The Logical Meeting Point of Multiset Rewriting and Process Algebra

Iliano Cervesato
iliano@itd.nrl.navy.mil
ITT Industries, inc @ NRL Washington, DC
http://theory.stanford.edu/~iliano

Università di Venezia

March 8, 2004
Motivations

• **Security protocol specifications**
 - Transition-based
 - Process-based
 - Different languages and techniques
 - Ad-hoc translations

• **Attempt at a unified approach**
 - Rewriting re-interpretation of logic
 - Open derivations
 - Left rule semantics
 - Foundation of multiset rewriting
 - Bridge to process algebra
 - Effective protocol specification language
Linear Logic

- Formulas
 \[A, B ::= a \mid 1 \mid A \otimes B \mid A \rightarrow B \mid ! A \mid T \mid A \& B \mid \forall x. A \mid \exists x. A \]

- LV sequents
 \[\Gamma ; \Delta \rightarrow_{\Sigma} C \]

- Unrestricted context
- Linear context
- Signature
- Goal formula

- Constructor: ","
- Empty: "."
Some LV Rules

Left rules

\[
\Gamma; \Delta, A, B \rightarrow_{\Sigma} C \\
\Gamma; \Delta, \Lambda B \rightarrow_{\Sigma} C
\]

\[
\Gamma; \Delta' \rightarrow_{\Sigma} A \quad \Gamma; \Delta, B \rightarrow_{\Sigma} C
\]

\[
\Gamma; \Delta, \Delta', A \rightarrow_{\Sigma} B \rightarrow_{\Sigma} C
\]

\[
\Sigma |- t \quad \Gamma; \Delta, [t/x]A \rightarrow_{\Sigma} C
\]

\[
\Gamma; \Delta, \forall x.A \rightarrow_{\Sigma} C
\]

\[
\Gamma; \Delta, A \rightarrow_{\Sigma} C
\]

\[
\Gamma; \Delta, \exists x.A \rightarrow_{\Sigma} C
\]

\[
\Gamma, A; \Delta \rightarrow_{\Sigma} C
\]

\[
\Gamma, A; \Delta \rightarrow_{\Sigma} C
\]

Structural rules

\[
\Gamma; A \rightarrow_{\Sigma} A
\]

\[
\Gamma, A; \Delta, A \rightarrow_{\Sigma} C
\]

\[
\Gamma, A; \Delta \rightarrow_{\Sigma} C
\]

Cut rules

\[
\Gamma; \Delta' \rightarrow_{\Sigma} A \quad \Gamma; \Delta, A \rightarrow_{\Sigma} C
\]

\[
\Gamma; \Delta, \Delta' \rightarrow_{\Sigma} C
\]

\[
\Gamma; \bullet \rightarrow_{\Sigma} A \quad \Gamma, A; \Delta \rightarrow_{\Sigma} C
\]

\[
\Gamma; \Delta \rightarrow_{\Sigma} C
\]

Right rules

...
Logical Derivations

- Proof of C from Δ and Γ
 - Emphasis on C
 - C is input
- Finite
 - Closed
- Rules shown
 - Major premise
 - Preserves C
 - Minor premise
 - Starts subderivation
A Rewriting Re-Interpretation

- Transition
 - From conclusion
 - To major premise
 - Emphasis on \(\Gamma, \Delta \) and \(\Sigma \)
 - \(C \) is output, at best
 - Does not change

- Possibly infinite
 - Open

- Minor premise
 - Auxiliary rewrite chain
 - Finite
 - Topped with axiom
State and Transitions

- **States**
 - \(\Sigma ; \Gamma ; \Delta \)
 - \(\Sigma \) is a list
 - \(\Gamma \) and \(\Delta \) are commutative monoids
 - No \(\mathcal{C} \)
 - Does not change

- **Transitions**
 - \(\Sigma; \Gamma; \Delta \rightarrow \Sigma'; \Gamma'; \Delta' \)
 - \(\rightarrow^* \) for reflexive and transitive closure

- Constructor: “,”
- Empty: “.”

I. Cervesato: The Logical Meeting Point of MSR and PA
Interpreting Unary Rules

\[
\begin{align*}
\Gamma; \Delta, A, B & \rightarrow_{\Sigma} C \\
\Gamma; \Delta, A \otimes B & \rightarrow_{\Sigma} C
\end{align*}
\]

\[
\begin{align*}
\Sigma; \Gamma; (\Delta, A \otimes B) & \Rightarrow \Sigma; \Gamma; (\Delta, A, B) \\
\Sigma; \Gamma; (\Delta, \forall x. A) & \Rightarrow \Sigma; \Gamma; (\Delta, [t/x]A) \\
& \text{(if } \Sigma |- t \text{)}
\end{align*}
\]

\[
\begin{align*}
\Sigma; \Gamma; (\Delta, \exists x. A) & \Rightarrow (\Sigma, x); \Gamma; (\Delta, A) \\
\Sigma; \Gamma; (\Delta, !A) & \Rightarrow \Sigma; (\Gamma, A); \Delta
\end{align*}
\]

...
Binary Rules and Axiom

- Minor premise
 - Auxiliary rewrite chain
- Top of tree
 - Focus shifts to RHS
 - Axiom rule
 - Observation

\[\Gamma; A \rightarrow_{\Sigma} A \]
\[\Gamma; \Delta' \rightarrow_{\Sigma} A \]
\[\Gamma; \Delta, B \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta, \Delta', A \rightarrow_{oB} \rightarrow_{\Sigma} C \]
Observations

- **Observation states**
 \[\Sigma ; \Delta \]
 - In \(\Delta \), we identify
 - with \(\otimes \)
 - with \(1 \)

 Categorical semantics
 - Identified with \(\exists x_1. \ldots \exists x_n. \Delta \)
 - For \(\Sigma = x_1, \ldots, x_n \)

 De Bruijn’s telescopes

- **Observation transitions**
 \[\Sigma; \Gamma; \Delta \Rightarrow^* \Sigma'; \Delta' \]
Structural Equivalences

Monoidal laws
- \(A \otimes B = B \otimes A \)
- \(A \otimes 1 = A \)
- \((A \otimes B) \otimes C = A \otimes (B \otimes C) \)

Mobility laws
- \(\exists x. \exists y. \Delta = \exists y. \exists x. \Delta \)
- \(\exists x. \bullet = \bullet \)
- \(\exists x. (\Delta, \Delta') = \Delta, \exists x. \Delta' \)
 if \(x \notin \text{FV}(\Delta) \)

- **Logical bi-equivalences**
 - Require limited right rules
- **Express structure of context / binders**
- **Expand rewrite opportunities**
Interpreting Binary Rules

\[\Gamma; A \rightarrow_{\Sigma} A \]

\[\Sigma; \Gamma; \Delta \rightarrow^{*} \Sigma; \Delta \]

\[\Sigma; \Gamma; \Delta \rightarrow^{*} \Sigma''; \Delta'' \]

if \(\Sigma; \Gamma; \Delta \rightarrow \Sigma' \); \(\Gamma'; \Delta' \)

and \(\Sigma'; \Gamma'; \Delta' \rightarrow^{*} \Sigma''; \Delta'' \)

\[\Gamma; \Delta' \rightarrow_{\Sigma} A \]

\[\Gamma; \Delta, B \rightarrow_{\Sigma} C \]

\[\Gamma; \Delta, \Delta', A \rightarrow B \rightarrow_{\Sigma} C \]

\[\Sigma; \Gamma; (\Delta, \Delta', A \rightarrow B) \rightarrow \Sigma; \Gamma; (\Delta, B) \]

if \(\Sigma; \Gamma; \Delta' \rightarrow^{*} \Sigma; \Delta \)

\[\Gamma; \Delta', \Delta' \rightarrow_{\Sigma} A \]

\[\Gamma; \Delta, A \rightarrow_{\Sigma} C \]

\[\Gamma; \Delta, \Delta' \rightarrow_{\Sigma} C \]

\[\Sigma; \Gamma; (\Delta, \Delta', \Delta' \rightarrow \Sigma; \Gamma; (A, \Delta) \]

if \(\Sigma; \Gamma; \Delta' \rightarrow^{*} \Sigma; \Delta \)

...
Formal Correspondence

• Soundness

If $\Sigma ; \Gamma ; \Delta \rightarrow^* \Sigma, \Sigma'; \Delta'$ then $\Gamma ; \Delta \rightarrow_\Sigma \exists \Sigma'. \otimes \Delta'$

• Completeness?

➢ No! We have only crippled right rules

- $\bullet ; \bullet ; a \rightarrow o b, b \rightarrow o c \rightarrow^{+*} \bullet ; a \rightarrow o c$
System ω

- With cut, rule for $\rightarrow o$ can be simplified to $\Sigma; \Gamma; (\Delta, A, A \rightarrow o B) \rightarrow \Sigma; \Gamma; (\Delta, B)$

- **Cut elimination holds**
 - = in-lining of auxiliary rewrite chains
 - But ...
 - Careful with extra signature symbols
 - Careful with extra persistent objects

- No rule for \rightarrow needs a premise
 - \rightarrow does not depend on \rightarrow^*
Discussion

- **Other connectives?**
 - \oplus, 0, \emptyset, \bot
 - Odd rewrite properties
 - \otimes, $(___)$
 - Not yet explored

- **Other presentations?**

- **Other logics?**

- **Other forms of proof-as-computation?**
 - Dual of logic programming
 - Similar to ACL [Kobayashi & Yonezawa, 93]

- **Can logic benefit?**
Type Theoretic Side

• Very close to CLF

Concurrent Logical Framework

- Linear type theory with
 - Dependent function types: \(\Pi\) (LF)
 - Asynchronous connectives: \(--o, &, T\) (LLF)
 - Synchronous connectives: \(\otimes, 1, !, \exists\)
 - Monadic sandboxing
 - Concurrency equations

- Faithful encoding of true concurrency
 - Petri nets, MSR 2 specs, \(\pi\)-calculus, concurrent ML

• Details of relation still unclear
Multiset Rewriting

- **Multiset**: set with repetitions allowed
 \[
 a ::= \bullet \mid a, a
 \]
 - Commutative monoid

- **Multiset rewriting (a.k.a. Petri nets)**
 - Rewriting within the monoid
 - Fundamental model of distributed computing
 - Competitor: Process Algebras
 - Basis for security protocol spec. languages
 - MSR family
 - ... several others
 - Many extensions, more or less ad hoc
First-Order Multiset Rewriting

- Multiset elements are FO atomic formulas
- Rules have the form
 \[\forall x_1...x_n. \quad a(x) \rightarrow \exists y_1...y_k. \quad b(x,y) \]
- Semantics

\[\Sigma ; a(t), s \rightarrow_R (a(x) \rightarrow \exists y. \quad b(x,y)) \quad \Sigma, y ; b(t,y), s \quad \text{if } \Sigma \vdash t \]

- Several encodings into linear logic
 - [Martí-Oliet, Meseguer, 91]
ω-Multisets vs. Multiset Rewriting

- **MSR 1 is an instance of ω-multisets**
 - Uses only \otimes, 1, \forall, \exists, and $\lnot\rho$
 - $\lnot\rho$ never nested, always persistent

 $$
 \Sigma; \frac{s}{R} \Sigma'; \frac{s'}{*}
 $$

 iff
 $$
 \Sigma; "R"; "s" \rightarrow^* \Sigma'; "s'"
 $$

- **Interpretation of MSR as linear logic**
 - Logical explanation of multiset rewriting
 - MSR is logic
 - Guideline to design rewrite systems
\(\omega\)-Rewriting

\[
A, B ::= a \quad \text{atomic object}
\]

\[
| 1 \quad \text{empty}
\]

\[
| A \otimes B \quad \text{formation}
\]

\[
| A \longrightarrow B \quad \text{rewrite}
\]

\[
| T \quad \text{no-op}
\]

\[
| A \& B \quad \text{choice}
\]

\[
| \forall x. A \quad \text{instantiation}
\]

\[
| \exists x. A \quad \text{generation}
\]

\[
| ! A \quad \text{replication}
\]
The Asynchronous π-Calculus

Another fundamental model of distributed computing

- **Language**
 \[
 P ::= 0 \mid P||Q \mid \nu x. P \mid \!P \mid x(y).P \mid x<y>
 \]

- **Semantics**

 - **Structural equivalence**
 - Comm. monoidal congruence of $||$ and 0
 - Binder mobility congruence of ν
 - $\nu x. \nu y. P \equiv \nu y. \nu x. P$
 - $0 \equiv \nu x. 0$
 - $P || \nu x. Q \equiv \nu x. (P || Q)$ if $x \notin FN(P)$
 - $\!P \equiv \!P || P$

 - **Reaction law**
 - $x<y> || x(z). P || Q \Rightarrow [y/z]P || Q$
\(\pi \)-calculus in \(\omega \)-Multisets

- 0 \(\iff \) 1
- \(|| \) \(\iff \) \(\otimes \)
- \(\nu \) \(\iff \) \(\exists \)
- \(! \) \(\iff \) !
- x(y). P \(\iff \) \(\forall y. ch(x,y) \rightarrow \sigma \) "P"
- x<\(y > \) \(\iff \) ch(x,y)

- **Reaction law**
 - \(\Sigma; \Gamma; ch(x,y), \forall z. ch(x,z) \rightarrow P, \Delta \rightarrow^2 \Sigma; \Gamma; [y/z]P, \Delta \)

- **Structural equivalence**
 - Monoidal congr. of \(|| \) and 0 \(\iff \) monoidal laws of \(\otimes \) and 1
 - Mobility congr. of \(\nu \) \(\iff \) mobility laws of \(\exists \)
 - !P \(\equiv \) !P \(|| \) P
 - Only \(\Rightarrow \) in \(\omega \)-multisets
 - Oversight in the \(\pi \)-calculus?
Properties

- If \(P \Rightarrow^* Q \)

 then \(\bullet; \bullet; \, \text{“} P \rightarrow^* \Sigma; \Gamma; \Delta \)

 where \(\text{“} Q \text{”} = \exists \Sigma. !\Gamma \otimes \Delta \quad \text{mod} \quad !A = !A \otimes A \)

- Note: with \(!P \rightarrow !P \parallel P \) as a transition

 - If \(P \Rightarrow^* Q \)

 then \(\bullet; \bullet; \, \text{“} P \rightarrow^* \Sigma; \Gamma; \Delta \)

 where \(\text{“} Q \text{”} = \exists \Sigma. !\Gamma \otimes \Delta \)
ω-Multisets vs. Process Algebra

• Simple encoding of asynchronous π-calculus into ω-multisets
 - Doesn’t show that π-calculus is logic
 - Uses only a fraction of ω-multiset syntax
 - Inverse encoding?
 - As hard as going from multiset rewriting to π-calculus

• Other languages
 - Join calculus
 - Strand spaces
 - To do: Synchronous π-calculus
MSR 3

- Instance of ω-multisets for cryptographic protocol specification
 - Security-relevant signature
 - Typing infrastructure
 - Modules, equations, ...

- 3rd generation
 - MSR 1: First-order multiset rewriting with \exists
 - Undecidability of protocol analysis
 - MSR 2: MSR 1 + typing
 - Actual specification language
 - More theoretical results
 - Implementation underway
The Atomic Objects of MSR 3

Atomic terms
- Principals (A)
- Keys (K)
- Nonces (N)
- Other
 - Raw data, timestamp, ...

Constructors
- Encryption: \{\}_{_}
- Pairing: (_, _)
- Other
 - Signature, hash, MAC, ...

Predicates
- Network: net
- Memory: \(M_A\)
- Intruder: I
- ...

Fully definable
Types

- Simple types
 - A : princ
 - n : nonce
 - m : msg, ...

- Dependent types
 - k : shK A B
 - K : pubK A
 - K' : privK K, ...

Fully definable

- Powerful abstraction mechanism
 - At various user-definable level
 - Finely tagged messages
 - Untyped: msg only

- Simplify specification and reasoning
- Automated type checking
Example

Needham-Schroeder public-key protocol

1. $A \rightarrow B: \{n_A, A\}_{kB}$
2. $B \rightarrow A: \{n_A, n_B\}_{kA}$
3. $A \rightarrow B: \{n_B\}_{kB}$

- Can be expressed in several ways
 - State-based
 - Explicit local state
 - As in MSR 2
 - Process-based: embedded
 - Continuation-passing style
 - As in process algebra
 - (Intermediate approaches)
∀A: princ.
{ ∀B: princ. ∃L: princ. pubK B × nonce → mset.

∀B: princ. ∀k_B: pubK B.

→ ∃n_A: nonce.

net ({n_A, A}_k_B), L (A, B, k_B, n_A)

∀B: princ. ∀k_B: pubK B.
∀k_A: pubK A. ∀k_A': prvK k_A.
∀n_A: nonce. ∀n_B: nonce.

net ({n_A, n_B}_k_A), L (A, B, k_B, n_A)
→ net ({n_B}_k_B)
}

Interpretation of L

- Rule invocation
 - Implementation detail
 - Control flow

- Local state of role
 - Explicit view
 - Important for DOS

I.Cervesato: The Logical Meeting Point of MSR and PA
I. Cervesato: The Logical Meeting Point of MSR and PA

Process-Based

∀A: princ.
∀B: princ. ∀kB: pubK B.

• → ∃nA: nonce.

net ({nA, A}kB),

(∀kA: pubK A. ∀kA': prvK kA. ∀nB: nonce.

net ({nA, nB}kA) → net ({nB}kB))

• Succinct
• Continuation-passing style
 ➢ Rule asserts what to do next
 ➢ Lexical control flow
• State is implicit
 ➢ Abstract

A → B: {nA, A}kB
B → A: {nA, nB}kA
A → B: {nB}kB
NSPK in Process Algebra

∀A: princ.
∀B: princ. ∀kB: pubK B.
∀kA: pubK A. ∀kA': prvK kA. ∀nB: nonce.

∀nA: nonce.

\[\text{net}\left(\{n_A, A\}_{kB}\right). \]
\[\text{net}\left(\{n_A, n_B\}_{kA}\right). \]
\[\text{net}\left(\{n_B\}_{kB}\right). 0 \]

Same structure!

- Not a coincidence
- MSR 3 very close to Process Algebra
 - ω-multiset encodings of π-calculus and Join Calculus

- MSR 3 is promising middle-ground for relating
 - State-based
 - Process-based representations of a problem
State-Based vs. Process-Based

- **State-based languages**
 - Multiset Rewriting
 - NRL Prot. Analyzer, CAPSL/CIL, Paulson’s approach, ...
 - State transition semantics

- **Process-based languages**
 - Process Algebra
 - Strand spaces, spi-calculus, ...
 - Independent communicating threads
MSR 3 Bridges the Gap

- Difficult to go from one to the other
 - Different paradigms

State vs. process distance

State ↔ Process translation done once and for all in MSR 3
Conclusions

• \(\omega \)-multisets
 - Logical foundation of multiset rewriting
 - Relationship with process algebras
 - Unified logical view
 - Better understanding of where we are
 - Hint about where to go next

• MSR 3.0
 - Language for security protocol specification
 - Succinct representations
 - Simpler specifications
 - Economy of reasoning
 - Bridge between
 - State-based representation
 - Process-based representation