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Abstract

This is a note to explain kernel ridge regression.

1 Ridge Regression

Possibly the most elementary algorithm that can be kernelized is ridge regression. Here our
task is to find a linear function that models the dependencies between covariates{xi} and
response variables{yi}, both continuous. The classical way to do that is to minimize the
quadratic cost,

C(w) =
1
2

∑

i

(yi −wT xi)2 (1)

However, if we are going to work in feature space, where we replacexi → Φ(xi), there
is an clear danger that we overfit. Hence we need to regularize. This is an important topic
that will return in future classes.

A simple yet effective way to regularize is to penalize the norm ofw. This is sometimes
called “weight-decay”. It remains to be determined how to chooseλ. The most used
algorithm is to use cross validation or leave-one-out estimates. The total cost function
hence becomes,

C =
1
2

∑

i

(yi −wT xi)2 +
1
2
λ||w||2 (2)

which needs to be minimized. Taking derivatives and equating them to zero gives,

∑

i

(yi −wT xi)xi = λw ⇒ w =

(
λI +

∑

i

xixT
i

)−1

∑

j

yjxj


 (3)

We see that the regularization term helps to stabilize the inverse numerically by bounding
the smallest eigenvalues away from zero.

2 Kernel Ridge Regression

We now replace all data-cases with their feature vector:xi → Φi = Φ(xi). In this case
the number of dimensions can be much higher, or even infinitely higher, than the number



of data-cases. There is a neat trick that allows us to perform the inverse above in smallest
space of the two possibilities, either the dimension of the feature space or the number of
data-cases. The trick is given by the following identity,

(P−1 + BT R−1B)−1BT R−1 = PBT (BPBT + R)−1 (4)

Now note that ifB is not square, the inverse is performed in spaces of different dimension-
ality. To apply this to our case we defineΦ = Φai andy = yi. The solution is then given
by,

w = (λId + ΦΦT )−1Φy = Φ(ΦT Φ + λIn)−1y (5)
This equation can be rewritten as:w =

∑
i αiΦ(xi) with α = (ΦT Φ + λIn)−1y. This is

an equation that will be a recurrent theme and it can be interpreted as: The solutionw must
lie in the span of the data-cases, even if the dimensionality of the feature space is much
larger than the number of data-cases. This seems intuitively clear, since the algorithm is
linear in feature space.

We finally need to show that we never actually need access to the feature vectors, which
could be infinitely long (which would be rather impractical). What we need in practice is
is the predicted value for anew test point,x. This is computed by projecting it onto the
solutionw,

y = wT Φ(x) = y(ΦT Φ + λIn)−1ΦT Φ(x) = y(K + λIn)−1κ(x) (6)

whereK(bxi, bxj) = Φ(xi)T Φ(xj) andκ(x) = K(xi,x). The important message here is
of course that we only need access to the kernelK.

We can now add bias to the whole story by adding one more, constant feature toΦ: Φ0 = 1.
The value ofw0 then represents the bias since,

wT Φ =
∑

a

waΦai + w0 (7)

Hence, the story goes through unchanged.

3 An alternative derivation

Instead of optimizing the cost function above we can introduce Lagrange multipliers into
the problem. This will have the effect that the derivation goes along similar lines as the
SVM case. We introduce new variables,ξi = yi −wT Φi and rewrite the objective as the
following constrained QP,

minimize−w, ξ LP =
∑

i

ξ2
i

subject to yi −wT Φi = ξi ∀i (8)

||w|| ≤ B (9)

This leads to the Lagrangian,

LP =
∑

i

ξ2
i +

∑

i

βi[yi −wT Φi − ξi] + λ(||w||2 −B2) (10)

Two of the KKT conditions tell us that at the solution we have:

2ξi = βi ∀i, 2λw =
∑

i

βiΦi (11)

Plugging it back into the Lagrangian, we obtain the dual Lagrangian,

LD =
∑

i

(−1
4
β2

i + βiyi)− 1
4λ

∑

ij

(βiβjKij)− λB2 (12)



We now redefineαi = βi/(2λ) to arrive at the following dual optimization problem,

maximize−α, λ −λ2
∑

i

α2
i +2λ

∑

i

αiyi−λ
∑

ij

αiαjKij−λB2 s.t.λ ≥ 0 (13)

Taking derivatives w.r.t.α gives precisely the solution we had already found,

α∗i = (K + λI)−1y (14)

Formally we also need to maximize overλ. However, different choices ofλ correspond
to different choices forB. Eitherλ or B should be chosen using cross-validation or some
other measure, so we could as well varyλ in this process.

One big disadvantage of the ridge-regression is that we don’t have sparseness in theα vec-
tor, i.e. there is no concept of support vectors. This is useful because when we test a new
example, we only have to sum over the support vectors which is much faster than summing
over the entire training-set. In the SVM the sparseness was born out of the inequality con-
straints because the complementary slackness conditions told us that either if the constraint
was inactive, then the multiplierαi was zero. There is no such effect here.


