MSR 3.0:
The Logical Meeting Point of Multiset Rewriting and Process Algebra

Iliano Cervesato
iliano@itd.nrl.navy.mil

ITT Industries, inc @ NRL Washington, DC

http://theory.stanford.edu/~iliano

ISSS 2003, Tokyo, Japan
November 4-6, 2003
Brief History of MSR

• **MSR 1** [*CSFW’99*]
 - To formalize security protocols specification
 - First-order multiset rewriting with \exists
 - Undecidability of security protocol verification
 - *Comparison with Strand Spaces*

• **MSR 2** [*MMM’01*]
 - Add typing infrastructure, liberalize syntax
 - Specification of Kerberos V
 - Completeness of Dolev-Yao attacker
 - Subsorting view of type-flaw attacks
 - Implementation (undergoing)
 - *Comparison with Process Algebra*
From multisets to ω-multisets

- Embeds multiset rewriting
 - MSR 1, 2
 - Paulson’s inductive traces
 - Tool-specific languages
 - NRL Protocol Analyzer
 - Murϕ, ...

- Encompasses Process Algebra
 - Strand spaces
 - Crypto-SPA
 - Spi-calculus

- Founded on logic

Indirect contributors
- Fabio Martinelli
- Dale Miller
- Andre Scedrov
- Frank Pfenning
What is in MSR 3?

- Instance of ω-multisets for cryptographic protocol specification
- Security-relevant signature
 - Network
 - Encryption, ...
- Typing infrastructure
 - Dependent types
 - Subsorting
- Data Access Specification (DAS)
- Module system
- Equations

From MSR 1

From MSR 2

From MSR 2 implementation
ω-Multisets

Specification language for concurrent systems

• Crossroad of
 - State transition languages
 - Petri nets, multiset rewriting, ...
 - Process calculi
 - CCS, π-calculus, ...
 - (Linear) logic

• Benefits
 - Analysis methods from logic and type theory
 - Common ground for comparing
 - Multiset rewriting
 - Process algebra
 - Allows multiple styles of specification
 - Unified approach
Syntax

\[a ::= P \quad \text{atomic object} \]
\[\bullet \quad \text{empty} \]
\[a, b \quad \text{formation} \]
\[a \rightarrow b \quad \text{rewrite} \]
\[\forall x. a \quad \text{instantiation} \]
\[\exists x. a \quad \text{generation} \]

Generalizes FO multiset rewriting (MSR 1-2)

\[\forall x_1 \ldots x_n. a(x) \rightarrow \exists y_1 \ldots y_k. b(x, y) \]
Judgments

• **Base step**
 \[\Sigma ; s \rightarrow_R \Sigma' ; s' \]

• **Finite iteration**
 \[\Sigma ; s \rightarrow^* R \Sigma' ; s' \]
 - Reflexive and transitive closure of \(\rightarrow \)
 - Useful for reachability analysis
Operational Semantics

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>$\Sigma : (s, a, a \rightarrow b)$</td>
<td>\rightarrow_R</td>
<td>$\Sigma : (s, b)$</td>
<td></td>
</tr>
<tr>
<td>∀</td>
<td>$\Sigma : (s, \forall x. a)$</td>
<td>\rightarrow_R</td>
<td>$\Sigma : (s, [t/x]a)$</td>
<td>if $\Sigma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∃</td>
<td>$\Sigma : (s, \exists x. a)$</td>
<td>\rightarrow_R</td>
<td>$(\Sigma, x) : (s, a)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Sigma : s$</td>
<td>$\rightarrow_{R,a}$</td>
<td>$\Sigma : (s, a)$</td>
<td></td>
</tr>
</tbody>
</table>

ω-Multisets

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Sigma ; s \rightarrow^*_{R} \Sigma ; s$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Sigma ; s \rightarrow^*_{R} \Sigma'' ; s''$</td>
<td>if $\Sigma ; s \rightarrow_{R} \Sigma' ; s'$</td>
<td>and $\Sigma' ; s' \rightarrow^*_{R} \Sigma'' ; s''$</td>
<td></td>
</tr>
</tbody>
</table>
Logical Foundations

- is left sequent rules of linear logic
 - $\bullet \equiv 1$, $\equiv \otimes \rightarrow \equiv \rightarrow 0$

- MSR 3 is logic
 - Guideline for extensions with new operators
 - Non-deterministic choice (+)
 - Replication (!)
 - ... more

- Related to Concurrent Logical Framework
ω-Multiset View of Derivations

- Step up:
 - Left rules

- Step across:
 - Axiom

- Right rules not used
The Atomic Objects of MSR 3

Atomic terms
- **Principals**: \(A \)
- **Keys**: \(K \)
- **Nonces**: \(N \)
- **Other**
 - Raw data, timestamp, ...

Constructors
- **Encryption**: \(\{_\}__ \)
- **Pairing**: \((_, _) \)
- **Other**
 - Signature, hash, MAC, ...

Predicates
- **Network**: \(net \)
- **Memory**: \(M_A \)
- **Intruder**: \(I \)
- **...**
Types

• Simple types
 - A : princ
 - n : nonce
 - m : msg, ...

• Dependent types
 - k : shK A B
 - K : pubK A
 - K' : privK K, ...

Fully definable

• Powerful abstraction mechanism
 - At various user-definable level
 - Finely tagged messages
 - Untyped: msg only

• Simplify specification and reasoning

• Automated type checking
Subsorting

\(\tau \prec \tau'\)

- Allows atomic terms in messages
- **Definable**
 - Non-transmittable terms
 - Sub-hierarchies
- Discriminant for type-flaw attacks
Data Access Specification

- Prevent illegitimate use of information
 - Protocol specification divided in roles
 - Owner = principal executing the role
 - A signing/encrypting with B’s key
 - A accessing B’s private data, ...

- Simple static check

- Central meta-theoretic notion
 - Detailed specification of Dolev-Yao access model

- Gives meaning to Dolev-Yao intruder

- Current effort towards integration in type system
 - Definable
 - Possibility of going beyond Dolev-Yao model
Modules and Equations

• Modules
 - Bundle declarations with simple import/export interface
 - Keep specifications tidy
 - Reusable

• Equations
 (For free from underlying Maude engine)
 - Specify useful algebraic properties
 - Associativity of pairs
 - Allow to go beyond free-algebra model
 - \(\text{Dec}(k, \text{Enc}(k, M)) = M \)
Example

Needham-Schroeder public-key protocol

1. \(A \to B: \{n_A, A\}_{KB} \)
2. \(B \to A: \{n_A, n_B\}_{KA} \)
3. \(A \to B: \{n_B\}_{KB} \)

- Can be expressed in several ways
 - State-based
 - Explicit local state
 - As in MSR 2
 - Process-based: embedded
 - Continuation-passing style
 - As in process algebra
 - (Intermediate approaches)
∀ A: princ.
{ ∃ L: princ × ∑ B: princ.pubK B × nonce → mset.

∀ B: princ. ∀ k_B: pubK B.
 •
 → ∃ n_A: nonce.
 net {{n_A, A}_kB}, L (A, B, k_B, n_A)

∀ B: princ. ∀ k_B: pubK B.
∀ k_A: pubK A. ∀ k_A': prvK k_A.
∀ n_A: nonce. ∀ n_B: nonce.
 net {{n_A, n_B}_kA}, L (A, B, k_B, n_A)
 → net {{n_B}_kB}

}
Process-Based

∀A:princ.
∀B: princ. ∀k_B: pubK B.

• → ∃n_A: nonce.
 net (\{n_A, A\}_k_B),

(∀k_A: pubK A. ∀k'_A: prvK k_A. ∀n_B: nonce.
 net (\{n_A, n_B\}_k_A) → net (\{n_B\}_k_B))

- Succinct
- Continuation-passing style
 - Rule asserts what to do next
 - Lexical control flow
- State is implicit
 - Abstract

A → B: \{n_A, A\}_k_B
B → A: \{n_A, n_B\}_k_A
A → B: \{n_B\}_k_B
NSPK in Process Algebra

∀A:princ.
∀B: princ. ∀kB: pubK B.
∀kA: pubK A. ∀kA': prvK kA. ∀nB: nonce.
∀nA: nonce.
net ({nA, A}{kB}).
net <{nA, nB}{kA}>
net ({nB}{kB}). 0

Same structure!
- Not a coincidence
- MSR 3 very close to Process Algebra
 - ω-multiset encodings of π-calculus
 - Ties to Join Calculus

• MSR 3 is ideal middle-ground for relating
 - State-based
 - Process-based
 representations of a problem
State-Based vs. Process-Based

- **State-based languages**
 - Multiset Rewriting
 - NRL Prot. Analyzer, CAPSL/CIL, Paulson’s approach, …
 - State transition semantics

- **Process-based languages**
 - Process Algebra
 - Strand spaces, spi-calculus, …
 - Independent communicating threads
MSR 3 Bridges the Gap

- Difficult to go from one to the other
 - Different paradigms

\[\omega \text{-Multisets} \]

MSR 2

Protocols

Repr. gap

State vs. process distance

\[\leftrightarrow \]

Other distance

\[\text{State} \leftrightarrow \text{Process translation done once and for all in MSR 3} \]
Summary

- **MSR 3.0**
 - Language for security protocol specification
 - Succinct representations
 - Simpl specifications
 - Economy of reasoning
 - Bridge between
 - State-based representation
 - Process-based representation

- **ω-multisets**
 - Logical foundation of multiset rewriting
 - Relationship with process algebras
 - Unified logical view
 - Better understanding of where we are
 - Hint about where to go next