A Spreadsheet for Everyday Symbolic Reasoning

Iliano Cervesato
Deductive Solutions
iliano@deductivesolutions.com
The Traditional Spreadsheet

Benefits

- Simple access to complex \textit{numerical} calculations
 - Intuitive interface
 - No formal training needed
 - Gentle learning curve
- Effective decision support for \textit{numerical} data
 - Financial analysis, budgets, grades, inventories, …
- Ubiquitous
 - Over 50M users
 - Only recently surpassed by web browsers and mailers

Opportunities

- Simple access to \textit{symbolic} calculations/reasoning
- Effective decision support for \textit{symbolic} data
Objectives of this Work

- Extend the spreadsheet with symbolic reasoning
 - Support symbolic decision-making
 - Provide functionalities to manipulate data symbolically
 - Logical language
 - Operational interpretation
 - Interface commands
 - Same ease of use as traditional spreadsheet
- Seamless integration into current model
 - Not a separate application
Results

- Extension of the traditional spreadsheet with:
 - Expressions over first-class tabular data
 - Datalog with negation, constraints, calculated values, lists
 - Equational relational algebra (extended)
 - Like database, but queries results permanently displayed
 - Efficient evaluation and update propagation
 - Guaranteed termination
 - Explanation facilities
 - Extended user interface
 - Good feedback from preliminary user testing
Rest of this Talk

- What is a spreadsheet?
- Extended core functionalities
 - Relational/Logical expressions
 - Evaluation / Updates / Explanation
- Extended user interface
 - Design methodology
 - Extensions
- User testing
Historical Attempts

- 1982: LogiCalc [Kriwaczek]
 - Spreadsheet in MicroProlog
 - + relational views, integrity constraints, bidirectional variables, symbolic manipulations, complex objects
 - Teletype interface
- 1986: [van Emden]
 - Incremental queries, exploratory programming
- 1989: PERPLEX [Spenke & Beilken]
 - Bidirectional integrity constraints
- Then not much … until now!
What is a Spreadsheet?

Mathematical model for

- Scalar spreadsheet
- Array formulas
- Relational support
Scalar Spreadsheets

A simple functional language without recursion

- 16,777,216 glorified calculators

Functionalities

- Input
 - Cells, Expressions
- Calculate
 - Turn entered expressions into displayed values
- Update
 - Propagate changes
- Explanation (audit)
 - Catch errors
Spreadsheet Model

- Scalar expressions
 - A2 * 9/5 + 32

- Spreadsheet:
 - s : Cell \rightarrow Expr
 - No circular references

- Dependency graph:
 - DG_s
 - Representation of s that highlights cell dependencies
Evaluation

Environment: Env = Cell \rightarrow Val
Evaluation: eval: s \rightarrow Env

- Best performed on dependency graph
 - Fixpoint calculation
 - Starts from undefined environment
 - $\#$ iterations = longest path in DGs
 - Cost = $\mathcal{O}(\text{used_cells})$
 - Under semi-naive strategy
Updates

- Determine tainted cells
 - Using dep. graph
- Evaluation starting from tainted environment
- Cost = $O(tainted_cells)$
 - Under semi-naïve strategy
Explaination

Why does A2 show 212?

- Commands to navigate DG_s from given cell
 - Highlight cells on which A2 depends
 - ... and those on which they depend
 - ... and those on which they depend
 - ... and those on which they depend
 - ...

- ...
Array Formulas

- Expressions associated to a block of cells
 - A44 := \(\frac{\text{SUM}(A2:A43)}{42} \)
 - B2:B43 := \(A2:A43 \times \frac{9}{5} + 32 \)

- Map to scalar formulas
 - No circularity at that level
 - Inherit evaluation and update

- Immature user interface
Relational Support

- “Data List” / “Databases” / ...
 - Minimal support for manipulating tabular data
 - Insertion wizard
 - Sorting
 - Selection
 - Import from other applications
 - Second class-objects
 - Functionalities as commands, not operations
 - No functions over multiple tables
 - No join
The Deductive Engine

- First-class relations
 - Relational expressions
 - Integration
- Logical counterpart
 - Datalog without recursion
 - Logical updates
 - Explanation as proof-search
- Deductive spreadsheet
 - Recursion
 - Bounded termination
Relations

- Interpret rows as records, columns as attributes
- Or the other way around
- Nothing new
Relational Expressions

- Associated to cell blocks
 - Like array formulas

- Manipulate relations as a whole
 - Union, difference, projection, selection, join
 - *Show all flights between Delta hubs less than 500 miles apart*

 $\pi_{\text{hub1.City}, \text{hub2.City}} \sigma_{\text{directFlight.Distance}<500, \text{hub1.Airline}=\text{"Delta"}, \text{hub2.Airline}=\text{"Delta"}}$

- Non-deterministic ordering
 - No duplicates

- Minor extension for calculated projection attributes
 - Result is treated as a set
Interface to Usual Formulas

- Coercion from (array) formula to relation
 - $<e>$: compute e and interpret it as a relation
- Coercion from relational exp. to (array) formula
 - $[r]$: compute r and interpret it as an array
 - Ordering is non-deterministic
 - Add SORT as a new array operation
- Traditional formulas also in selection/projection attributes
- Relational expressions can appear within formulas
- Formulas can appear within relational expressions
Relational Spreadsheet

\[s : \text{Partition(Cell)} \rightarrow \text{ArrayExp} \cup \text{RelExp} \]

- Cannot be reduced to scalar spreadsheet
- Several notions of dependency graph
 - Cell level
 - Relation level
 - No circularity
 - Attribute level
Functionalities

- **Evaluation**
 - $\text{Env} = \text{Partition}(\text{Cell}) \rightarrow \text{Val} \cup \text{RelVal}$
 - $\text{Eval} : s \rightarrow \text{Env}$
 - $\text{Cost} = \mathcal{O}(\text{records}^{\text{max}_\text{join}})$
 - Semi-naïve evaluation

- **Update**
 - Identifies added/removed records
 - Start reevaluation from those

- **Explanation**
 - Similar to traditional spreadsheet
 - Inadequate
Logical Interpretation

- Rel. algebra equivalent to recursion-free Datalog

 Show all flights between Delta hubs less than 500 miles apart

 \[
 \text{shortDeltaFlight(From,To) } \leftarrow \\
 \text{directFlight(From,To,Dist) } \land \\n \text{Dist < 500 } \land \\n \text{hub(From, "Delta") } \land \\n \text{hub(To, "Delta")}
 \]

- Body literals can be negated
 - Stratified Datalog

- Extension with constraints
 - Generic
 - Head: operate on head-only variable

- Variables subject to safety restrictions
So What?

Harness wide array of logical tools

- 40 years of logic programming
- Logical interpretation of
 - Evaluation
 - Logical inference
 - Updates
 - Optimized evaluation
 - Explanation
 - proof-search
Evaluation Revisited

- Logical consequences computed as
 - Fixpoint of functional on logical interpretations
 - Bottom-up evaluation of logic programs

- Terminating
 - Fast strategies
 - Semi-naïve strategy
 - Used in deductive databases

- Scales to
 - Stratified negation
 - Safe constraints
 - Surrounding scalar/array formulas
Updates Revisited

- Incremental evaluation at heart of semi-naïve strategy
 - Optimization
- Adapts smoothly to generic updates
 - Positive updates
 - Negative updates
Explanation Revisited

- Display argument for computed record
 - Proof search
 - Top-down evaluation of logic programs
- Flexible explanation mechanism
 - Why is this record there?
 - Why isn’t this record there?
 - May contain variables
 - Proof of generic queries
The Deductive Spreadsheet

- Allow recursion
 - Subject to stratification

Show all pairs of cities connected by air

\[
\text{indirect}(\text{From}, \text{To}) \leftarrow \text{directFlight}(\text{From}, \text{To}, _). \\
\text{indirect}(\text{From}, \text{To}) \leftarrow \text{directFlight}(\text{From}, \text{Mid}, _) \& \text{indirect}(\text{Mid}, \text{To})
\]

- Strictly more expressive
 - Opens the door to a whole new class of problems
 - Even more so by exploiting spreadsheet environment
 - Overlapping traditional formulas
Examples of Expressiveness

- Any relational expression
 - Any SQL query
- Recursive queries
 - Transitive closure problems
 - Path in a graph
 - Travel planning
 - Hierarchies
 - Course requirements
 - Readiness of troops, …
- Bill of Material problem
- Workflow problem
- Meeting planner
- Anti-trust problem
Extensions

- **Head constraints in recursive clauses**

 Show distance of trip

 \[
 \text{indirect}(\text{From}, \text{To}, \text{Dist}) \leftarrow \text{directFlight}(\text{From}, \text{To}, \text{Dist}).
 \]

 \[
 \text{indirect}(\text{From}, \text{To}, \text{Dist}) \leftarrow \text{directFlight}(\text{From}, \text{Mid}, \text{Dist’}) \land \text{indirect}(\text{Mid}, \text{To}, \text{Dist’’}) \land \text{Dist} = \text{Dist’} + \text{Dist’’}
 \]

 - Non-terminating in general
 - Put user-defined bound on recursion for these clauses

- **Flat lists**

 Show itinerary

 \[
 \text{indirect}(\text{From}, \text{To}, [\text{From}, \text{To}]) \leftarrow \text{directFlight}(\text{From}, \text{To}, _).
 \]

 \[
 \text{indirect}(\text{From}, \text{To}, [\text{From}, \text{Mid}|\text{Rest}]) \leftarrow \text{directFlight}(\text{From}, \text{Mid}) \land \text{indirect}(\text{Mid}, \text{To}, [\text{Mid}|\text{Rest}])
 \]

 - Treated in the same way

- **Embedded implication**
The User Interface

- **Design methodology**

- **Initial design**
 - Most modern spreadsheets have nearly identical interfaces
 - Generic deductive extension
 - Demonstrated on Excel 2000
Interface Design Methodology

- Traditional approaches
 - Experts design user interface
 - We are not HCI experts
 - Refined through extensive user testing
 - No time/resources at this stage
- Lightweight approximate methods
 - Meant for application designers
 - Provide vocabulary for concepts and objectives
 - Obtain adequate first-cut
 - Validate/refine later using traditional approaches
Cognitive Dimensions

- “Discussion tools” for cognitive concepts
 - Viscosity
 - Consistency
 - Hard mental operations
 - Hidden dependencies, …

- Vocabulary to make decisions
 - Evaluate cognitive effect
 - Plan trade-offs

- Scales to make rough measurements
Attention Investment Model

- Psycho-economic model to anticipate user behavior
 - Embracing novelty = investment of attentional effort
 - Will do if perceived pay-off > perceived risk

- Pay-off: larger class of solvable problems

- Costs:
 - Shifting to logical/relational mindset
 - Learning new syntax

- Risk: problem still not solvable

- Target audience
 - Needed skills
 - Tabular information, select cell ranges, comfortable with formulas
 - Advanced and intermediate users
Deductive Layout

- Nearly unchanged
 - No cognitive penalty
- Couple of new context-sensitive menu items
 - “Define Relation …”
 - Give names to relation and attributes
 - Insert it in “defined predicates” list
 - Insert captions
 - “Explain”
- Graphical construction of formulas
Textual Language of Formulas

Two alternatives

- Gives flexibility to user
- Embellished Datalog
 - indirect(From, To) \textbf{IF} directFlight(From, To, _).
 - indirect(From, To) \textbf{IF} directFlight(From, Mid, _) AND indirect(Mid, To)
- SQL-like language
 - indirect(To, From) = directFlight \textbf{UNION}
 - \textbf{SELECT} directFlight.From, indirect.To \textbf{FROM} directFlight, indirect
 - \textbf{WHERE} directFlight.To = indirect.From

- Final choice to be guided by user feedback
Entering Formulas

- Typing in the formula bar
 - Syntax check “as-you-type”
 - Visual feedback
 - Autoformat
 - Precise error reporting
- Clicking around
- Wizards
- Cut and paste
Mouse-Assisted Definition

- Construct formula with a few mouse clicks
 - Names from “predicate list” or spreadsheet

- Identify variables by dragging
- Click constraints in

```
=indirect(From,To)
IF directFlight(From,To,_).
=indirect(From,To)
IF directFlight(Var1,Var2,Var3)
```
Wizard-Assisted Definition

- Enter formula in wizard
- Mouse assisted shortcuts available

Clause Definition

Head indirect(From,To)

Body

- **Conjunct 1**: directFlight(From, Mid, _)
- **Conjunct 2**: indirect(Mid, Var5)
- **Conjunct 3**: Mid <> “LAX”
- **Conjunct 4**:

Head is true only if all the **conjuncts** in **Body** are true

Conjunct 4: each **conjunct** is a **predicate** or a **constraint**

- Right-click on box for **defined predicates**
- Drag variables to define **constraints**
- Click on f_x for **abbreviated forms**

Define another **clause**
Explanation Facilities

- Invoked using right-click menu
- Displays proof tree
 - Color-coded feedback in spreadsheet
 - Browsable
- Allow entering arbitrary queries
- Allows saving result

Query: indirect("JFK", To)

indirect("JFK", "LAX")
 indirect("SFO", "LAX")
 directFlight("SFO", "LAX")
 directFlight("JFK", "SFO")
 indirect("JFK", "LAX")
 directFlight("JFK", "SFO")

indirect("SFO", "LAX")
 directFlight("SFO", "LAX")

IF directFlight("JFK", "SFO")
AND indirect("SFO", "LAX").
Productivity Tools

Connection graph

Connection Graph

LGA 211 → DCA 540 → ATL 2130
JFK 181 → BWI 2580 → SFO
 2437 → LAX 1657 → MSY
IAD 3850 → CDG 2252
 2580 → VCE 519
 3640 → EWR 2560

Query 1
- directFlight(F,T,D)
- D > 2500

Query 2
- directFlight(F,T,D)
- AND D > 2500

More soon
- Flow graph
- …
Preliminary User Testing

- 8 volunteers
 - 3 advanced
 - 2 intermediate
 - 2 beginners — *NOT in target audience*
 - 1 theoretical computer scientist …

- Outline of experiment
 1. Background questionnaire
 2. Illustration of Deductive Spreadsheet
 3. Walk through example and user interface

Collected feedback at each stage
Feedback

- Advanced users
 - Followed example and suggested applications
 - General approval of user interface
 - Interested in all aspects of the Deductive Spreadsheet
 - Would use the Deductive Spreadsheet if it were available

- Intermediate users
 - Followed example and suggested applications
 - Disapproved of choice of some keywords in interface
 - Interest in many aspects of the Deductive Spreadsheet

- Beginners — *NOT in target audience*
 - Appreciated general objectives but difficulties with example
 - Trouble with wording of interface
 - Lot of interest in basic relational inference
 - Demanded simpler interface
Future Work

- Prototype
- Enhancements to User Interface
- Experimental assessment
 - User testing
 - Performance
 - Problem base
- Integration of other notions of “deductive”