Kerberos Verification Project

Iliano Cervesato
Carnegie Mellon University - Qatar
iliano@cmu.edu

Joint work with Andre Scedrov, Aaron Jaggard, Frederick Butler, Christopher Walstad, Joe-Kai Tsay, Michael Backes
Verifying Kerberos

- **Context: 2001**
 - Enormous progress in protocol verification
 - NSPK, Clark-Jacob were becoming passé
 - What do to next?
 - Toy protocols in computational model
 - Real protocols in Dolev-Yao model

- **We started looking into Kerberos 5**
 - The real thing, not the 6-line idealization
 - Actually, fragments
Approach

• Formal representation in flexible language
 - MSR 2.0
 - Multiple abstractions at different levels of detail

• Analysis based on inductive theorem proving
 - Manual
 • So far
MSR 2.0

- Strongly-typed multiset rewriting framework
 - Low-level can be abstracted in type system
 - Models protocol and intruder
- Fully definable
- Independent from verification methodology
- Not specific to security protocols
Rank & Corank

• Inductive proofs over 2 measures
 - Rank supports authentication
 - Corank supports secrecy

• Protocols alternate secrecy and authentication layers
 - Each handled separately, but cooperatively
 - Later generalized into authentication and secrecy logics
 • Work with C. Meadows and D. Pavlovic
Results: Main Protocol

• Examined the main protocol at 3 levels of detail
 - 6-line core
 - Extension with flags, options, ...
 - Extension with timestamps
• Abstract proof act as template for extensions
• Found that protocols are correct, but ...
 - ... a number of anomalies are possible
 • Unplanned behaviors, but not attacks
Results: Cross-Realm

• Kerberos 5 supports authentication across domains

• Findings:
 - If any domain is untrusted or compromised, no authentication guaranties

• Use of MSR and proof technique scale
Results: PKINIT

- “Public-Key” variant of Kerberos

Findings:
- Serious man-in-the-middle attack
 - Destroys authentication guarantees
- Countermeasures
 - We worked with IETF working group to fix it
 - Immediate security patch from Microsoft, Linux

- Used again same methodology
Computational Proofs

• We redid aspects in BPW model
 - Core Kerberos 5 with/without PKINIT
• Findings:
 - Our Dolev-Yao proofs acted as blueprints for BPW proofs
 - “Cryptographic key secrecy” is in the way
 - Complete lack of modularity
 • Had to redo everything for each option
 - Inability to treat timestamps
Future Research

- Better understand link between
 - DY proofs
 - BPW proofs
- Modularize / extend BPW framework
- Investigate
 - Other aspects of Kerberos
 - Other protocols
- Automate our approach