RIPPLE

Effective Programming for Large Distributed Ensembles

Iliano Cervesato
CMU Qatar

Seth Goldstein
CMU Pittsburgh

http://www.qatar.cmu.edu/~iliano/projects/ripple/
Claytronics

- Programmable Matter
 - A cyber-physical material…
 - …with actuation and sensing…
 - …that can change shape under software control…
 - …and in reaction to external stimuli
- A massively distributed system embedded in the physical world with a constantly changing network

http://www.cs.cmu.edu/~claytronics
Claytronics Today

- A multidisciplinary project
 - Robotics, nanotechnology, programming, logic, …
 - 7 years
 - 22 researchers, 4 PhD students, 19 undergrads

- Hardware
 - Design for sensing, actuation, communication, power
 - Several platforms
 - Silicon catoms, …
 - Blinky blocks

- Software …
Programming Claytronics

- The real challenge
 - Massively distributed computation
 - Manage computation and communication
 - Keep nodes in a coherent state
 - Be fault tolerant, …
 - Program the ensemble as a single entity
 - Let the compiler handle the details
 - Use logic programming
 - LDP
 - Meld
 - Correct by design
 - Work well on small examples
 - But to scale to larger programs
 - we need a more flexible paradigm
Higher-Order Multiset Rewriting

- Simple local rules to describe global changes
 \[\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O} \]
- Used successfully
 - Computer security
 - Foundations
 - Specification
 - Verification
 - Biomolecular systems
- QNRF support
 - Specialize to Claytronics

- Native support for
 - Concurrency
 - Synchronization
 - Mobile code
 - Non-determinism
 - Non-monotonicity
 - Atomicity
- Foundations in
 - Logic
 - Transition systems
 - Process algebra

http://www.qatar.cmu.edu/~iliano/projects/msr/
Directions

- Develop MSR for Claytronics
 - Strongly-typed language
 - Declarative
 - Powerful
- Build an implementation
 - Blinky block simulator and hw
- Program complex behaviors
 - Large library of examples
 - Beyond what is practical today

Further impact

- Micro-economic analysis
- Biomolecular simulation
- Flow dynamics
- Crowd rendering
- Sensor networks
- Internet routers
- Autonomous vehicles
- Smart power grid
- Cryptographic protocols
- ...