The Logical Meeting Point of Multiset Rewriting and Process Algebra

Iliano Cervesato
Carnegie Mellon University - Qatar
iliano@cmu.edu

Mathematics Department, UPenn

December 11, 2006
Motivations

- **Security protocol specifications**
 - Transition-based
 - Process-based
 - Different languages and techniques
 - Ad-hoc translations

- **Attempt at a unified approach**
 - Rewriting re-interpretation of logic
 - Open derivations
 - Left rule semantics
 - Foundation of multiset rewriting
 - Bridge to process algebra
 - Effective protocol specification language
Linear Logic

• Formulas

\[A, B ::= a \mid 1 \mid A \otimes B \mid A \rightarrow^0 B \mid !A \]
\[\mid T \mid A \& B \mid \forall x. A \mid \exists x. A \]

• LV sequents

\[\Gamma ; \Delta \rightarrow^\Sigma C \]

Unrestricted context

Linear context

Signature

Goal formula

- Constructor: “,”
- Empty: “•”

I. Cervesato: The Logical Meeting Point of MSR and PA
Some LV Rules

Left rules

\[
\frac{\Gamma; \Delta, A, B \rightarrow_{\Sigma} C}{\Gamma; \Delta, A \otimes B \rightarrow_{\Sigma} C}
\]

\[
\frac{\Gamma; \Delta', \rightarrow_{\Sigma} A \quad \Gamma; \Delta, \rightarrow_{\Sigma} C}{\Gamma; \Delta, \Delta', A \rightarrow_{\Sigma} B \rightarrow_{\Sigma} C}
\]

\[
\Sigma \vdash \top \quad \frac{\Gamma; \Delta, [\top/x]A \rightarrow_{\Sigma} C}{\Gamma; \Delta, \forall x. A \rightarrow_{\Sigma} C}
\]

\[
\frac{\Gamma; \Delta, A \rightarrow_{\Sigma, x} C}{\Gamma; \Delta, \exists x. A \rightarrow_{\Sigma} C}
\]

\[
\frac{\Gamma, A; \Delta \rightarrow_{\Sigma} C}{\Gamma; \Delta, !A \rightarrow_{\Sigma} C}
\]

Right rules

\[
\Gamma; \Delta \rightarrow_{\Sigma} C
\]

Structural rules

\[
\Gamma; A \rightarrow_{\Sigma} A
\]

\[
\Gamma, A; \Delta, A \rightarrow_{\Sigma} C
\]

\[
\Gamma, A; \Delta \rightarrow_{\Sigma} C
\]

Cut rules

\[
\frac{\Gamma; \Delta' \rightarrow_{\Sigma} A \quad \Gamma; \Delta, A \rightarrow_{\Sigma} C}{\Gamma; \Delta, \Delta' \rightarrow_{\Sigma} C}
\]

\[
\frac{\Gamma; \bullet \rightarrow_{\Sigma} A \quad \Gamma, A; \Delta \rightarrow_{\Sigma} C}{\Gamma; \Delta \rightarrow_{\Sigma} C}
\]
 Logical Derivations

- Proof of C from Δ and Γ
 - Emphasis on C
 - C is input
- Finite
 - Closed
- Rules shown
 - Major premise
 - Preserves C
 - Minor premise
 - Starts subderivation

I. Cervesato: The Logical Meeting Point of MSR and PA
A Rewriting Re-Interpretation

- Transition
 - From conclusion
 - To major premise
 - Emphasis on Γ, Δ and Σ
 - C is output, at best
 - Does not change

- Possibly infinite
 - Open

- Minor premise
 - Auxiliary rewrite chain
 - Finite
 - Topped with axiom
State and Transitions

• States

\[\Sigma ; \Gamma ; \Delta \]

- \(\Sigma \) is a list
- \(\Gamma \) and \(\Delta \) are commutative monoids
- No \(C \)
 - Does not change

• Transitions

\[\Sigma; \Gamma; \Delta \rightarrow \Sigma'; \Gamma'; \Delta' \]

- \(\rightarrow^* \) for reflexive and transitive closure

- Constructor: "\
- Empty: "¬"
Interpreting Unary Rules

\[
\begin{align*}
\Gamma; \Delta, A, B & \rightarrow^\Sigma C \\
\Gamma; \Delta, A \otimes B & \rightarrow^\Sigma C \\
\Sigma; \Gamma; (\Delta, [t/x]A) & \rightarrow \Sigma; \Gamma; (\Delta, [t/x]A) \\
\Gamma; \Delta, \forall x.A & \rightarrow^\Sigma C \\
\Sigma; \Gamma; (\Delta, \forall x. A) & \rightarrow \Sigma; \Gamma; (\Delta, [t/x]A) \\
\Gamma; \Delta, A & \rightarrow^\Sigma x C \\
\Gamma; \Delta, \exists x.A & \rightarrow^\Sigma C \\
\Gamma; A; \Delta & \rightarrow^\Sigma C \\
\Gamma; \Delta, !A & \rightarrow^\Sigma C \\
\end{align*}
\]
Binary Rules and Axiom

- Minor premise
 - Auxiliary rewrite chain
- Top of tree
 - Focus shifts to RHS
 - Axiom rule
 - Observation

\[
\Gamma; A \rightarrow_\Sigma A \quad \Gamma; \Delta, B \rightarrow_\Sigma C \\
\Gamma; \Delta', \Delta', A \rightarrow_\Sigma B \rightarrow_\Sigma C
\]
Observations

• Observation states
 \[\Sigma ; \Delta \]
 - In \(\Delta \), we identify
 - \(, \) with \(\otimes \)
 - \(\cdot \) with \(1 \)

 Categorical semantics

 - Identified with \(\exists x_1. \ldots \exists x_n. \Delta \)
 - For \(\Sigma = x_1, \ldots, x_n \)

 De Bruijn’s telescopes

• Observation transitions
 \[\Sigma; \Gamma; \Delta \rightarrow^* \Sigma'; \Delta' \]
Induced Structural Equivalences

Monoidal laws

- $A \otimes B = B \otimes A$
- $A \otimes 1 = A$
- $(A \otimes B) \otimes C = A \otimes (B \otimes C)$

Mobility laws

- $\exists x. \exists y. \Delta = \exists y. \exists x. \Delta$
- $\exists x. \bullet = \bullet$
- $\exists x. (\Delta, \Delta') = \Delta, \exists x. \Delta'$
 if $x \not\in FV(\Delta)$

- Logical bi-equivalences
 - Require limited right rules
- Express structure of context / binders
- Expand rewrite opportunities
Interpreting Binary Rules

\[\frac{\Gamma; A \longrightarrow_{\Sigma} A}{\Sigma; \Gamma; \Delta \rightarrow^{*} \Sigma; \Delta} \]

\[\frac{\Sigma; \Gamma; \Delta \rightarrow^{*} \Sigma''; \Delta''}{\text{if } \Sigma; \Gamma; \Delta \rightarrow \Sigma'; \Gamma'; \Delta'} \]

and \[\Sigma'; \Gamma'; \Delta' \rightarrow^{*} \Sigma''; \Delta'' \]

\[\frac{\Gamma; \Delta' \longrightarrow_{\Sigma} A; \Gamma; \Delta, B \longrightarrow_{\Sigma} C}{\Gamma; \Delta, \Delta', A \longrightarrow_{oB} \longrightarrow_{\Sigma} C} \]

\[\frac{\Sigma; \Gamma; (\Delta, \Delta', A \longrightarrow_{oB} B) \rightarrow \Sigma; \Gamma; (\Delta, B)}{\text{if } \Sigma; \Gamma; \Delta' \rightarrow^{*} \Sigma; A} \]

\[\frac{\Gamma; \Delta' \longrightarrow_{\Sigma} A; \Gamma; \Delta, A \longrightarrow_{\Sigma} C}{\Gamma; \Delta, \Delta' \longrightarrow_{\Sigma} C} \]

\[\frac{\Sigma; \Gamma; \Delta, \Delta' \rightarrow \Sigma; \Gamma; (A, \Delta)}{\text{if } \Sigma; \Gamma; \Delta' \rightarrow^{*} \Sigma; A} \]

...
Formal Correspondence

• Soundness

If \(\Sigma ; \Gamma ; \Delta \rightarrow^* \Sigma, \Sigma'; \Delta' \)
then \(\Gamma ; \Delta \rightarrow \exists \Sigma'. \bigotimes \Delta' \)

• Completeness?

\(\text{No! \; We have only crippled right rules} \)

\(; ; a \rightarrow o \; b, \; b \rightarrow o \; c \) \(\quad \) \(; a \rightarrow o \; c \)
System ω

- With cut, rule for \circ can be simplified to
 $\Sigma; \Gamma; (\Delta, A, A \circ B) \rightarrow \Sigma; \Gamma; (\Delta, B)$

- Cut elimination holds
 - in-lining of auxiliary rewrite chains
 - But ...
 - Careful with extra signature symbols
 - Careful with extra persistent objects

- No rule for \rightarrow needs a premise
 - \rightarrow does not depend on \rightarrow^*
Summary – Syntax

\[A, B ::= a \quad \text{atomic object} \]
\[\mid 1 \quad \text{empty} \]
\[\mid A \otimes B \quad \text{formation} \]
\[\mid A \rightarrow B \quad \text{rewrite} \]
\[\mid T \quad \text{no-op} \]
\[\mid A \& B \quad \text{choice} \]
\[\mid \forall x. A \quad \text{instantiation} \]
\[\mid \exists x. A \quad \text{generation} \]
\[\mid ! A \quad \text{replication} \]
Summary – Semantics

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td>$\Sigma ; \Gamma ; (\Delta, A, A \rightarrow B) \rightarrow \Sigma ; \Gamma ; (\Delta, B)$</td>
</tr>
<tr>
<td>&</td>
<td>$\Sigma ; \Gamma ; (\Delta, A_1 & A_2) \rightarrow \Sigma ; \Gamma ; (\Delta, A_i)$</td>
</tr>
<tr>
<td>∨</td>
<td>$\Sigma ; \Gamma ; (\Delta, \forall x. A) \rightarrow \Sigma ; \Gamma ; (\Delta, [t/x]A)$ if $\Sigma \vdash t$</td>
</tr>
<tr>
<td>!</td>
<td>$\Sigma ; \Gamma ; (\Delta, !A) \rightarrow \Sigma ; (\Gamma, A) ; \Delta$</td>
</tr>
<tr>
<td>1</td>
<td>$\Sigma ; \Gamma ; (\Delta, 1) \rightarrow \Sigma ; \Gamma ; \Delta$</td>
</tr>
<tr>
<td>⊗</td>
<td>$\Sigma ; \Gamma ; (\Delta, A \otimes B) \rightarrow \Sigma ; \Gamma ; (\Delta, A, B)$</td>
</tr>
<tr>
<td>∃</td>
<td>$\Sigma ; \Gamma ; (\Delta, \exists x. A) \rightarrow (\Sigma, x) ; \Gamma ; (\Delta, A)$</td>
</tr>
</tbody>
</table>
Discussion

- Other connectives?
 - ⊕, 0, ⊥
 - Odd rewrite properties
 - ?, (_)⊥
 - Not yet explored

- Other presentations?

- Other logics?

- Other forms of proof-as-computation?
 - Dual of logic programming
 - Similar to ACL [Kobayashi & Yonezawa, 93]

- Can logic benefit?
Type Theoretic Side

- Very close to **CLF**

 Concurrent Logical Framework

 - Linear type theory with
 - Dependent function types: \(\Pi\) (LF)
 - Asynchronous connectives: \(\rightarrow, \&, T\) (LLF)
 - Synchronous connectives: \(\otimes, 1, !, \exists\)
 - Monadic sandboxing
 - Concurrency equations

 - Faithful encoding of true concurrency
 - Petri nets, MSR 2 specs, \(\pi\)-calculus, concurrent ML

- Details of relation still unclear

I. Cervesato: The Logical Meeting Point of MSR and PA
Multiset Rewriting

- Multiset: set with repetitions allowed
 \[a ::= • \mid a, a \]
 - Commutative monoid

- Multiset rewriting (a.k.a. Petri nets)
 - Rewriting within the monoid
 - Fundamental model of distributed computing
 - Alternative: Process Algebras
 - Basis for security protocol spec. languages
 - MSR family
 - ... several others
 - Many extensions, more or less ad hoc
First-Order Multiset Rewriting

- Multiset elements are FO atomic formulas
- Rules have the form
 \[\forall x_1 \ldots x_n. \ a(x) \rightarrow \exists y_1 \ldots y_k. \ b(x, y) \]
- Semantics

\[\Sigma ; a(t), s \rightarrow_R (a(x) \rightarrow \exists y. \ b(x, y)) \quad \Sigma, y ; b(t, y), s \]
 if \(\Sigma \vdash t \)
- Several encodings into linear logic
 - [Martí-Oliet, Meseguer, 91]
ω-Multisets vs. Multiset Rewriting

• MSR 1 is an instance of ω-multisets
 ▪ Uses only ⊗, 1, ∀, ∃, and ¬ο
 ▪ ¬ο never nested, always persistent

 ➢ \[\Sigma; s \rightarrow_R \Sigma'; s' \]
 iff \[\Sigma; \text{"R"}; \text{"s"} \rightarrow^* \Sigma'; \text{"s'"} \]

• Interpretation of MSR as linear logic
 ➢ Logical explanation of multiset rewriting
 ▪ MSR is logic
 ➢ Guideline to design rewrite systems
The Asynchronous π-Calculus

Another fundamental model of distributed computing

- **Language**

 $P ::= 0 | P || Q | \nu x. P | !P | x(y).P | x<y>$

- **Semantics**

 - **Structural equivalence**
 - Comm. monoidal congruence of $||$ and 0
 - Binder mobility congruence of ν
 - $\nu x. \nu y. P \equiv \nu y. \nu x. P$
 - $0 \equiv \nu x. 0$
 - $P || \nu x. Q \equiv \nu x. (P || Q)$ if $x \notin FN(P)$
 - $!P \equiv !P || P$

 - **Reaction law**
 - $x<y> || x(z). P || Q \Rightarrow [y/z]P || Q$
\(\pi\)-calculus in \(\omega\)-Multisets

- \(0 \Leftrightarrow 1\)
- \(|| \Leftrightarrow \otimes||\)
- \(\nu \Leftrightarrow \exists\)
- \(! ! \Leftrightarrow ! !\)
- \(x(y). P \Leftrightarrow \forall y. ch(x,y) \rightarrow o \text{ "P"} \)
- \(x\langle y\rangle \Leftrightarrow ch(x,y)\)

Reaction law
- \(\Sigma; \Gamma; ch(x,y), \forall z. ch(x,z) \rightarrow o P, \Delta \rightarrow^2 \Sigma; \Gamma; [y/z]P, \Delta\)

Structural equivalence
- Monoidal congr. of \(||\) and \(0 \Leftrightarrow\) monoidal laws of \(\otimes\) and \(1\)
- Mobility congr. of \(\nu \Leftrightarrow\) mobility laws of \(\exists\)
- \(!P \equiv !P || P\)
 - Only \(\Rightarrow\) in \(\omega\)-multisets
 - Oversight in the \(\pi\)-calculus?

I. Cervesato: The Logical Meeting Point of MSR and PA
Properties

• If $P \Rightarrow^* Q$
 then $\cdot; \cdot; \text{"} P \text{"} \Rightarrow^* \Sigma; \Gamma; \Delta$

where "Q" = $\exists \Sigma. !\Gamma \otimes \Delta$ mod $!A = !A \otimes A$

➢ Note: with $!P \rightarrow !P || P$ as a transition
 ▪ If $P \Rightarrow^* Q$
 then $\cdot; \cdot; \text{"} P \text{"} \Rightarrow^* \Sigma; \Gamma; \Delta$

where "Q" = $\exists \Sigma. !\Gamma \otimes \Delta$
ω-Multisets vs. Process Algebra

• **Simple encoding** of asynchronous π-calculus into ω-multisets
 - Doesn’t show that π-calculus is logic
 - Uses only a fraction of ω-multiset syntax
 - Inverse encoding?
 - As hard as going from multiset rewriting to π-calculus

• Other languages
 - Join calculus
 - Strand spaces
 - To do: Synchronous π-calculus
MSR 3

- Instance of ω-multisets for cryptographic protocol specification
 - Security-relevant signature
 - Typing infrastructure
 - Modules, equations, ...

- 3rd generation
 - MSR 1: First-order multiset rewriting with \exists
 - Undecidability of protocol analysis
 - MSR 2: MSR 1 + typing
 - Actual specification language
 - More theoretical results
Example

Needham-Schroeder public-key protocol

1. $A \rightarrow B: \{n_A, A\}_{kB}$
2. $B \rightarrow A: \{n_A, n_B\}_{kA}$
3. $A \rightarrow B: \{n_B\}_{kB}$

- Can be expressed in several ways
 - State-based
 - Explicit local state
 - As in MSR 2
 - Process-based: embedded
 - Continuation-passing style
 - As in process algebra
 - (Intermediate approaches)
∀A: princ.
\{ ∃L: princ × ΣB: princ.pubK B × nonce → mset. \}

∀B: princ. ∀k_B: pubK B.
•
→ ∃n_A: nonce.
net ({n_A, A}_k_B), L (A, B, k_B, n_A)

∀B: princ. ∀k_B: pubK B.
∀k_A: pubK A. ∀k'_A: prvK k_A.
∀n_A: nonce. ∀n_B: nonce.
net ({n_A, n_B}_k_A), L (A, B, k_B, n_A)
→ net ({n_B}_k_B)

Interpretation of L
➢ Rule invocation
 ▪ Implementation detail
 ▪ Control flow
➢ Local state of role
 ▪ Explicit view
 ▪ Important for DOS

I. Cervesato: The Logical Meeting Point of MSR and PA
I. Cervesato: The Logical Meeting Point of MSR and PA

Process-Based

∀A: princ.
∀B: princ. ∀k_B: pubK B.

• → ∃n_A: nonce.

net (\{n_A, A\}_kB),

(∀k_A: pubK A. ∀k_A': prvK k_A. ∀n_B: nonce.

net (\{n_A, n_B\}_KA) → net (\{n_B\}_kB))

- Succinct
- Continuation-passing style
 - Rule asserts what to do next
 - Lexical control flow
- State is implicit
 - Abstract

A \rightarrow B: \{n_A, A\}_kB
B \rightarrow A: \{n_A, n_B\}_KA
A \rightarrow B: \{n_B\}_kB
NSPK in Process Algebra

\[\forall A: \text{princ.} \]
\[\forall B: \text{princ.} \forall k_B: \text{pubK } B. \]
\[\forall k_A: \text{pubK } A. \forall k'_A: \text{prvK } k_A. \forall n_B: \text{nonce.} \]
\[\forall n_A: \text{nonce.} \]
\[\text{net } \{n_A, A\}_{k_B}. \]
\[\text{net } \{n_A, n_B\}_k A. \]
\[\text{net } \{n_B\}_{k_B}. \]

- **Same structure!**
 - Not a coincidence
 - MSR 3 very close to Process Algebra
 - \(\omega \)-multiset encodings of \(\pi \)-calculus and Join Calculus

- **MSR 3 is promising middle-ground for relating**
 - State-based
 - Process-based
 - representations of a problem
State-Based vs. Process-Based

- **State-based languages**
 - Multiset Rewriting
 - NRL Prot. Analyzer, CAPSL/CIL, Paulson’s approach, ...

- **Process-based languages**
 - Process Algebra
 - Strand spaces, spi-calculus, ...

 - Independent communicating threads
I. Cervesato: The Logical Meeting Point of MSR and PA

MSR 3 Bridges the Gap

- Difficult to go from one to the other
 - Different paradigms

State vs. process distance

MSR 3

Other distance

State ↔ Process translation done once and for all in MSR 3
Conclusions

• ω-multisets
 - Logical foundation of multiset rewriting
 - Relationship with process algebras
 - Unified logical view
 - Better understanding of where we are
 - Hint about where to go next

• MSR 3.0
 - Language for security protocol specification
 - Succinct representations
 - Simpler specifications
 - Economy of reasoning
 - Bridge between
 - State-based representation
 - Process-based representation