The Logical Meeting Point of Multiset Rewriting and Process Algebra

Iliano Cervesato iliano@itd.nrl.navy.mil

ITT Industries, inc @ NRL Washington, DC

http://theory.stanford.edu/~iliano

February 27, 2004
Motivations

• Security protocol specifications
 - Transition-based
 - Process-based
 - Different languages and techniques
 - Ad-hoc translations

• Attempt at a unified approach
 - Rewriting re-interpretation of logic
 - Open derivations
 - Left rule semantics
 - Foundation of multiset rewriting
 - Bridge to process algebra
 - Effective protocol specification language
Outline

Linear Logic

System ω

Multiset Rewriting

Process Algebra

Security Protocols

Linear Logic

- **Formulas**

\[A, B ::= a | 1 | A \otimes B | A \rightleftharpoons B | ! A \]
\[| T | A \& B | \forall x. A | \exists x. A \]

- **LV sequents**

\[\Gamma ; \Delta \rightarrow \Sigma C \]

- **Unrestricted context**
- **Linear context**
- **Signature**
- **Goal formula**

- Constructor: ";"
- Empty: ""
Some LV Rules

Left rules

\[\Gamma; \Delta, A, B \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta, A \otimes B \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta' \rightarrow_{\Sigma} A \quad \Gamma; \Delta, B \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta, \Delta', A \otimes B \rightarrow_{\Sigma} C \]
\[\Sigma \vdash t \quad \Gamma; \Delta, [t/x]A \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta, \forall x. A \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta, A \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta, \exists x. A \rightarrow_{\Sigma} C \]
\[\Gamma, A; \Delta \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta, !A \rightarrow_{\Sigma} C \]

Right rules

...
Logical Derivations

- Proof of C from Δ and Γ
 - Emphasis on C
 - C is input
- Finite
 - Closed
- Rules shown
 - Major premise
 - Preserves C
 - Minor premise
 - Starts subderivation
A Rewriting Re-Interpretation

- Transition
 - From conclusion
 - To major premise
 - Emphasis on Γ, Δ and Σ
 - C is output, at best
 - Does not change

- Possibly infinite
 - Open

- Minor premise
 - Auxiliary rewrite chain
 - Finite
 - Topped with axiom
State and Transitions

- **States**
 - Σ ; Γ ; Δ
 - Σ is a list
 - Γ and Δ are commutative monoids
 - No C
 - Does not change

- **Transitions**
 - Σ ; Γ ; $\Delta \rightarrow \Sigma'$; Γ' ; Δ'
 - \rightarrow^* for reflexive and transitive closure
Interpreting Unary Rules

\[
\begin{align*}
\Gamma; \Delta, A, B & \rightarrow_\Sigma C \\
\Gamma; \Delta, A \otimes B & \rightarrow_\Sigma C \\
\Sigma; \Gamma; \Delta, [t/x] A & \rightarrow_\Sigma C \\
\Gamma; \Delta, \forall x. A & \rightarrow_\Sigma C \\
\Gamma; \Delta, A & \rightarrow_\Sigma x C \\
\Gamma; \Delta, \exists x. A & \rightarrow_\Sigma C \\
\Gamma, A; \Delta & \rightarrow_\Sigma C \\
\Gamma; \Delta, !A & \rightarrow_\Sigma C \\
\end{align*}
\]

\[
\begin{align*}
\Sigma; \Gamma; (\Delta, A \otimes B) & \rightarrow \Sigma; \Gamma; (\Delta, A, B) \\
\Sigma; \Gamma; (\Delta, \forall x. A) & \rightarrow \Sigma; \Gamma; (\Delta, [t/x] A) \\
\Sigma; \Gamma; (\Delta, \exists x. A) & \rightarrow (\Sigma, x); \Gamma; (\Delta, A) \\
\Sigma; \Gamma; (\Delta, !A) & \rightarrow \Sigma; (\Gamma, A); \Delta \\
\end{align*}
\]

...
Binary Rules and Axiom

- Minor premise
 - Auxiliary rewrite chain
- Top of tree
 - Focus shifts to RHS
 - Axiom rule
 - Observation

\[\Gamma; \Delta' \rightarrow_{\Sigma} A \quad \Gamma; \Delta, B \rightarrow_{\Sigma} C \]

\[\Gamma; \Delta, \Delta', A \rightarrow_{0} B \rightarrow_{\Sigma} C \]
Observations

- Observation states
 \[\Sigma ; \Delta \]
 - In \(\Delta \), we identify
 - , with \(\otimes \)
 - \(\Delta \) with 1
 - Categorical semantics
 - Identified with \(\exists x_1. \ldots \exists x_n. \Delta \)
 - For \(\Sigma = x_1, \ldots, x_n \)
 - De Bruijn’s telescopes

- Observation transitions
 \[\Sigma; \Gamma; \Delta \rightarrow^{*} \Sigma'; \Delta' \]
Structural Equivalences

Monoidal laws
- $A \otimes B = B \otimes A$
- $A \otimes 1 = A$
- $(A \otimes B) \otimes C = A \otimes (B \otimes C)$

Mobility laws
- $\exists x. \exists y. \Delta = \exists y. \exists x. \Delta$
- $\exists x. \bullet = \bullet$
- $\exists x. (\Delta, \Delta') = \Delta, \exists x. \Delta'$
 if $x \notin \text{FV}(\Delta)$

- **Logical bi-equivalences**
 - Require limited right rules
- **Express structure of context / binders**
- **Expand rewrite opportunities**
Interpreting Binary Rules

\[\Gamma; A \rightarrow_{\Sigma} A \]
\[\Sigma; \Gamma; \Delta \rightarrow^{*} \Sigma; \Delta \]
\[\Sigma; \Gamma; \Delta \rightarrow^{*} \Sigma''; \Delta'' \]
if \(\Sigma; \Gamma; \Delta \rightarrow \Sigma'; \Gamma'; \Delta' \)
and \(\Sigma'; \Gamma'; \Delta' \rightarrow^{*} \Sigma''; \Delta'' \)

\[\Gamma; \Delta' \rightarrow_{\Sigma} A \]
\[\Gamma; \Delta, B \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta, \Delta', A \rightarrow_{\omega} B \rightarrow_{\Sigma} C \]
\[\Sigma; \Gamma; (\Delta, \Delta', A \rightarrow_{\omega} B) \rightarrow \Sigma; \Gamma; (\Delta, B) \]
if \(\Sigma; \Gamma; \Delta' \rightarrow^{*} \Sigma; A \)

\[\Gamma; \Delta' \rightarrow_{\Sigma} A \]
\[\Gamma; \Delta, A \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta, \Delta' \rightarrow_{\Sigma} C \]
\[\Sigma; \Gamma; \Delta, \Delta' \rightarrow \Sigma; \Gamma; (A, \Delta) \]
if \(\Sigma; \Gamma; \Delta' \rightarrow^{*} \Sigma; A \)

\[\Gamma; \Delta, \Delta' \rightarrow \Sigma; \Gamma; (A, \Delta) \]
if \(\Sigma; \Gamma; \Delta' \rightarrow^{*} \Sigma; A \)

I. Cervesato: The Logical Meeting Point of MSR and PA
Formal Correspondence

- **Soundness**

\[
\text{If } \Sigma ; \Gamma ; \Delta \Rightarrow^* \Sigma , \Sigma ' ; \Delta ' \text{ then } \Gamma ; \Delta \Rightarrow^*_\Sigma \exists \Sigma '. \otimes \Delta '
\]

- **Completeness?**

\[\boxed{\text{No! We have only crippled right rules}}\]

\[; ; ; a \rightarrow_0 b, b \rightarrow_0 c \quad \text{\(\not\rightarrow\)} \quad ; ; ; a \rightarrow_0 c\]
System ω

- With cut, rule for \rightarrow_0 can be simplified to
 $\Sigma; \Gamma; (\Delta, A, A \rightarrow_o B) \rightarrow \Sigma; \Gamma; (\Delta, B)$

- Cut elimination holds
 = in-lining of auxiliary rewrite chains
 ➢ But ...
 - Careful with extra signature symbols
 - Careful with extra persistent objects

- No rule for \rightarrow needs a premise
 ➢ \rightarrow does not depend on \rightarrow^*
Discussion

• Other connectives?
 - \oplus, 0, \emptyset, \bot
 - Odd rewrite properties
 - $?$, ($_________\$, \bot
 - Not yet explored

• Other presentations?

• Other logics?

• Other forms of proof-as-computation?
 - Dual of logic programming
 - Similar to ACL [Kobayashi & Yonezawa, 93]

• Can logic benefit?
Type Theoretic Side

• Very close to CLF

 Concurrent Logical Framework

 - Linear type theory with
 - Dependent function types: Π (LF)
 - Asynchronous connectives: \rightarrow, $\&$, T (LLF)
 - Synchronous connectives: \otimes, 1, $!$, \exists
 - Monadic sandboxing
 - Concurrency equations

 - Faithful encoding of true concurrency
 - Petri nets, MSR 2 specs, π-calculus, concurrent ML

• Details of relation still unclear
Multiset Rewriting

- Multiset: set with repetitions allowed
 \[a ::= \bullet | a, a \]
 - Commutative monoid

- Multiset rewriting (a.k.a. Petri nets)
 - Rewriting within the monoid
 - Fundamental model of distributed computing
 - Competitor: Process Algebras
 - Basis for security protocol spec. languages
 - MSR family
 - ... several others
 - Many extensions, more or less ad hoc
First-Order Multiset Rewriting

- Multiset elements are F0 atomic formulas
- Rules have the form
 \[\forall x_1...x_n. \ a(x) \rightarrow \exists y_1...y_k. \ b(x,y) \]
- Semantics

\[\Sigma; a(t), s \rightarrow_R (a(x) \rightarrow \exists y. \ b(x,y)) \quad \Sigma,y; b(t,y), s \]

if \(\Sigma \vdash t \)

- Several encodings into linear logic
 - [Martí-Oliet, Meseguer, 91]
ω-Multisets vs. Multiset Rewriting

• MSR 1 is an instance of ω-multisets
 ▪ Uses only ⊗, 1, ∀, ∃, and ⎯ο
 ▪ ⎯ο never nested, always persistent

\[\Sigma; s \rightarrow_{R} \Sigma'; s' \]
iff
\[\Sigma; "R"; "s" \rightarrow^{*} \Sigma'; "s'" \]

• Interpretation of MSR as linear logic
 ➢ Logical explanation of multiset rewriting
 ▪ MSR is logic
 ➢ Guideline to design rewrite systems
ω-Rewriting

\[A, B ::= a \quad \text{atomic object} \]
\[1 \quad \text{empty} \]
\[A \otimes B \quad \text{formation} \]
\[A \rightarrow_{\text{o}} B \quad \text{rewrite} \]
\[T \quad \text{no-op} \]
\[A \& B \quad \text{choice} \]
\[\forall x. A \quad \text{instantiation} \]
\[\exists x. A \quad \text{generation} \]
\[! A \quad \text{replication} \]
The Asynchronous π-Calculus

Another fundamental model of distributed computing

• Language

\[P ::= 0 \mid P \parallel Q \mid \nu x. P \mid !P \mid x(y).P \mid x<y> \]

• Semantics

- **Structural equivalence**
 - Comm. monoidal congruence of \(\parallel \) and 0
 - Binder mobility congruence of \(\nu \)
 - \(\nu x. \nu y. P \equiv \nu y. \nu x. P \)
 - \(0 \equiv \nu x. 0 \)
 - \(P \parallel \nu x. Q \equiv \nu x. (P \parallel Q) \) if \(x \notin \text{FN}(P) \)
 - \(!P \equiv !P \parallel P \)

- **Reaction law**
 - \(x<y> \parallel x(z). P \parallel Q \Rightarrow [y/z]P \parallel Q \)
π-calculus in ω-Multisets

- $0 \iff 1$
- $|| \iff \otimes$
- $\nu \iff \exists$
- $! ! \iff !$
- $x(y). P \iff \forall y. ch(x,y) \rightarrow o \text{ “} P \text{”}$
- $x<\gamma> \iff ch(x,y)$

- **Reaction law**
 - $\Sigma; \Gamma; ch(x,y), \forall z. ch(x,z) \rightarrow o P, \Delta \rightarrow^2 \Sigma; \Gamma; [y/z]P, \Delta$

- **Structural equivalence**
 - Monoidal congr. of $||$ and $0 \iff$ monoidal laws of \otimes and 1
 - Mobility congr. of $\nu \iff$ mobility laws of \exists
 - $! P \equiv ! P || P$
 - Only \Rightarrow in ω-multisets
 - Oversight in the π-calculus?
Properties

- If $P \Rightarrow^* Q$
 then $\bullet; \bullet; \text{“}P\text{” \Rightarrow^* } \Sigma; \Gamma; \Delta$
 where “Q” = $\exists \Sigma. !\Gamma \otimes \Delta$ mod $!A = !A \otimes A$

- Note: with $!P \Rightarrow !P || P$ as a transition
 - If $P \Rightarrow^* Q$
 then $\bullet; \bullet; \text{“}P\text{” \Rightarrow^* } \Sigma; \Gamma; \Delta$
 where “Q” = $\exists \Sigma. !\Gamma \otimes \Delta$
ω-Multisets vs. Process Algebra

• Simple encoding of asynchronous π-calculus into ω-multisets
 - Doesn’t show that π-calculus is logic
 - Uses only a fraction of ω-multiset syntax
 - Inverse encoding?
 - As hard as going from multiset rewriting to π-calculus

• Other languages
 - Join calculus
 - Strand spaces
 - To do: Synchronous π-calculus
MSR 3

• Instance of ω-multisets for cryptographic protocol specification
 - Security-relevant signature
 - Typing infrastructure
 - Modules, equations, ...

• 3rd generation
 - MSR 1: First-order multiset rewriting with \exists
 - Undecidability of protocol analysis
 - MSR 2: MSR 1 + typing
 - Actual specification language
 - More theoretical results
 - Implementation underway
The Atomic Objects of MSR 3

Atomic terms
- Principals \(A \)
- Keys \(K \)
- Nonces \(N \)
- Other
 - Raw data, timestamp, ...

Constructors
- Encryption \({} \) \({} \)
- Pairing \(_, _, _ \)
- Other
 - Signature, hash, MAC, ...

Predicates
- Network \(net \)
- Memory \(M_A \)
- Intruder \(I \)
- ...

- logic
- system \(\omega \)
- rewriting
- processes
- security
Types

- **Simple types**
 - A : princ
 - n : nonce
 - m : msg, ...

- **Dependent types**
 - k : shK A B
 - K : pubK A
 - K' : privK K, ...

Fully definable

- **Powerful abstraction mechanism**
 - At various user-definable level
 - Finely tagged messages
 - Untyped: msg only

- **Simplify specification and reasoning**

- **Automated type checking**

I. Cervesato: The Logical Meeting Point of MSR and PA
Example

Needham-Schroeder public-key protocol

1. $A \to B: \{n_A, A\}^B_k$
2. $B \to A: \{n_A, n_B\}^A_k$
3. $A \to B: \{n_B\}^B_k$

- Can be expressed in several ways
 - State-based
 - Explicit local state
 - As in MSR 2
 - Process-based: embedded
 - Continuation-passing style
 - As in process algebra
 - (Intermediate approaches)
∀A: princ.
{ ∃L: princ × ∑B:princ.pubK B × nonce → mset.

∀B: princ. ∀kB: pubK B.
•
→ ∃nA: nonce.
 \text{net} (\{nA, A\}kB), \ L (A, B, kB, nA)

∀B: princ. ∀kB: pubK B.
∀kA: pubK A. ∀kA ': prvK kA.
∀nA: nonce. ∀nB: nonce.
\text{net} (\{nA, nB\}kA), \ L (A, B, kB, nA)
→ \text{net} (\{nB\}kB)

I. Cervesato: The Logical Meeting Point of MSR and PA
Process-Based

∀A: princ.
∀B: princ. ∀kB: pubK B.

• $\rightarrow \exists n_A: \text{nonce.}$

 net ($\{n_A, A\}_{KB}$),

 ($\forall k_A: \text{pubK A.} \forall k_A': \text{prvK k}_A. \forall n_B: \text{nonce.}$

 net ($\{n_A, n_B\}_{KA}$) \rightarrow net ($\{n_B\}_{KB}$))

- Succinct
- Continuation-passing style
 - Rule asserts what to do next
 - Lexical control flow
- State is implicit
 - Abstract
NSPK in Process Algebra

∀A: princ.
∀B: princ. ∀kB: pubK B.
∀kA: pubK A. ∀kA': prvK kA. ∀nB: nonce.

∀nA: nonce.
net (\{nA, A\}kB).
net (\{nA, nB\}kA).
net (\{nB\}kB).0

Same structure!
- Not a coincidence
- MSR 3 very close to Process Algebra
 - ω-multiset encodings of π-calculus
 and Join Calculus

• MSR 3 is promising middle-ground for relating
 - State-based
 - Process-based

representations of a problem

I. Cervesato: The Logical Meeting Point of MSR and PA
State-Based vs. Process-Based

- **State-based languages**
 - Multiset Rewriting
 - NRL Prot. Analyzer, CAPSL/CIL, Paulson’s approach, ...
 - State transition semantics

- **Process-based languages**
 - Process Algebra
 - Strand spaces, spi-calculus, ...
 - Independent communicating threads
MSR 3 Bridges the Gap

• Difficult to go from one to the other
 ➢ Different paradigms

State vs. process distance

Other distance

State ↔ Process translation done once and for all in MSR 3
Conclusions

• \(\omega \)-multisets
 - Logical foundation of multiset rewriting
 - Relationship with process algebras
 - Unified logical view
 - Better understanding of where we are
 - Hint about where to go next

• MSR 3.0
 - Language for security protocol specification
 - Succinct representations
 - Simpler specifications
 - Economy of reasoning
 - Bridge between
 - State-based representation
 - Process-based representation