What you may have understood of Dusko’s talk yesterday if he hadn’t been speaking so fast

Part I
Contributions

- Separate
 - Authentication reasoning
 - Secrecy reasoning
- Define a logic of pure authentication
 - Secrecy as assumptions
- Embed it in derivational framework
- Apply to shared-key server-assisted key distribution protocols
 - Taxonomy
 - Comparative study
 - Clear understanding of underlying mechanisms
Server-Assisted Shared Key Distribution Protocols

\[\begin{align*}
\text{KD}^0 & \quad \text{KD}^1 \\
\downarrow & \quad \downarrow \\
\text{KD}^2 & \quad \text{KD}^3 \quad \text{KD}^4 \\
\downarrow & \quad \downarrow \\
\text{K5core}^0 & \quad \text{K4core}^0 \\
\downarrow & \quad \downarrow \\
\text{K5core} & \quad \text{K4core} \\
\quad & \quad \\
\text{NSSK}^0 & \quad \text{NSSK}^1 \\
\downarrow & \quad \downarrow \\
\text{NSSKfix}^0 & \quad \text{NSSKfix}^1 \\
\downarrow & \quad \\
\text{NSSKfix} & \\
\end{align*} \]

http://theory.stanford.edu/~iliano/papers/csfw05.pdf
Key Distribution Protocols

- Secrecy depends on authentication
 - k secret only if sent over authenticated channels

- Authentication depends on secrecy
 - Cryptographic authentication relies on secrecy of long-term keys
Verifying KD Protocols

Historically single monolithic proofs

... BUT ...

secrecy and authentication rely on very different proof methods

- **Authentication**
 - Completing partial order of actions
 - Get piping right
 - Local reasoning
 - Positive inference

- **Secrecy**
 - Secret goes only to intended recipients
 - Pipes do not leak
 - Global reasoning
 - Negative inference
Divide et Conquera

- Two coordinated logics
 - Logic of authentication
 - Relies on secrecy assumptions
 - Logic of secrecy
 - Relies on authentication assumptions

- Benefits
 - Much simpler proofs
 - Modularity
 - Deeper understanding of
 - mechanisms
 - properties
Describing Protocol Runs

• Principal actions
 - $<m: A \rightarrow B>_A$ - Send
 - $(X: Y \rightarrow Z)_A$ - Receive
 - $(m/p(x))_A$ - match
 - $(\nu n)_A, (\tau t)_A$ - new nonce, timestamp

• Runs
 - Partial order of actions
 - Every receive has a send
 - Every match has succeeded
 - Observations

• Protocols
 - Set of parametric roles
 - Akin to observations
Authentication Logic

- **First-Order logic with 3 predicates**
 - a_A - action a_A has occurred
 - $a_A < b_B$ - a_A has occurred before b_B
 - $a_A = b_B$ - a_A and b_B are the same action

Nothing else!

- **Usage**
 - Given A's observations, extend them with other principal's actions
 - Derive compatible runs
 - $A: \text{Obs}_A \Rightarrow \Phi$
 - $A: \Psi \& \text{Obs}_A \Rightarrow \Phi$
 - Iterated application of axioms
Logical Assumptions

- Honesty
 - Principal does not deviate from role
 - honest S

- Secrecy
 - Key uncompromised for given principals
 - $\text{secret}(k, G) = \langle\langle k \; m \rangle\rangle_X \Rightarrow X \in G$
 - $\&$
 - $(x/k \; y)_X \Rightarrow X \in G$

\[
A \quad S \quad Z?
\]

\[
\text{secret}(k, [A, S])
\]
Axioms

- **Basic truths about domain**
 - **Receive axiom**
 \[
 Y: ((m))_A \rightarrow \langle\langle m\rangle\rangle_X < ((m))_A
 \]
 - **Challenge-response axiom**
 \[
 A: \text{secret}(K, [A,B]) \land
 (v n)_A < \langle\langle n\rangle\rangle_A < ((K n))_A
 \Rightarrow (v n)_A < \langle\langle n\rangle\rangle_A < ((n))_B < \langle\langle K n\rangle\rangle_B < ((K n))_A
 \]
 - **Timestamp axiom**
 \[
 A: \text{honest } B \land
 \langle\langle \uparrow t\rangle\rangle_B < ((t))_A
 \Rightarrow (\downarrow t)_A < (\tau t)_B < \langle\langle \uparrow t\rangle\rangle_B < ((t))_A < (\uparrow t)_A
 \]

- **Allow inferring new actions/ordering**
Abstract Key Distribution

• **S spontaneously**
 - Generates k
 - Sends it to A, B
 - A, B hardwired
 - Encrypted with K^{AS}, K^{BS}
• **A observes only $(K^{AS} k)$**

• **A reconstructs run**
 - Must assume
 - honest S
 - secret($K^{AS}, [A,S]$)
 - Not secret($K^{BS}, [B,S]$)
 - B’s reception unknown
• **Dual for B**

A: secret($K^{AS}, [A,S]$) & honest S &
=> < $\langle K^{AS} k \rangle_S$, $\langle (K^{AS}k) \rangle_A$
=> $(v k)_S$ < $\langle K^{AS} k \rangle_S$, $\langle K^{BS} k \rangle_S$ < $(K^{AS} k)_A$
Derivational Approach

- Use rules, not just axioms
 - Operate on protocol and properties
 - Refinements
 - Transformations
- Advantages
 - Abstract general constructions
 - Reuse protocol fragments
 - Structured understanding of
 - Mechanism
 - Properties
 - Relations between protocols
 - Open-ended taxonomies
Key Request

- **A** issues request

 $$A: \text{secret}(K^A, [A,S]) \& \text{honest } S \& \langle A, B \rangle_A < (K^A k)_A$$

 $$A: \langle A, B \rangle_A \langle (K^A k)_{AB} \rangle < (K^A k)_A$$

 $$\langle A, X \rangle_A < (k k)_A < \langle \langle K^A k \rangle_S < \langle K^X k \rangle_S \rangle < (K^A k)_A$$

- **A** may not be talking to **B**
 - Even if **S** honest
 - Same holds for **B**
Binding

- S includes names

- A (B) authenticated to B (A)

- Not how typical KD protocols are set up
 - S sends to 1 party only
Concatenated Relay

- **S sends all to A**
 - A forwards to B
- **Seedling of Kerberos 5**

- **A knows S sent**
 - $K_{AS}(B,k), K_{BS}(A,k)$
- **A received**
 - $K_{AS}(B,k), M$
- **A doesn't know if**
 - $M = K_{BS}(A,k)$
- **Documented anomaly of Kerberos 5**
Embedded Relay

- Encrypted “ticket”
- Basis of
 - NSSK
 - Denning Sacco
 - Kerberos 4

\[K^{AS}(B,k,K^BS(A,k)) \]
B’s Point of View

- With only
 - `secret(K_{BS}, [B,S])`
 knows S generated k

- With also
 - `secret(K_{AS}, [A,S])`
 knows A knows k
 - A may not be honest
Additional Properties

- **Recency**
 - \((\nu k)_S\) bracketed by events controlled by \(A/B\)
 - Otherwise, intruder can infer \(k\) and attack protocol
 - Even if \(S\) is honest
 - Not satisfied so far

- **Key confirmation**
 - \(A/B\) knows that \(B/A\) has \(k\)
 - Essential for using \(k\)
 - Only \(B\) in \(KD^4\) (under assumption)
Recency with Nonces

- Use challenge-response as bracket
Core NSSK

- \((\nu k)_S\) bounded by \((\nu n)_A\)
- Ensures recency of \(k\) to \(A\)

\[
A: \text{secret}(K^{AS}, [A,S]) \& \text{honest } S \&
(\nu n)_A < \langle A,B,n \rangle_A < (K^{AS}(n,B,k,M))_A < (M)_A
\]

\[
\implies (\nu n)_A < \langle A,B,n \rangle_A <
(A,B,n)_S < (\nu k)_S < \langle K^{AS}(n,B,k,K^{BS}(A,k)) \rangle_S <
(K^{AS}(n,B,k,K^{AS}(A,k)))_A < (K^{AS}(A,k))_A
\]

- \(A\) can reconstruct run up to \(B\)'s action

- No such guarantees for \(B\)
 - Denning-Sacco attack
Core NSSK-fix

• Same device for B
 ➢ Complications
 ▪ Keeping A as initiator
 ▪ Sending n’ to A

• Achieves recency for B too
 ➢ Complicated
Key Confirmation

- B knows A has k
- B tells A he has k by sending agreed message

Extends to NSSK-fix
NSSK does more!

- B concludes with CR
 - k not confirmed to A
 - Unless tagging
 - B already knows A has k

- Exchange typical of repeated authentication
 - B repeatedly request service from A
 - ... but A is initiator!

- Similarly for NSSK-fix
Recency with Timestamps

- Timestamp as bracketing device
 - Requires loosely synchronized clocks

\[A \quad S \]

\[K^{AS} \quad m \]

\[secret(K^{AS}, [A,S]) \]

I. Cervesato: Encapsulated Authentication Logic
Denning-Sacco

- Use timestamp for recency
 - Guarantee recency to both A and B
 - Same assurance as core NSSK-fix
 - Only 3 messages

\[K^{AS}(B,k,t,K^{BS}(A,k,t)) \]
Core Kerberos 4

- = NSSK
 + key confirmation
 + repeated authentication
 - Timestamp ensures recency of each new request
 - A is client and initiator

- Kerberos 4
 - 2 rounds of core Kerberos
 - Many more fields, options, ...
Kerberos 5

- Same development but...
 - Start from \textit{concatenated} variant of Denning Sacco
Future Work

Define Secrecy Logic

- Authentication as assumptions
- Modular model of secrecy
 - Dolev-Yao
 - Information-theoretic
 - Computational
- Apply to examples
 - Diffie-Hellman hierarchy
 - Full Kerberos 5
 - PKINIT
- Implement within Kestrel’s PDA