An Encapsulated Authentication Logic for Reasoning about Key Distribution Protocols

Catherine Meadows
NRL

Dusko Pavlovic
Kestrel Institute

Iliano Cervesato
Tulane University
Contributions

• **Separate**
 - Authentication reasoning
 - Secrecy reasoning

• **Define a logic of pure authentication**
 - Secrecy as assumptions
 - Proof obligations

• **Embed it in derivational framework**

• **Apply to key distribution protocols**
 - Taxonomy
 - Comparative study
 - Clear understanding of underlying mechanisms
Server-Assisted Shared Key Distribution Protocols

KD^0 \rightarrow KD^1 \rightarrow KD^2 \rightarrow KD^3 \rightarrow KD^4

DS \rightarrow NSSK^0 \rightarrow NSSKfix^0

K5core^0 \rightarrow K5core \rightarrow K4core^0 \rightarrow K4core \rightarrow NSSK^1 \rightarrow NSSK \rightarrow NSSKfix^1 \rightarrow NSSKfix
Key Distribution Protocols

- Secrecy depends on authentication
 - k secret only if sent over authenticated channels

- Authentication depends on secrecy
 - Cryptographic authentication relies on secrecy of long-term keys
Verifying KD Protocols

Historically single monolithic proofs

... BUT ...

secrecy and authentication rely on very different proof methods

- **Authentication**
 - Completing partial order of actions
 - Get piping right
 - Local reasoning
 - Positive inference

- **Secrecy**
 - Secret goes only to intended recipients
 - Pipes do not leak
 - Global reasoning
 - Negative inference
Divide et Conquera

- Two coordinated logics
 - Logic of authentication
 - Relies on secrecy assumptions
 - Proof obligation in secrecy logic
 - Logic of secrecy
 - Relies on authentication assumptions
 - Proof obligation in auth. logic

- Benefits
 - Much simpler proofs
 - Modularity
 - Independent of notion of secrecy
Describing Protocol Runs

- **Messages**
 - $k \cdot m$ - encryption
 - m, m' - pairing

- **Principal actions**
 - $\langle m: A \rightarrow B \rangle_A$ - send
 - $\langle X: Y \rightarrow Z \rangle_A$ - receive
 - $\langle m/p(x) \rangle_A$ - match
 - $\langle \nu n \rangle_A , \langle \tau t \rangle_A$ - new nonce, timestamp

- **Runs**
 - Partial order of actions
 - Every receive has a send
 - Every match has succeeded
 - Observations

- **Protocols**
 - Set of parametric roles
 - Akin to observations

Abbreviation
- $\langle \langle m \rangle \rangle_A$
- $\langle (m) \rangle_A$
- $\langle m \rangle_A$
Authentication Logic

• First-Order logic with 3 predicates
 - \(a_A \) – action \(a_A \) has occurred
 - \(a_A < b_B \) – \(a_A \) has occurred before \(b_B \)
 - \(a_A = b_B \) – \(a_A \) and \(b_B \) are the same action

 Nothing else!

• Usage
 - Given \(A \)'s observations, extend them with other principal’s actions
 - Derive compatible runs
 \(A: \text{Obs}_A \Rightarrow \Phi \)
 \(A: \Psi & \text{Obs}_A \Rightarrow \Phi \)
 - Iterated application of axioms
Logical Assumptions

- **Honesty**
 - Principal does not deviate from role

- **Secrecy**
 - Key uncompromised for given principals

Honest S

secret(k, G) =

\[
\langle\langle km\rangle\rangle_X \Rightarrow X \in G \\
\& \ (x/k \ y)_X \Rightarrow X \in G
\]

secret(k, [A, S])
Axioms

- Basic truths about domain

 ➢ **Receive axiom**

 \[Y: ((m))_A \Rightarrow \langle m \rangle_X < ((m))_A \]

 ➢ **Timestamp axiom**

 \[A: \text{honest } B & \]

 \[\langle \tau \rangle_B \prec ((\tau))_A \]

 \[\Rightarrow (t-\delta)_A \prec (t)_B \prec \langle \tau \rangle_B \prec ((\tau))_A \prec (t-\Delta)_A \]

- Allow inferring new actions/ordering
Schemas and Instances

- Desired functionalities
 - **Nonce-based Challenge-Response property**

 \[A: \Phi \land \\
 (\nu n)_A \prec \langle \langle C \ n \rangle \rangle_{A^<} \prec \langle (R \ n) \rangle_A \\
 \Rightarrow (\nu n)_A \prec \langle \langle C \ n \rangle \rangle_{A^<} \prec \langle (C \ n) \rangle_B \prec \langle \langle R \ n \rangle \rangle_{B^<} \prec \langle (R \ n) \rangle_A \]

- Verified instances
 - **Challenge in the clear/Response encrypted**

 \[A: \text{secret}(K, [A,B]) \land \\
 (\nu n)_A \prec \langle \langle n \rangle \rangle_{A^<} \prec \langle (K \ n) \rangle_A \\
 \Rightarrow (\nu n)_A \prec \langle \langle n \rangle \rangle_{A^<} \prec \langle (n) \rangle_B \prec \langle \langle K \ n \rangle \rangle_{B^<} \prec \langle (K \ n) \rangle_A \]
Abstract Key Distribution

- **S** spontaneously
 - Generates k
 - Sends it to A, B
 - A, B hardwired
 - Encrypted with K^A_S, K^B_S
- **A** observes only $(K^A_S k)$

- **A** reconstructs run
 - Must assume
 - honest S
 - secret($K^A_S, [A,S]$)
 - Not secret($K^B_S, [B,S]$)
 - B’s reception unknown

- **Dual for B**

A: secret($K^A_S, [A,S]$) & honest S & $(K^A_S k)_A$

$\Rightarrow (v \ k)_S < \begin{pmatrix} K^A_S k \\ K^B_S k \end{pmatrix} < (K^A_S k)_A$
Derivational Approach

• Use rules, not just axioms
 ▪ Operate on protocol and properties
 ➢ Refinements
 ➢ Transformations

• Advantages
 ➢ Abstract general constructions
 ➢ Reuse protocol fragments
 ➢ Structured understanding of
 ▪ Mechanism
 ▪ Properties
 ▪ Relations between protocols
 ➢ Open-ended taxonomies
- A may not be talking to B
 - Even if S honest
- Same for B
I. Cervesato: Encapsulated Authentication Logic

Binding

- A (B) authenticated to B (A)

Diagram with nodes labeled as KD0, KD1, KD2, KD3, KD4, NSSK0, NSSKfix0, NSSK1, NSSKfix1, K4core0, K5core0, A, B, S, KAS(B,k), KBS(A,k), v, k.
- A knows S sent $K^{AS}(B,k), K^{BS}(A,k)$
- A received $K^{AS}(B,k), M$
- A doesn’t know if $M = K^{BS}(A,k)$
- Documented anomaly of Kerberos 5
A authenticates B assuming

\[\text{secret}(K^B_S, [B, S]) \]
B’s Point of View

- With only \(\neg \text{secret}(K_{BS}, [B,S]) \)
 knows S generated k

- With also
 \(\neg \text{secret}(K_{AS}, [A,S]) \)
 knows A knows k
 \(A \) may not be honest
Additional Properties

• Recency
 - \((ν k)_S\) bracketed by events controlled by A/B
 - Otherwise, intruder can infer k and attack protocol
 - Even if S is honest
 - Not satisfied so far

• Key confirmation
 - A/B knows that B/A has k
 - Essential for using k
 - Only B in KD^4 (under assumption)
Recency with Nonces

- Use challenge-response as bracket

\[K^{AS}(B,k, K^{BS}(A,k)) \]

\[K^{BS}(A,k) \]
- Ensures recency of k to A
- A can reconstruct run up to B’s action
- No such guarantees for B
 - Denning-Sacco attack
Core NSSKfix

Nonce-based CR

I. Cervesato: Encapsulated Authentication Logic
Under the assumption

\(\text{secret}(k, [A,B,S]) \)
NSSK does more!

- **B concludes with CR**
 - k not confirmed to A
 - Unless tagging
 - B already knows A has k

- **Exchange typical of repeated authentication**
 - B repeatedly request service from A
 - ... but A is initiator!

- **Similarly for NSSK-fix**
Recency with Timestamps

- Timestamp as bracketing device
 - Requires loosely synchronized clocks

\[
\text{secret}(K^A_S, [A,S])
\]

\[
K^A_S (m,t)
\]

\[
K^A_S m
\]

A \quad S

I. Cervesato: Encapsulated Authentication Logic
Denning-Sacco

- Guarantee recency to both A and B
- Same assurance as core NSSK-fix
 - Only 3 messages
Core Kerberos 4

- Kerberos 4
 - 2 rounds
 - Many more fields, options, ...

Key confirmation

Repeated auth.

K4core

K5core

K4core

KDS

NSSK

- A, B
- $K^{AS}(B, k, t, K^{BS}(A, k, t))$
- τ, t'
- $K^{BS}(A, k, t), k(A, t')$
- $k m[t']$
Core Kerberos 5

- Kerberos 5
 - 2 rounds
 - Even more fields, options, ...

Key confirmation

Repeated auth.

\(K^A_S(B,k,t) \), \(K^B_S(A,k,t) \)

\(K^B_S(A,k,t), k(A,t') \)

\(k m[t'] \)
Define Secrecy Logic

- Authentication as assumptions
- Modular model of secrecy
 - Dolev-Yao
 - Information-theoretic
 - Computational
- Apply to examples
 - Diffie-Hellman hierarchy
 - Full Kerberos 5
 - PKINIT
- Implement within Kestrel’s PDA