Relating State-Based and Process-Based Concurrency through Linear Logic

Iliano Cervesato
Carnegie Mellon University - Qatar
iliano@cmu.edu
Specifying Concurrent Systems

● Two main approaches
 + Transition-based
 ➢ Petri nets, multiset rewriting, …
 + Process-based
 ➢ Process algebras, …

● No language supports both
 + Different linguistic features
 + Different analysis methods

● Ad hoc translations

● Concurrency inherent to many problems
 + Cryptographic protocols
 + …
State-Based vs. Process-Based

- **State-based languages**
 - Multiset Rewriting
 - NRL Prot. Analyzer, CAPSL/CIL, Paulson’s approach, …
 + State transition semantics

- **Process-based languages**
 - Process Algebra
 - Strand spaces, spi-calculus, …
 + Independent communicating threads
Summary of Results

● **System ω**
 + Rationalization of multiset rewriting
 ➢ Traditional multiset rewriting are sublanguages
 ➢ Simpler, but much more expressive
 + Significant bridge to process algebras
 ➢ Popular algebras are sublanguages
 + Both in the same seamless formalism
 + Proof-theoretic foundations

● **MSR 3**
 + Specialization of ω to security protocols
Methodology

- Rewriting re-interpretation of linear logic
 + Open derivations
 + Left-rule semantics
- Successive refinements of LV sequent system
Further Developments

● Verifying specifications
 + Transferring methods
 ➢ Equivalence, bisimulation in \(\omega \)
 + Model checking

● Additional application domains
 + Massively distributed systems
 ➢ Claytronics
 + Molecular biology
 ➢ Modeling cellular pathways
 + Micro-economic simulation
 ➢ Predicting effect of policies
Logical Foundations

- Linear logic in LV
- Tensorial observations – $LV^{obs}_{1\otimes}$
- Tensorial-existential observations – $LV^{obs}_{1\otimes\exists}$
- Cut-elimination
- Rewriting interpretation
- The system ω
Linear Logic

- **Formulas**

 $$
 A, B ::= a \mid 1 \mid A \otimes B \mid A \rightarrow o B \mid ! A \\
 \mid T \mid A \& B \mid \forall x. A \mid \exists x. A
 $$

- **LV sequents**

 $$\Gamma ; \Delta \rightarrow \Sigma C$$

 - Constructor: “,”
 - Empty: “•”
Some LV Rules

Left rules

\[\Gamma; \Delta, A, B \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta, A \otimes B \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta' \rightarrow_{\Sigma} A \quad \Gamma; \Delta, B \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta, \Delta', A \cdot o B \rightarrow_{\Sigma} C \]
\[\Sigma |- \top \quad \Gamma; \Delta, [\top/x] A \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta, \forall x. A \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta, A \rightarrow_{\Sigma, x} C \]
\[\Gamma, A; \Delta \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta, ! A \rightarrow_{\Sigma} C \]

Cut rules

\[\Gamma; \Delta' \rightarrow_{\Sigma} A \quad \Gamma; \Delta, A \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta, \Delta' \rightarrow_{\Sigma} C \]
\[\Gamma; \bullet \rightarrow_{\Sigma} A \quad \Gamma, A; \Delta \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta \rightarrow_{\Sigma} C \]

Right rules

\[\Gamma; \Delta \rightarrow_{\Sigma} 1 \]
\[\Gamma; \Delta_{1} \rightarrow_{\Sigma} C_{1} \quad \Gamma; \Delta_{2} \rightarrow_{\Sigma} C_{2} \]
\[\Gamma; \Delta_{1}, \Delta_{2} \rightarrow_{\Sigma} C_{1} \otimes C_{2} \]
\[\Sigma |- \top \quad \Gamma; \Delta \rightarrow_{\Sigma} [\top/x] C \]
\[\Gamma; \Delta \rightarrow_{\Sigma} \exists x. C \]

Structural rules

\[\Gamma; A \rightarrow_{\Sigma} A \]
\[\Gamma, A; \Delta \rightarrow_{\Sigma} C \]
Logical Derivations

- Proof of C from Δ and Γ
 - Emphasis on C
 - C is input
- Finite
 - Closed
- Rules shown
 - Major premise
 - Preserves C
 - Minor premise
 - Starts subderivation
A Rewriting Re-Interpretation

- **Transition**
 - From conclusion
 - To major premise
 - Emphasis on Γ, Δ and Σ
 - C is output, at best
 - Does not change

- **Possibly infinite**
 - Open

- **Minor premise**
 - Auxiliary rewrite chain
 - Finite
 - Topped with axiom
Observations

- Close derivation to “observe” \(\Gamma, \Delta \) and \(\Sigma \)
 - At any point

- Use \(C \) to propagate observation to top level

- How to engineer this?
 - Restrict right rules (dramatically)
 - Get rid of binary rules
Tensorial observations – LV_{obs}^{\otimes}

- True in LV:
 - $+ \Gamma; \Delta \rightarrow_{\Sigma} \otimes \Delta$
 - $+ \Gamma; \Delta \rightarrow_{\Sigma} C$ \iff $\Gamma; \otimes \Delta \rightarrow_{\Sigma} C$

- $LV_{1\otimes}$: remove all right rules except for 1 and \otimes
 - $+ \Gamma; \Delta \rightarrow_{\Sigma} C$ \iff $\Gamma; \otimes \Delta \rightarrow_{\Sigma} C$

- $LV_{obs}^{1\otimes}$: replace right rules and id with

 $\Gamma; \Delta \rightarrow_{\Sigma} \otimes \Delta$

 $+ \Gamma; \Delta \rightarrow_{\Sigma} C$ in $LV_{1\otimes}$ \iff $\Gamma; \Delta \rightarrow_{\Sigma} C$ in $LV_{obs}^{1\otimes}$
Nominal Quantification

\[\Gamma; \Delta \rightarrow^\Sigma, x \ C \]

\[\Gamma; \Delta \rightarrow^\Sigma, x \ \exists x . C \]

- Binds all occurrences of \(x \) in \(C \)
 + Reification of a sequent-level binder
- All interpretations of concurrent languages rely on it
 + Often unknowingly
Nominal Observations – $\Lambda V^{\text{obs}}_{1 \otimes \exists}$

- True in LV:
 - Mobility laws
 - $\Gamma; \Delta \rightarrow_{\Sigma, \Sigma'} \exists \Sigma'. \Delta$
 - $\Gamma; \Delta \rightarrow_{\Sigma, \Sigma'} C$ iff $\Gamma; \exists \Sigma'. \Delta \rightarrow_{\Sigma} C$ if $\Sigma' \cap \text{FV}(\Gamma, C) = \emptyset$

- $\Lambda V_{1 \otimes}$: remove all right rules except $1, \otimes$ and \exists
 - Expressiveness limited to collecting context

- $\Lambda V^{\text{obs}}_{1 \otimes \exists}$: replace right rules and id with

\[\Gamma; \Delta \rightarrow_{\Sigma, \Sigma'} \exists \Sigma'. \Delta\]

- If $\Gamma; \Delta \rightarrow_{\Sigma} C$ in $\Lambda V_{1 \otimes \exists}$, then $C \equiv \exists \Sigma'. \Delta'$ and $\Gamma; \Delta \rightarrow_{\Sigma} \exists \Sigma'. \Delta'$ in $\Lambda V^{\text{obs}}_{1 \otimes \exists}$
- If $\Gamma; \Delta \rightarrow_{\Sigma} C$ in $\Lambda V^{\text{obs}}_{1 \otimes \exists}$, then $\Gamma; \Delta \rightarrow_{\Sigma} C$ in $\Lambda V_{1 \otimes \exists}$
Structural Equivalences

Monoidal laws
+ $A \otimes B = B \otimes A$
+ $A \otimes 1 = A$
+ $(A \otimes B) \otimes C = A \otimes (B \otimes C)$

Mobility laws
+ $\exists x. \exists y. A = \exists y. \exists x. A$
+ $\exists x. 1 = 1$
+ $\exists x. (A \otimes B) = A \otimes \exists x. B$
 if $x \not\in FV(A)$

• Logical bi-equivalences
 ➢ Require limited right rules
• Express structure of context / binders
Dealing with Binary Rules

● Implication
 + Inline side-derivation
 + \(LV^{obs} \): replace right rule for \(\rightarrow_0 \) with

\[
\Gamma; \Delta, B \rightarrow_{\Sigma, \Sigma'} C \\
\Gamma; \Delta, \Delta', \exists \Sigma'. \Delta' \rightarrow_0 B \rightarrow_{\Sigma, \Sigma'} C
\]

+ \(\Gamma; \Delta \rightarrow_{\Sigma} C \) in \(LV^{obs}_{\otimes \exists} \) iff \(\Gamma; \Delta \rightarrow_{\Sigma} C \) in \(LV^{obs} \)

● Cut

+ Cut rules are admissible
 ➢ Simplified adaptation of usual proof
Rewriting Interpretation of LV^{obs}

- All rules are unary
 - Except observation rule
- States
 - $\Sigma; \Gamma; \Delta$
 - Σ is a list
 - Γ and Δ are commutative monoids
 - No C
 - Does not change
- Transitions
 - $\Sigma; \Gamma; \Delta \rightarrow \Sigma'; \Gamma'; \Delta'$

- Constructor: ";"
- Empty: "•"
LV^{obs} Rules as Rewrite Rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>\rightarrow</td>
<td>$(\Sigma, \Sigma') ; \Gamma ; (\Delta, \Delta', (\Sigma'.\Delta' \rightarrow B))$</td>
<td>$(\Sigma, \Sigma') ; \Gamma ; (\Delta, B)$</td>
</tr>
<tr>
<td>\top</td>
<td>(no rules)</td>
<td></td>
</tr>
<tr>
<td>$&$</td>
<td>$\Sigma ; \Gamma ; (\Delta, A_1 & A_2)$</td>
<td>$\Sigma ; \Gamma ; (\Delta, A_i)$</td>
</tr>
<tr>
<td>\forall</td>
<td>$\Sigma ; \Gamma ; (\Delta, \forall x. A)$</td>
<td>$\Sigma ; \Gamma ; (\Delta, [t/x]A)$ if $\Sigma</td>
</tr>
<tr>
<td>\exists</td>
<td>$\Sigma ; (\Gamma, A) ; \Delta$</td>
<td>$\Sigma ; (\Gamma, A) ; (\Delta, A)$</td>
</tr>
<tr>
<td>1</td>
<td>$\Sigma ; \Gamma ; (\Delta, 1)$</td>
<td>$\Sigma ; \Gamma ; \Delta$</td>
</tr>
<tr>
<td>\otimes</td>
<td>$\Sigma ; \Gamma ; (\Delta, A \otimes B)$</td>
<td>$\Sigma ; \Gamma ; (\Delta, A, B)$</td>
</tr>
<tr>
<td>\exists</td>
<td>$\Sigma ; \Gamma ; (\Delta, \exists x. A)$</td>
<td>$(\Sigma, x) ; \Gamma ; (\Delta, A)$</td>
</tr>
</tbody>
</table>
Formal Correspondence

• **Wrt** LV^{obs}

 + If $\Sigma ; \Gamma ; \Delta \rightarrow^* (\Sigma, \Sigma'); (\Gamma, \Gamma') ; \Delta'$, then $\Gamma; \Delta \rightarrow_{\Sigma} \exists \Sigma'. \Delta'$ in LV^{obs}

 + If $\Gamma; \Delta \rightarrow_{\Sigma} C$ in LV^{obs}, then $C \equiv \exists \Sigma'. \Delta'$ and $\Sigma ; \Gamma ; \Delta \rightarrow^* (\Sigma, \Sigma'); (\Gamma, \Gamma') ; \Delta'$

• **Wrt** LV

 + Sound

 + Not complete

 ➤ *No!* We have only crippled right rules

 $$\bullet ; \bullet ; a \rightarrow o b, b \rightarrow o c \rightarrow^* \bullet ; a \rightarrow o c$$
System ω

- Monoidal equivalences allow identifying
 + \otimes with linear context constructor “,”
 + 1 with empty linear context “•”

- Correspondence with logic
 + If $\Sigma; \Gamma; \Delta \rightarrow^* (\Sigma,\Sigma’); (\Gamma,\Gamma’); \Delta’$, then $\Gamma; \Delta \rightarrow^*_\Sigma \exists \Sigma’.\Delta’ in LV^{obs}$
 + If $\Gamma; \Delta \rightarrow^*_\Sigma C in LV^{obs}$, then $C \equiv \exists \Sigma’.\Delta’$ and $\Sigma; \Gamma; \Delta \rightarrow^* (\Sigma,\Sigma’); (\Gamma,\Gamma’); \Delta’$
\(\omega - \text{multisets} \)

\[
A, B ::= a \quad \text{atomic object} \\
| \cdot \quad \text{empty} \\
| A, B \quad \text{formation} \\
| A \rightarrow^o B \quad \text{rewrite} \\
| T \quad \text{no-op} \\
| A \& B \quad \text{choice} \\
| \forall x. A \quad \text{instantiation} \\
| \exists x. A \quad \text{generation} \\
| ! A \quad \text{replication}
\]
Discussion

● Other connectives?
 + ⊕, 0, ⚬, ⊥
 ➢ Odd rewrite properties
 + ?, (⊥)
 ➢ Not yet explored

● Other presentations?

● Other logics?
 + Very close to CLF

● Other forms of proof-as-computation?
 + Dual of logic programming
 + Similar to ACL [Kobayashi & Yonezawa, 93]

● Can logic benefit?
Multiset Rewriting

- Multiset: set with repetitions allowed
 \[a ::= \bullet | a, a \]
 + Commutative monoid

- Multiset rewriting (a.k.a. Petri nets)
 + Rewriting within the monoid
 + Fundamental model of distributed computing
 - Alternative: Process Algebras
 + Basis for security protocol spec. languages
 - MSR family
 - ... several others
 + Many extensions, more or less ad hoc
First-Order Multiset Rewriting

- Multiset elements are F0 atomic formulas
- Rules have the form
 \[\forall x_1 \ldots x_n. \ a(x) \rightarrow \exists y_1 \ldots y_k. \ b(x, y) \]
- Semantics

\[\Sigma ; a(\uparrow), s \rightarrow_R (a(x) \rightarrow \exists y. \ b(x, y)) \quad \Sigma, y ; b(\uparrow, y), s \]

 if \(\Sigma \vdash \uparrow \)

- Several encodings into linear logic
 \[\uparrow \quad [\text{Martí-Oliet, Meseguer, 91}] \]
ω-Multisets vs. Multiset Rewriting

- MSR 1 is an instance of ω-multisets
 - Uses only ⊗, 1, ∀, ∃, and →
 - → is never nested, always persistent

\[\Sigma ; s \xrightarrow{R} \Sigma' ; s' \]
iff
\[\Sigma ; "R" ; "s" \xrightarrow{*} \Sigma' ; "s'" \]

- Interpretation of MSR as linear logic
 - Logical explanation of multiset rewriting

\[\Sigma ; s \xrightarrow{R} \Sigma' ; s' \]

- MSR is logic
 - Guideline to design rewrite systems
The Asynchronous π-Calculus

Another fundamental model of distributed computing

- **Language**

 \[P ::= 0 \mid P || Q \mid \nu x. P \mid !P \mid x(y).P \mid x<y> \]

- **Semantics**

 + **Structural equivalence**

 - Comm. monoidal congruence of $||$ and 0
 - Binder mobility congruence of ν

 - $\nu x. \nu y. P \equiv \nu y. \nu x. P$
 - $0 \equiv \nu x. 0$
 - $P || \nu x. Q \equiv \nu x. (P || Q)$ if $x \not\in \text{FN}(P)$

 + **Reaction law**

 - $x<y> || x(z). P || Q \Rightarrow [y/z]P || Q$
 - $!P \Rightarrow !P || P$
\[\pi\text{-calculus in } \omega\text{-Multisets} \]

- \(0 \Leftrightarrow 1 \)
- \(\| \Leftrightarrow \otimes \)
- \(\nu \Leftrightarrow \exists \)
- \(! \Leftrightarrow ! \)

- Reaction law
 \[+ \Sigma; \Gamma; \text{ch}(x,y), \forall z. \text{ch}(x,z) --o \ P, \Delta \rightarrow^2 \Sigma; \Gamma; [y/z]P, \Delta \]

- Structural equivalence
 + Monoidal congr. of \(\| \) and \(0 \Leftrightarrow \) monoidal laws of \(\otimes \) and \(1 \)
 + Mobility congr. of \(\nu \Leftrightarrow \) mobility laws of \(\exists \)
 + \(!P \equiv !P \| P \)
 - Only \(\Rightarrow \) in \(\omega\)-multisets
Properties

- If $P \Rightarrow^* Q$,
 then $\Sigma_P; \bullet; "P" \rightarrow^* (\Sigma_P, \Sigma); \Gamma; \Delta$

 where "Q" = $\exists \Sigma. !\Gamma \otimes \Delta$

- If $\Sigma_P; \bullet; "P" \rightarrow^* (\Sigma_P, \Sigma); \Gamma; \Delta$,
 then there exists Q such that "Q" = $\exists \Sigma. !\Gamma \otimes \Delta$
 and $P \Rightarrow^* Q$
\(\omega\)-Multisets vs. Process Algebra

- Simple encoding of asynchronous \(\pi\)-calculus into \(\omega\)-multisets
 - Doesn’t show that \(\pi\)-calculus is logic
 - Uses only a fraction of \(\omega\)-multiset syntax
 - Inverse encoding?
 - As hard as going from multiset rewriting to \(\pi\)-calculus

- Other languages
 - Join calculus
 - Strand spaces
 - To do: Synchronous \(\pi\)-calculus
MSR 3

- Instance of ω-multisets for cryptographic protocol specification
 - Security-relevant signature
 - Typing infrastructure
 - Modules, equations, …

- 3rd generation
 - MSR 1: First-order multiset rewriting with \exists
 - Undecidability of protocol analysis
 - MSR 2: MSR 1 + typing
 - Actual specification language
 - More theoretical results
Example

Needham-Schroeder public-key protocol

- $A \rightarrow B: \{n_A, A\}_{kB}$
- $B \rightarrow A: \{n_A, n_B\}_{kA}$
- $A \rightarrow B: \{n_B\}_{kB}$

- Can be expressed in several ways
 - State-based
 - Explicit local state
 - As in MSR 2
 - Process-based: embedded
 - Continuation-passing style
 - As in process algebra
 - (Intermediate approaches)
∀A: princ.
{∃L: princ × ∑B: princ.pubK B × nonce → mset.

∀B: princ. ∀kB: pubK B.

•
→ ∃nA: nonce.
net ({nA, A}kB), L (A, B, kB, nA)

∀B: princ. ∀kB: pubK B.
∀kA: pubK A. ∀kA': prvK kA.
∀nA: nonce. ∀nB: nonce.
net ({nA, nB}kA), L (A, B, kB, nA)
→ net ({nB}kB)

Interpretation of L

➢ Rule invocation
 ▪ Implementation detail
 ▪ Control flow

➢ Local state of role
 ▪ Explicit view
 ▪ Important for DOS
Process-Based

∀A: princ.
∀B: princ. ∀kB: pubK B.

• → ∃nA: nonce.

net (\{nA, A\}_{kB}),

(∀kA: pubK A. ∀kA': prvK kA. ∀nB: nonce.

net (\{nA, nB\}_{kA}) → net (\{nB\}_{kB}))

• Succinct
• Continuation-passing style
 ➢ Rule asserts what to do next
 ➢ Lexical control flow

• State is implicit
 ➢ Abstract
NSPK in Process Algebra

∀A: princ.
∀B: princ. ∀kB: pubK B.
∀kA: pubK A. ∀kA': prvK kA. ∀nB: nonce.

∀nA: nonce.
net ({nA, A}kB).
net <{nA, nB}kA>.
net ({nB}kB). 0

Same structure!
- Not a coincidence
- MSR 3 very close to Process Algebra
 - ω-multiset encodings of π-calculus and Join Calculus

- MSR 3 is promising middle-ground for relating
 - State-based
 - Process-based

representations of a problem
State-Based vs. Process-Based

- State-based languages
 - Multiset Rewriting
 - NRL Prot. Analyzer, CAPSL/CIL, Paulson’s approach, …
 + State transition semantics

- Process-based languages
 - Process Algebra
 - Strand spaces, spi-calculus, …
 + Independent communicating threads
MSR 3 Bridges the Gap

- Difficult to go from one to the other
 + Different paradigms

State vs. process distance

Other distance

State ↔ Process translation done once and for all in MSR 3
Conclusions

● ω-multisets
 + Logical foundation of multiset rewriting
 + Relationship with process algebras
 + Unified logical view
 ➢ Better understanding of where we are
 ➢ Hint about where to go next

● MSR 3.0
 + Language for security protocol specification
 + Succinct representations
 ➢ Simpler specifications
 ➢ Economy of reasoning
 + Bridge between
 ➢ State-based representation
 ➢ Process-based representation
Interpreting Unary Rules

\[
\begin{align*}
\Gamma; \Delta, A, B &\rightarrow_\Sigma C \\
\Gamma; \Delta, A \otimes B &\rightarrow_\Sigma C \\
\Sigma |- \top; \Gamma; \Delta, [\top/x]A &\rightarrow_\Sigma C \\
\Gamma; \Delta, \forall x. A &\rightarrow_\Sigma C \\
\Gamma; \Delta, A &\rightarrow_\Sigma x C \\
\Gamma; \Delta, \exists x. A &\rightarrow_\Sigma C \\
\Gamma, A; \Delta &\rightarrow_\Sigma C \\
\Gamma; \Delta, !A &\rightarrow_\Sigma C \\
\end{align*}
\]

Example Rules:

\[
\begin{align*}
\Sigma; \Gamma; (\Delta, A \otimes B) &\rightarrow \Sigma; \Gamma; (\Delta, A, B) \\
\Sigma; \Gamma; (\Delta, \forall x. A) &\rightarrow \Sigma; \Gamma; (\Delta, [\top/x]A) \\
\Sigma; \Gamma; (\Delta, \exists x. A) &\rightarrow (\Sigma, x); \Gamma; (\Delta, A) \\
\Sigma; \Gamma; (\Delta, !A) &\rightarrow \Sigma; (\Gamma, A); \Delta \\
\end{align*}
\]
Observations

- Observation states
 \[\Sigma ; \Delta \]
 + In \(\Delta \), we identify
 - \(\o \), with \(\otimes \)
 - \(\bullet \), with \(1 \)
 Categorical semantics
 + Identified with \(\exists x_1. \ldots \exists x_n. \Delta \)
 - For \(\Sigma = x_1, \ldots, x_n \)
 De Bruijn’s telescopes

- Observation transitions
 \[\Sigma; \Gamma; \Delta \rightarrow^* \Sigma'; \Delta' \]
Type Theoretic Side

- Very close to CLF
 - Concurrent Logical Framework
 - Linear type theory with
 - Dependent function types: Π (LF)
 - Asynchronous connectives: $\leftarrow o$, &, T (LLF)
 - Synchronous connectives: \otimes, 1, !, \exists
 - Monadic sandboxing
 - Concurrency equations
 - Faithful encoding of true concurrency
 - Petri nets, MSR 2 specs, π-calculus, concurrent ML

- Details of relation still unclear