Specifying Kerberos 5 Cross-Realm Authentication

Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, and Chris Walstad

Supported by ONR, NSF, NRL
Outline

- Introduction
- Kerberos 5
- Formalization
- Properties
- Vulnerabilities
Overview of Results

- Formalize **cross-realm** authentication in Kerberos 5
 - Use MSR
- Adapt Dolev-Yao intruder to cross-realm setting
- Prove property of a critical field in cross-realm ticket
- Highlight vulnerabilities in the presence of compromised intermediate realms
 - Kerberos specifications disclaim responsibility for these
Background and Related Work

- **Kerberos – intra-realm** has been extensively studied
 - Kerberos 4 analyzed using inductive approach (Bella & Paulson)
 - Kerberos 5
 - Simplified version analysed with Murφ (Mitchell, Mitchell, & Stern)
 - Detailed formalization of intra-realm authentication analyzed using MSR (Butler, Cervesato, Jaggard, Scedrov)
 - Current project is a continuation of this work
- **Cross-realm** authentication
 - Hierarchical organization of authentication servers (Birrell et al.)
 - Similar to natural organization for Kerberos
 - Define local trust policies that mitigate global security exposure (Gligor et al.)
Kerberos 5

- **Authentication**
 - Single sign-on
 - Repeatedly authenticate a client to multiple servers

- **Authentication Server (KAS)**
 - Provides long term (e.g., 1 day) ticket called a **Ticket Granting Ticket (TGT)**
 - Uses client's long term key (e.g., derived from password)

- **Ticket Granting Server (TGS)**
 - Provides short term (e.g., 5 minutes) ticket called **Service Ticket (ST)** based on client's TGT
 - Client uses ST to access the server
Intra-Realm Messages

Client (C) KAS TGS (T) Server (S)

Want to use T

Credentials (TGT)

Want to use S; here is TGT

Credentials to use S (ST)

Want to use S; here is ST

OK

Application Messages
Cross-Realm Kerberos 5

- Authenticate clients across organizational boundaries
 - Simpler administration
 - Better user experience
Cross-Realm Kerberos 5

- Register KDC of foreign realm as a server in local realm
 - **Cross-realm key**
 - Service ticket for foreign KDC is interpreted as a TGT

```
Local Realm
  Client
    Want S2
    ST for S1 = TGT K2

KDC1

Cross-realm key

KDC2

Foreign Realm
  Server1
    ST for S2

Server2
```
Cross-Realm Messages

Application Messages
Cross-Realm Kerberos 5

- Recommended organization of realms is hierarchical
 - “Shortcuts” allowed
- **Authentication path** is path through traversed realms
 - TGS adds previous realm name to TRANSITED field
Formalization

- Use MSR 2.0 (Cervesato)
- Models both intra- and cross-realm authentication
 - Is a continuation of prior work done on intra-realm authentication
- Includes the minimum level of detail we believe necessary to prove properties on authentication, confidentiality, and the effect of compromised realms
- Validation using MSR implementation developed by Cervesato, Reich, and Stehr underway
Formalization

- **Realm type**
 - Each principal is parameterized by realm it lives in
- Database keys modified to handle cross-realm keys
- \(rTGS \) allows us to view this principal as an application server in one realm and a TGS in another realm
- Support for **TRANSITED** field
- Rule for TGS returning a cross-realm ticket
- Existing rules and types updated
Intruder Model

- Intra-realm setting: unavoidable assumption is that the KAS and TGS behave honestly
- Cross-realm setting: must consider compromised remote KDC
 - Local system administrator has no control over other realms
 - How can a compromised remote KDC affect the rest of the Kerberized network?
- If a realm is compromised then the intruder possesses all of the database (long-term) keys
- Assume a worst-case scenario in which all principals communicate on the same network
Theorem

- If there are any compromised realms involved in authentication then at least one of them will appear in the TRANSITED field.

- If invalid/improper authentication took place then the intruder possessed one of the following keys:
 - The client's long-term secret key
 - A cross-realm key for some pair of TGSs on the authentication path
 - The key shared by the end-server and the TGS of that realm
Proof Methods

- Rank and corank functions
 - Inspired by Schneider's rank functions in CSP
 - k-Rank - work done using key k (data origin authentication)
 - E-Corank - work needed using keys from E (secrecy)
- Valid credential presented to S has positive rank
 - No MSR facts of positive rank at start of protocol run
 - Examine principal and intruder rules
 - Which keys must be lost to allow intruder to increase rank?
 - Which honest principals can increase this rank?
Vulnerabilities

- Kerberos specifications make no guarantees if a trusted foreign realm becomes compromised

 - Therefore these vulnerabilities are not attacks and the specification disclaims responsibility for them

- System administrators should be made aware of exactly what damage can be done by a compromised foreign realm

- Identified 3 vulnerabilities

 - There may be more
Vulnerability 1

- All TGSs on the authentication path are capable of learning the key shared between the server and the client as well as all of the session keys shared by the client and each TGS on the authentication path.
Vulnerability 2

- Remote TGS can impersonate a client anywhere outside of the client's realm
Vulnerability 3

- If there is a compromised KDC on the authentication path then that KDC can trick the client into believing she is following a false authentication path.

C believes Auth. Path = KDC_1, ..., KDC_n

Actual Auth. Path = KDC_1, ..., KDC_1, KDC_b1, ..., KDC_bn

KDC_i knows session keys
Conclusions

- Formalized cross-realm authentication in Kerberos 5
- Extended Dolev-Yao intruder
- Characterized minimum requirements in view of assessing confidentiality and authentication properties
- Documented a range of harmful behaviors
Future Work

- Prove traditional confidentiality and authentication properties
- Analyze PKINIT and PKCROSS subprotocols that may help mitigate the harm that a compromised KDC can inflict
Sample Rule

∀ X: msg
∀ T: TGS R_T
∀ T_n : ts R_n
∀ AK : shK C T
∀ t_C : time

if Auth_C(X,T,AK), DesiredHop(C,T_n,R_T,R_n), clock_C(t_C)

∃ n_2 : nonce
N(X,{C,t_C}_{AK},C,T_n,n_2)
L(C,T_n,T,AK,n_2)

- This is part of the client's role in TGS exchange
Intruder Model

- Assume a worst-case scenario in which all principals communicate on the same network
- Single Dolev-Yao intruder that can impersonate clients, end-servers, and KDCs

∀ R : realm ∀ P : tcs R ∀ k : dbK^R P

⇒ I(k)

if compromised(R)