MSR 3:
The Logical Meeting Point of Multiset
Rewriting and Process Algebra

Iliano Cervesato
iliano@itd.nrl.navy.mil
ITT Industries, inc @ NRL Washington, DC
http://www.cs.stanford.edu/~iliano

CS Department, UMBC
February 27-28, 2003

Iliano Cervesato
iliano@itd.nrl.navy.mil

ITT Industries, inc @ NRL Washington, DC
http://theory.stanford.edu/~iliano

Protocol eXchange Seminar, UMBC
May 27-28, 2004
NSPK in MSR 3

∀A: princ.
{∃L: princ × ∑B: princ.pubK B × nonce → mset.

∀B: princ. ∀k_B: pubK B.
 •
→ ∃n_A: nonce.
 net ({n_A, A}_k_B), L (A, B, k_B, n_A)

∀B: princ. ∀k_B: pubK B.
∀k_A: pubK A. ∀k_A: prvK k_A.
∀n_A: nonce. ∀n_B: nonce.
 net ({n_A, n_B}_k_A), L (A, B, k_B, n_A)
→ net ({n_B}_k_B)

Interpretation of L

- Rule invocation
 - Implementation detail
 - Control flow
- Local state of role
 - Explicit view
 - Important for DOS

MSR 2 spec.
NSPK in MSR 3

∀A: princ.
∀B: princ. ∀k_B: pubK B.

• → ∃n_A: nonce.
 net (\{n_A, A\}_{k_B}),

(∀k_A: pubK A. ∀k'_A: prvK k_A. ∀n_B: nonce.
 net (\{n_A, n_B\}_{k_A}) → net (\{n_B\}_{k_B}))

- Succinct
- Continuation-passing style
 - Rule asserts what to do next
 - Lexical control flow
- State is implicit
 - Abstract

MSR 3: One Year Later

A → B: \{n_A, A\}_{k_B}
B → A: \{n_A, n_B\}_{k_A}
A → B: \{n_B\}_{k_B}

Not an MSR 2 spec.
Looks Familiar?

Process calculus

∀A: princ.
∀B: princ. ∀k_B: pubK B.
∀k_A: pubK A. ∀k_A ': prvK k_A. ∀n_B: nonce.

∀n_A: nonce.
net ({n_A, A}_{k_B}).
net \langle {n_A, n_B}_{k_A} \rangle.
net ({n_B}_{k_B}). 0

Parametric strand

Alice (A, B, N_A, N_B):
N_A Fresh, \pi_A (A, B)

{N_A, A}_{k_B} \rightarrow
\downarrow
\downarrow
\downarrow
\downarrow
\rightarrow
{N_A, N_B}_{k_A}
{N_B}_{k_B}
What is MSR 3?

A new language for security protocols

- Supports
 - State transition specs
 - Conservative over MSR 2
 - Process algebraic specs

- Rewriting re-interpretation of logic
 - Rich composable set of connectives

- Universal connector
More than the Sum of its Parts

Process- and transition-based specs. in the same language

- Choose the paradigm
 - User’s preference
 - Highlight characteristics of interest
 - Support various verification techniques (FW)

- Mix and match styles
 - Within a spec.
 - Within a protocol
 - Within a role
What is in MSR 3?

- **Security-relevant signature**
 - Network
 - Encryption, ...

- **Typing infrastructure**
 - Dependent types
 - Subsorting

- **Data Access Specification (DAS)**

- **Module system**

- **Equations**

From MSR 1

From MSR 2

From MSR 2 implementation
ω-Multisets

Specification language for concurrent systems

- **Crossroad of**
 - State transition languages
 - Petri nets, multiset rewriting, ...
 - Process calculi
 - CCS, π-calculus, ...
 - (Linear) logic

- **Benefits**
 - Analysis methods from logic and type theory
 - Common ground for comparing
 - Multiset rewriting
 - Process algebra
 - Allows multiple styles of specification
 - Unified approach
Syntax

\[A ::= \begin{align*}
 & a & \text{atomic object} \\
 | & 1 & \text{empty} \\
 | & A \otimes B & [A, B] \text{formation} \\
 | & A \rightarrow B & [A \rightarrow B] \text{rewrite} \\
 | & T & \text{no-op} \\
 | & A \& B & [A \parallel B] \text{choice} \\
 | & \forall x. A & \text{instantiation} \\
 | & \exists x. A & \text{generation} \\
 | & ! A & \text{replication}
\end{align*} \]

Generalizes FO multiset rewriting (MSR 1-2)

\[\forall x_1 \ldots x_n. \ a(x) \rightarrow \exists y_1 \ldots y_k. \ b(x,y) \]
State and Transitions

• States

\[\Sigma ; \; \Gamma \; ; \; \Delta \]
\[\Sigma \; ; \; \Delta \]

- \(\Sigma \) is a list
- \(\Gamma \) and \(\Delta \) are commutative monoids

• Transitions

\[\Sigma; \; \Gamma; \; \Delta \rightarrow \Sigma'; \; \Gamma'; \; \Delta' \]
\[\Sigma; \; \Gamma; \; \Delta \rightarrow^* \Sigma'; \; \Delta' \]

- \(\rightarrow^* \) for reflexive and transitive closure

- Constructor: “,”
- Empty: “•”
Transition Semantics

\[\sigma \quad \Sigma ; \Gamma ; (\Delta, A, A \rightarrow B) \rightarrow \Sigma ; \Gamma ; (\Delta, B) \]
\[\top \quad \text{(no rule)} \]
\[\& \quad \Sigma ; \Gamma ; (\Delta, A_1 \& A_2) \rightarrow \Sigma ; \Gamma ; (\Delta, A_i) \]
\[\forall \quad \Sigma ; \Gamma ; (\Delta, \forall x. A) \rightarrow \Sigma ; \Gamma ; (\Delta, [\tau/x]A) \]
\[\text{if } \Sigma \vdash \tau \]
\[\exists \quad \Sigma ; \Gamma ; (\Delta, \exists x. A) \rightarrow (\Sigma, x) ; \Gamma ; (\Delta, A) \]
\[! \quad \Sigma ; \Gamma ; (\Delta, !A) \rightarrow \Sigma ; (\Gamma, A) ; \Delta \]
\[\Sigma ; (\Gamma, A) ; \Delta \rightarrow \Sigma ; (\Gamma, A) ; (\Delta, A) \]

\[\Sigma ; \Gamma ; \Delta \Rightarrow^* \Sigma ; \Delta \]
\[\Sigma ; \Gamma ; \Delta \Rightarrow^* \Sigma'' ; \Delta'' \]
\[\text{if } \Sigma ; \Gamma ; \Delta \Rightarrow \Sigma' ; \Gamma' ; \Delta' \text{ and } \Sigma' ; \Gamma' ; \Delta' \Rightarrow^* \Sigma'' ; \Delta'' \]
Linear Logic

- **Formulas**
 \[A, B ::= a \mid 1 \mid A \otimes B \mid A \multimap B \mid ! A \mid T \mid A \& B \mid \forall x. A \mid \exists x. A \]

- **LV sequents**
 \(\Gamma ; \Delta \quad \rightarrow \quad \Sigma \quad \Rightarrow \quad \mathcal{C} \)

- Unrestricted context
- Linear context
- Signature
- Goal formula

- **Constructor:** “,”
- **Empty:** “•”
Logical Derivations

- Proof of C from Δ and Γ
 - Emphasis on C
 - C is input
- Finite
 - Closed
- Rules shown
 - Major premise
 - Preserves C
 - Minor premise
 - Starts subderivation
A Rewriting Re-Interpretation

- **Transition**
 - From conclusion
 - To major premise
 - Emphasis on Γ, Δ, and Σ
 - C is output, at best
 - Does not change

- **Possibly infinite**
 - Open

- **Minor premise**
 - Auxiliary rewrite chain
 - Finite
 - Topped with axiom
Interpreting Unary Rules

\[
\begin{align*}
\frac{\Gamma; \Delta, A, B \rightarrow_{\Sigma} C}{\Gamma; \Delta, A \otimes B \rightarrow_{\Sigma} C} & \quad \text{\(\Sigma; \Gamma; (\Delta, A \otimes B) \rightarrow \Sigma; \Gamma; (\Delta, A, B) \)} \\
\frac{\Sigma |- \top \quad \frac{\Gamma; \Delta, [t/x]A \rightarrow_{\Sigma} C}{\Gamma; \Delta, \forall x. A \rightarrow_{\Sigma} C}}{\Sigma; \Gamma; (\Delta, \forall x. A) \rightarrow \Sigma; \Gamma; (\Delta, [t/x]A)} & \quad \text{\(\text{if } \Sigma |- \top \)} \\
\frac{\Gamma; \Delta, A \rightarrow_{\Sigma} C}{\Gamma; \Delta, \exists x. A \rightarrow_{\Sigma} C} & \quad \text{\(\Sigma; \Gamma; (\Delta, \exists x. A) \rightarrow (\Sigma, x); \Gamma; (\Delta, A) \)} \\
\frac{\Gamma, A; \Delta \rightarrow_{\Sigma} C}{\Gamma; \Delta, !A \rightarrow_{\Sigma} C} & \quad \text{\(\Sigma; \Gamma; (\Delta, !A) \rightarrow \Sigma; (\Gamma, A); \Delta \)}
\end{align*}
\]
Binary Rules and Axiom

- Minor premise
 - Auxiliary rewrite chain

- Top of tree
 - Focus shifts to RHS
 - Axiom rule
 - Observation

\[\Gamma; \Delta' \rightarrow_{\Sigma} A \quad \Gamma; \Delta, B \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta, \Delta', A \rightarrow_{\Sigma} B \rightarrow_{\Sigma} C \]
Observations

- Observation states
 \[\Sigma ; \Delta \]
 - In \(\Delta \), we identify
 - with \(\otimes \)
 - with 1

 Categorical semantics
 - Identified with \(\exists x_1. \ldots \exists x_n. \Delta \)
 - For \(\Sigma = x_1, \ldots, x_n \)

 De Bruijn's telescopes

- Observation transitions
 \[\Sigma; \Gamma; \Delta \rightarrow^* \Sigma'; \Delta' \]
Interpreting Binary Rules

\[
\begin{align*}
\Gamma; A \rightarrow_{\Sigma} A & \quad \Sigma; \Gamma; \Delta \rightarrow^{*} \Sigma; \Delta \\
\Sigma; \Gamma; \Delta \rightarrow^{*} \Sigma''; \Delta'' & \\
& \quad \text{if} \quad \Sigma; \Gamma; \Delta \rightarrow \Sigma'; \Gamma'; \Delta' \\
& \quad \text{and} \quad \Sigma'; \Gamma'; \Delta' \rightarrow^{*} \Sigma''; \Delta''
\end{align*}
\]

\[
\begin{align*}
\Gamma; \Delta' \rightarrow_{\Sigma} A & \quad \Gamma; \Delta, B \rightarrow_{\Sigma} C \\
\Gamma; \Delta, \Delta', A \rightarrow_{o} B \rightarrow_{\Sigma} C & \\
\Gamma; \Delta, \Delta' \rightarrow_{\Sigma} C & \quad \Sigma; \Gamma; (\Delta, \Delta', A \rightarrow_{o} B) \rightarrow \Sigma; \Gamma; (\Delta, B) \\
& \quad \text{if} \quad \Sigma; \Gamma; \Delta' \rightarrow^{*} \Sigma; A
\end{align*}
\]

\[
\begin{align*}
\Gamma; \Delta' \rightarrow_{\Sigma} A & \quad \Gamma; \Delta, A \rightarrow_{\Sigma} C \\
\Gamma; \Delta, \Delta' \rightarrow_{\Sigma} C & \quad \Sigma; \Gamma; (\Delta, \Delta') \rightarrow \Sigma; \Gamma; (A, \Delta) \\
& \quad \text{if} \quad \Sigma; \Gamma; \Delta' \rightarrow^{*} \Sigma; A
\end{align*}
\]

...
Formal Correspondence

• Soundness

\[
\text{If } \Sigma ; \Gamma ; \Delta \rightarrow^* \Sigma, \Sigma'; \Delta' \text{ then } \Gamma ; \Delta \rightarrow_{\Sigma} \exists \Sigma'. \otimes \Delta'
\]

• Completeness?

➢ No! We have only crippled right rules

\[
\bullet ; \bullet ; a \rightarrow o b, \ b \rightarrow o c \quad \text{and} \quad \bullet ; a \rightarrow o c
\]
System ω

- With cut, rule for $\rightarrow o$ can be simplified to $\Sigma; \Gamma; (\Delta, A, A \rightarrow o B) \rightarrow \Sigma; \Gamma; (\Delta, B)$

- Cut elimination holds
 = in-lining of auxiliary rewrite chains
 - But ...
 - Careful with extra signature symbols
 - Careful with extra persistent objects

- No rule for \rightarrow needs a premise
 - \rightarrow does not depend on \Rightarrow^*
Multiset Rewriting

- **Multiset**: set with repetitions allowed
 \[a ::= \bullet | a, a \]
 - Commutative monoid

- Multiset rewriting (a.k.a. *Petri nets*)
 - Rewriting within the monoid
 - Fundamental model of distributed computing
 - Alternative: Process Algebras
 - Basis for security protocol spec. languages
 - MSR family
 - ... several others
 - Many extensions, more or less ad hoc
The Atomic Objects of MSR 3

Atomic terms
- Principals \(A\)
- Keys \(K\)
- Nonces \(N\)
- Other
 - Raw data, timestamp, ...

Constructors
- Encryption \[\{_\}_\]
- Pairing \[_, _\]
- Other
 - Signature, hash, MAC, ...

Predicates
- Network \(net\)
- Memory \(M_A\)
- Intruder \(I\)
- ...

Fully definable

MSR 3: One Year Later
Types

- **Simple types**
 - A : princ
 - n : nonce
 - m : msg, ...

- **Dependent types**
 - k : shK A B
 - K : pubK A
 - K' : privK K, ...

Fully definable

- **Powerful abstraction mechanism**
 - At various user-definable level
 - Finely tagged messages
 - Untyped: msg only

- **Simplify specification and reasoning**

- **Automated type checking**
Subsorting

\[\tau <: \tau' \]

- Allows atomic terms in messages
- **Definable**
 - Non-transmittable terms
 - Sub-hierarchies
- Discriminant for type-flaw attacks
Data Access Specification

• Prevent illegitimate use of information
 ▪ Protocol specification divided in roles
 - Owner = principal executing the role
 ➢ A signing/encrypting with B’s key
 ➢ A accessing B’s private data, ...

• Simple static check

• Central meta-theoretic notion
 ➢ Detailed specification of Dolev-Yao access model

• Gives meaning to Dolev-Yao intruder

• Current effort towards integration in type system
 ➢ Definable
 ▪ Possibility of going beyond Dolev-Yao model
Modules and Equations

• Modules
 - Bundle declarations with simple import/export interface
 - Keep specifications tidy
 - Reusable

• Equations
 (For free from underlying Maude engine)
 - Specify useful algebraic properties
 - Associativity of pairs
 - Allow to go beyond free-algebra model
 - $\text{Dec}(k, \text{Enc}(k, M)) = M$
State-Based vs. Process-Based

- **State-based languages**
 - Multiset Rewriting
 - NRL Prot. Analyzer, CAPSL/CIL, Paulson’s approach, ...
 - State transition semantics

- **Process-based languages**
 - Process Algebra
 - Strand spaces, spi-calculus, ...
 - Independent communicating threads
MSR 3 Bridges the Gap

- Difficult to go from one to the other
 - Different paradigms

State ↔ Process translation done once and for all in MSR 3
Summary

- **MSR 3.0**
 - Language for security protocol specification
 - Succinct representations
 - Simp specifications
 - Economy of reasoning
 - Bridge between
 - State-based representation
 - Process-based representation

- **ω-multisets**
 - Logical foundation of multiset rewriting
 - Relationship with process algebras
 - Unified logical view
 - Better understanding of where we are
 - Hint about where to go next