerprinted. This is necessary because the runtime
behaviour of a program is commonly determined by the
configuration files it parses at start up, and also, the data
consumed as inputs once running. Therefore, to assess
the integrity impact of executable code, its inputs must be
measured. The measurement of semi-structured and
unstructured input data and configuration files is
particularly problematic in the context of the TCG
architecture since they are not as amenable to integrity
verification via fingerprinting, as is static code. Non-
executable files of this type can tolerate subtle differences
such as extra white space characters, comments or the
same elements in a different order, with no impact on
integrity. Nonetheless, any such difference will produce
a completely different fingerprint. Differences of this
type can be reasonably expected in the real world as users
tailor system behaviour to meet their individual needs via
configuration files. Without access to the measured file
itself, the challenger will be unable to determine whether
an unrecognised fingerprint results from an irrelevant
formatting difference in a semi-structured file as opposed
to a malicious component or an un-instrumented
component loader. Hash-based integrity measurement
may be practical for executable code but it is very
unforgiving when applied to semi-structured data –
arguably so unforgiving as to call the whole approach
into question.

This line of reasoning applies equally to TCG’ s sealed
storage feature. We noted that sealed storage allows the
release of a protected key to be conditional on the current
status of PCR registers matching some predefined and
trusted values. The presence of an unknown
measurement in the PCR hash chains will render a sealed
object inaccessible. New measurements can be
introduced by changes in the software or hardware
configuration (e.g., an upgrade of a video card).

133

We believe the use of sealed storage for DRM content
protection in mainstream operating systems is impractical
for two reasons. The first relates to the order PCRs are
extended in. With hash chains, the order of element
chaining determines the resulting output value.
Therefore, to access a sealed object, all the fingerprints
that have been extended into a PCR must be trusted and
they must be chained together in precisely the same order
that produced the reference PCR values to which the
object is sealed. In mainstream operating systems, the
order of PCR extension is deterministic up to the
operating system loader. After this point, order depends
on individual runtime behaviour as the operating system
kernel proceeds to launch multiple concurrent processes
which themselves may be multithreaded. In such a multi-
tasking environment, execution order is not deterministic.

The second reason why sealed storage is impractical
flows from the observation in Section 4.3 that to maintain
integrity all executable code needs to be measured before
it is loaded. This means that PCRs continue to be
extended as new applications are run. Therefore, in
typical usage they do not stabilise to a predetermined
value9. This problem could be ameliorated by sealing an
object to a subset of PCR values that only reflects the
early stages of the boot process, perhaps up to the loading
of the operating system kernel. This would be more
likely to produce the deterministic result that sealed
storage requires. It will not however capture post boot
platform configuration changes such as the loading of
kernel modules that can materially impact integrity.

The impracticality of remote attestation and sealed
storage on mainstream operating systems is a serious
drawback. It underlines the fact that the TCG building
blocks cannot remedy problems that flow from operating
system architectural deficiencies. Secure DRM clients
cannot be deployed on multi-tasking operating systems
that are unable to provide isolation and confinement of
mutually distrustful and potentially hostile processes.
The application of TCG components does not change this
fact. Sailer et al., (2004) assert that “ many of the
Microsoft NGSCB guarantees can be obtained on today’ s
hardware and today’ s software and that these guarantees
do not require a new CPU mode or operating system but
merely depend on the availability of an independent
trusted entity, a TPM for example.” We contend that
while a number of guarantees may be possible, the
important ones, (not necessarily delivered by NCSGB
either) cannot be achieved, since critical elements of a
trusted system must be enforced by a combination of the
operating system mapped to CPU hardware-based
protection structures. They cannot be provided by add-on
hardware.

The addition of TCG components to mainstream
operating systems does not result in a ‘trusted system’ in
the traditional sense of the term. It does not introduce
trusted paths, or a reference monitor, and it does not alter
the problems created by the failure to observe the

9 Version 1.2 of the TCG Specification introduced PCRs
that can be reset within a boot cycle.

principle of least privilege. The TPM allows integrity
measurements to be stored in a trusted fashion but it does
not provide any mechanism to prevent integrity
violations. It does allow known versions of compromised
software to be identified by their fingerprints and this is
definitely useful. It also provides a more secure
environment for the storage of cryptographic keys,
particularly asymmetric signing keys. However, effective
domain confinement and mandatory access control are
fundamental requirements for trusted computing and
reliable license enforcement in DRM clients. For these
reasons we believe that the security benefits gained by
applying TCG components to mainstream operating
systems that enforce purely discretionary access control
are worthwhile but modest.

TCG components combined with MAC-based operating
systems such as SELinux (Loscocco, 2001) have
significant advantages over their DAC based counterparts
– advantages that may make sealed storage and remote
attestation considerably more practical. In a MAC based
system a challenger needs to verify the integrity of the
security policy interpretation and enforcement
mechanism, the policy configuration itself and the DRM
client application. If these components are trusted to
enforce isolation of the DRM client, no further
measurements are required to establish the ongoing
integrity of the DRM client. Thus the impractical
requirement for ongoing measurement in DAC
architectures is avoided. Since integrity assurance is
based on isolation, detailed measurements of other loaded
executables and configuration data is not required.

4.5 Privacy Impacts

Remote attestation reveals particularly fine-grained
details of a platform’ s configuration that are likely to be
sufficient to distinguish different platforms from each
other and to recognise the same platform across different
sessions. In DAC enforcing architectures in particular,
the privacy protection mechanisms detailed in the TCG
specification, including the zero-knowledge
authentication protocols introduced in version 1.2 are at
great risk of being rendered ineffective.

5 Next Generation Secure Computing Base
(NGSCB) formerly Palladium

‘Next Generation Secure Computing Base’ (NGSCB) is
the name for Microsoft Inc.’ s trusted computing program,
formerly known as Palladium. According to the
designers of the system Peinado et al., (2004) NGSCB is
a “ high assurance runtime environment for trustworthy
applications on a regular personal computer” . NGSCB
builds on the TCG specification and a number of
significant planned modifications to the CPU and chipset
that have been announced by Intel Inc. under their
‘LaGrande’ program. The chipset modifications are
apparently designed to introduce a trusted path for
keyboard, mouse and other input, and secure display
output. The CPU modifications introduce a new mode
akin to a ‘ring –1’ and a number of new instructions to
support it. The new mode is required for reasons of

134

backward compatibility with existing Microsoft
‘Windows’ operating systems.

Backward compatibility was stated as a key requirement
for NGSCB. As we noted in Section 3.1, the Windows
kernel, device drivers and operating system operate at the
highest level of hardware privilege, in ring 0. Due to the
untrustworthy bug-prone nature of some operating system
components and drivers running in this ring, there is no
way to introduce a “ high assurance runtime environment”
because there is no tamper resistant space in which to
implement a domain separation mechanism. Virtual
Machine Monitors (VMM), a well understood approach
to isolating mutually distrusting systems on the same
CPU are not an option in this case because, according to
Robin and Irvine, (Robin and Irvine, 2000) the Intel x86
cannot be securely virtualised. In the simplest version of
the VMM approach, multiple operating systems can be
simultaneously hosted in ring 1 by a VMM that runs in
ring 0. The VMM presents the same interface to the
hosted operating systems as the native hardware and
provides domain isolation between them.

Full virtualisation of the x86 chip may not be possible
but, nonetheless, the type of isolation that NGSCB
demands requires something roughly equivalent to a
VMM and a VMM requires a higher level of privilege
than the hosted operating systems in order to work. This
is the reason behind the new mode, ‘ring –1’ that Intel
announced for their ‘LaGrande’ project.

Peinado et al., (Peinado et al. 2004) describe the NGSCB
equivalent of a VMM as an isolation kernel. The
isolation kernel protects the memory and device resources
of a domain from access by other domains. The isolation
kernel is not itself a fully featured operating system, it
merely manages the coexistence of multiple operating
systems on the same machine. Again, for reasons of
backward compatibility, the isolation kernel does not boot
before the standard Windows operating system and it
does not run beneath it. This somewhat unconventional
approach is a key difference to the TCG style of trusted
computing, which bases its assurance on an assessment of
the integrity of the entire boot chain. NGSCB also takes
a different tack in not assuming that the BIOS is
trustworthy. In a sense, the NGSCB approach has
abandoned any premise of making the traditional
Windows operating system ‘trusted’ and opted instead to
construct a secure environment that can run along side it
– “ a tight sanctuary on an otherwise bug-prone system” in
the words of Peinado et al., (2004). This tight sanctuary
can be launched and terminated multiple times in the
same boot cycle and multiple sanctuaries can
simultaneously coexist.

Like TCG, the NGSCB design supports remote
attestation, and sealed storage. Unlike the basic version
of TCG described in the previous section, it supports
hardware enforced domain isolation and trusted paths.
As between domains, this is a form of MAC since, once
activated neither users nor administrators can turn the
hardware protection off. Microsoft has asserted that the
code for the isolation kernel will be sufficiently small and
simple to provide assurance of its correctness through
independent evaluation. Thus NGSCB’ s ‘sanctuary’

appears to embody the important features that are
required of a trustworthy computing platform. However,
Microsoft has not described in any detail the trusted
operating system that the isolation kernel actually
launches – the trusted sanctuary itself. This sanctuary is
intended to support multiple applications or ‘applets’
which do not necessarily trust each other. Thus an
operating system capable of the functions described in
Section 3 will also be required.

According to Rooney (Rooney, 2004) the future of
NGSCB is far from certain. Application developers have
expressed reluctance to rewrite code to take advantage of
NGSCB features and Microsoft is reportedly reviewing
the design to make the task of application integration
more streamlined. The impact that this will have on the
trustworthiness of NGSCB is unclear. As at the time of
writing, the Microsoft NGSCB web page states,
“ Microsoft is currently evolving the NGSCB architecture
to expand the benefits to customers in terms of
applicability and flexibility” . (See: Microsoft, 2004).
Experience has shown that flexibility tends to undermine
security, but certainly, no conclusions can be drawn until
the revised design is clarified. Rooney notes that
Microsoft is shifting emphasis to support No Execute
(NX) technology that has been implemented by Intel in
its recent processors. NX allows memory pages to be
marked as non-executable to limit common attacks that
exploit buffer overflow. We note that a strategy based
purely on NX falls well short of the requirements for
trusted computing. It is also worth noting that if the Intel
segmentation/capability architecture were correctly
utilised, NX would be unnecessary as a no-execute
control bit is already available at the segment level.

6 Conclusion

We began by emphasizing the importance of trusted
computing for robust DRM license enforcement. The
license validation, interpretation and enforcement
functions of a DRM client need to implemented within
the bounds of a trusted computing base. With reference
to the early trusted computing literature, we reviewed the
critical features that define a trusted computing platform.
Enforcement of a mandatory access control policy,
observance of the principle of least privilege and
provision of trusted paths were identified as key
requirements. These are absent in mainstream operating
systems. For this reason, we argued that such operating
systems are inappropriate to host DRM client
applications. We then analysed the degree to which the
TCG model of trusted computing can be applied to
mainstream operating systems to improve their
trustworthiness. We concluded that the addition of TCG
components to such systems does not result in a trusted
system. The TCG specification cannot substitute for the
absence of MAC and the associated domain confinement
it supports. We identified specific problems that make
the TCG features of sealed storage and remote attestation
impractical when they are used in conjunction with a
DAC enforcing operating system. We concluded that the
TCG specification in conjunction with a MAC enforcing
operating system may offer a considerably more robust
platform on which to deploy a DRM client.

135

7 References

Anderson, J.P. (1972). Computer Security Technology
Planning Study. ESD-TR-73-51, Air Force Electronic
Systems Division, Hanscom AFB, Bedford, MA.

Anderson, R.J. (2003). Cryptography and competition
policy: issues with ‘trusted computing’ . In Proceedings
of the Twenty-Second ACM Symposium on Principles
of Distributed Computing (PODC 2003), July 13-16,
Boston, Massachusetts, pp 3-10.

Arbaugh, W.A. Farber, D.J. et al. (1997). A secure and
reliable boot strap architecture. In Proceedings of 1997
IEEE Symposium on Security and Privacy, pp 65-71,
May 1997.

Badger, L. Sterne, D.F. et al. (1995). Practical domain
and type enforcement for Unix. In Proceedings of the
1995 IEEE Symposium on Security and Privacy, page
66, IEEE Computer Society.

Bell, D.E. and LaPadula, L.J (1973). Secure computer
systems: Mathematical foundations and model.
Technical Report M74 244, The MITRE Corp.,
Bedford MA.

Biddle, P., England, P., Peinado, M. and Willman, B.
(2003). The Darknet and the future of content
protection. In Digital Rights Management-
Technological, Economic, Legal and Political Aspects.
LNCS 2770, Springer, pp 344-365.

Corbato, F.J., Saltzer, J.H. and Clingen C.T. (1972).
Multics - the first seven years. In Proceedings of the
Spring Joint Computer Conference, pages 571-583,
AFIPS Press.

CEN/ISSS, (2003). Digital Rights Management Report
http://europa.eu.int/comm/enterprise/ict/policy/doc/drm
.pdf. Accessed 18 August 2004.

Ferraiolo, D. Cugini, J. and Kuhn, R. (1995). Role Based
Access Control (RBAC): Features and motivations. In
Proceedings of the Annual Computer Security
Applications Conference, New Orleans, Louisianna,
December 11-15, IEEE Computer Society Press.

Harrison, M., Ruzzo, W. and Ullman, J. (1976).
Protection in Operating Systems. Communications of
the ACM, 19(8) pp. 461-471.

Hauser, T. and Wenz, C. (2003): DRM Under Attack:
Weaknesses in Existing Systems. In Digital Rights
Management-Technological, Economic, Legal and
Political Aspects. LNCS 2770, Springer, pp 206-223.

Lacy, J., Snyder, J.H. and Maher, D.P. (1997). Music on
the Internet and the intellectual property protection
problem. In Proceedings of the IEEE International
Symposium on Industrial Electronics (ISIE 97), Vol 1,
pp 77-83.

Loscocco, P.A. Smalley, S.D. et al. (1998). The
inevitability of failure: The flawed assumption of
security in modern computing environments. In 21st
National Information Systems Security Conference,
Arlington, VA., August.

Loscocco, P.A. Smalley, S.D. (2001). Meeting critical
security objectives with Security-Enhanced Linux. In
Proceedings of the 2001 Ottawa Linux Symposium.

Menezes, A.J. Van Oorschot, P.C. and Vanstone, S.A.
(1996). Handbook of Applied Cryptography, CRC
Press, ISBN 0849385237.

Microsoft, (2004), Next Generation Secure Computing
Base – Product Information, available at:
http://www.microsoft.com/resources/ngscb/productinfo
.mspx, accessed 20 July 2004.

Peinado, M. Chen, Y. et al. (2004), NGSCB: A Trusted
Open System. In Proceedings of 9th Australasian
Conference on Information Security and Privacy
ACISP, Sydney, Australia, July 13-15.

Robin, J. and Irvine, C. (2000). Analysis of the Intel
Pentium’ s ability to support a secure virtual machine
monitor. In Proceedings of the 9th USENIX Security
Symposium, Denver, Colorado, USA, August 14-17.

Rooney, P. (2004). Microsoft Shelves NGSCB Project as
NX Moves to Centre Stage. 5 May 2004, http://
www.crn.com/sections/BreakingNews/dailyarchives.as
p?ArticleID=49936 accessed 7 May 2004.

Sailer, R. Zhang, X. et al. (2004). Design and
implementation of a TCG-based integrity measurement
architecture. In Proceedings of the 13th Usenix
Security Symposium, San Diego, August 9–13.

Saltzer, J.H. and Schroeder, M.D. (1975). The protection
of information in computer systems. Proceedings of the
IEEE, 63(9):1278-1308, Sept.

Schell, R., Tao, T. and Heckman M. (1985). Designing
the GEMSOS security kernel for security and
performance. In Proceedings of National Computer
Security Conference, Gaithersburg.

Schneck, P. (1999). Access Control to Prevent Piracy of
Digital Information. Proceedings of the IEEE,
87(7):1239-1250.

Solomon, D.A., and Russinovich, M. (2000). Inside
Microsoft Windows 2000. Microsoft Press, 2000. ISBN
0735610215.

Stefik, M. (1997). Shifting the Possible: How Trusted
Systems and Digital Property Rights Challenge Us to
Rethink Digital Publishing. Berkeley Technology Law
Journal Vol. 12. No.1. pp 137-159.

Trusted Computing Group, (2003), Trusted Platform
Module Main Specification, Part 1: Design Principles,
Part 2: TPM Structures, Part 3: Commands, October
2003, Version 1.2, Revision 62, available at
http://www.trustedcomputinggroup.org, accessed 26
May 2004.

WIPO, (1996). World Intellectual Property Organization.
Wipo copyright treaty.
http://www.wipo.org/eng/diplconf/distrib/treaty01.htm
Accessed 15 April 2004.

136

