
Ant Colony
Optimization

Marco Dorigo and Thomas Stützle

Ant Colony Optimization Marco Dorigo and Thomas Stützle

The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that

these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to

develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest

paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic

technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception

to practical applications, including descriptions of many available ACO algorithms and their uses.

The book first describes the translation of observed ant behavior into working optimization algorithms. The ant

colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed

by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book

surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioin-

formatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The

authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends

with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony

Optimizationwill be of interest to academic and industry researchers, graduate students, and practitioners who wish to

learn how to implement ACO algorithms.

Marco Dorigo is research director of the IRIDIA lab at the Université Libre de Bruxelles and the inventor of the ant

colony optimization metaheuristic for combinatorial optimization problems. He has received the Marie Curie Excellence

Award for his research work on ant colony optimization and ant algorithms. He is the coauthor of Robot Shaping(MIT

Press, 1998) and Swarm Intelligence. Thomas Stützle is Assistant Professor in the Computer Science Department at

Darmstadt University of Technology.

A Bradford Book

Marco Dorigo and Thomas Stützle impressively demonstrate that the importance of ant behavior reaches far beyond the

sociobiological domain. Ant Colony Optimizationpresents the most successful algorithmic techniques to be developed

on the basis of ant behavior. This book will certainly open the gates for new experimental work on decision making,

division of labor, and communication; moreover, it will also inspire all those studying patterns of self-organization.Ž

Bert Hölldobler, Professor of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Germany

Inspired by the remarkable ability of social insects to solve problems, Dorigo and Stützle introduce highly creative new

technological design principles for seeking optimized solutions to extremely difficult real-world problems, such as network

routing and task scheduling. This is essential reading not only for those working in artificial intelligence and optimization,

but for all of us who find the interface between biology and technology fascinating.Ž

Iain D. Couzin, Princeton University and University of Oxford

The MIT Press Massachusetts Institute of Technology Cambridge, Massachusetts 02142 http://mitpress.mit.edu 0-262-04219-3

,!7IA2G2-aecbjc!:t;K;k;K;k

A
nt C

olony O
ptim

ization
D

origo and S
tützle

•

•

Ant Colony.qxd 6/9/04 12:15 PM Page 1

Ant Colony Optimization

Ant Colony Optimization

Marco Dorigo
Thomas Stützle

A Bradford Book
The MIT Press
Cambridge, Massachusetts
London, England

6 2004 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical
means (including photocopying, recording, or information storage and retrieval) without permission in
writing from the publisher.

This book was set in Times New Roman on 3B2 by Asco Typesetters, Hong Kong. Printed and bound in
the United States of America.

Library of Congress Cataloging-in-Publication Data

Dorigo, Marco.
Ant colony optimization / Marco Dorigo, Thomas Stützle.

p. cm.
••A Bradford book.••
Includes bibliographical references (p.).
ISBN 0-262-04219-3 (alk. paper)
1. Mathematical optimization. 2. Ants…Behavior…Mathematical models. I. Stu¨tzle, Thomas. II. Title.
QA402.5.D64 2004
519.6„dc22 2003066629

10 9 8 7 6 5 4 3 2 1

To Serena and Roberto
To Maria José and Alexander

Contents

Preface ix
Acknowledgments xiii

1 From Real to Arti“cial Ants 1
1.1 Ants• Foraging Behavior and Optimization 1
1.2 Toward Arti“cial Ants 7
1.3 Arti“cial Ants and Minimum Cost Paths 9
1.4 Bibliographical Remarks 21
1.5 Things to Remember 22
1.6 Thought and Computer Exercises 23

2 The Ant Colony Optimization Metaheuristic 25
2.1 Combinatorial Optimization 25
2.2 The ACO Metaheuristic 33
2.3 How Do I Apply ACO? 38
2.4 Other Metaheuristics 46
2.5 Bibliographical Remarks 60
2.6 Things to Remember 61
2.7 Thought and Computer Exercises 63

3 Ant Colony Optimization Algorithms for the Traveling Salesman
Problem 65
3.1 The Traveling Salesman Problem 65
3.2 ACO Algorithms for the TSP 67
3.3 Ant System and Its Direct Successors 69
3.4 Extensions of Ant System 76
3.5 Parallel Implementations 82
3.6 Experimental Evaluation 84
3.7 ACO Plus Local Search 92
3.8 Implementing ACO Algorithms 99
3.9 Bibliographical Remarks 114
3.10 Things to Remember 117
3.11 Computer Exercises 117

4 Ant Colony Optimization Theory 121
4.1 Theoretical Considerations on ACO 121
4.2 The Problem and the Algorithm 123
4.3 Convergence Proofs 127

4.4 ACO and Model-Based Search 138
4.5 Bibliographical Remarks 149
4.6 Things to Remember 150
4.7 Thought and Computer Exercises 151

5 Ant Colony Optimization forN P -Hard Problems 153
5.1 Routing Problems 153
5.2 Assignment Problems 159
5.3 Scheduling Problems 167
5.4 Subset Problems 181
5.5 Application of ACO to Other N P -Hard Problems 190
5.6 Machine Learning Problems 204
5.7 Application Principles of ACO 211
5.8 Bibliographical Remarks 219
5.9 Things to Remember 220
5.10 Computer Exercises 221

6 AntNet: An ACO Algorithm for Data Network Routing 223
6.1 The Routing Problem 223
6.2 The AntNet Algorithm 228
6.3 The Experimental Settings 238
6.4 Results 243
6.5 AntNet and Stigmergy 252
6.6 AntNet, Monte Carlo Simulation, and Reinforcement Learning 254
6.7 Bibliographical Remarks 257
6.8 Things to Remember 258
6.9 Computer Exercises 259

7 Conclusions and Prospects for the Future 261
7.1 What Do We Know about ACO? 261
7.2 Current Trends in ACO 263
7.3 Ant Algorithms 271

Appendix: Sources of Information about the ACO Field 275
References 277
Index 301

viii Contents

Preface

Ants exhibit complex social behaviors that have long since attracted the attention of
human beings. Probably one of the most noticeable behaviors visible to us is the for-
mation of so-called ant streets. When we were young, several of us may have stepped
on such an anthighwayor may have placed some obstacle in its way just to see how
the ants would react to such disturbances. We may have also wondered where these
ant highways lead to or even how they are formed. This type of question may be-
come less urgent for most of us as we grow older and go to university, studying other
subjects like computer science, mathematics, and so on. However, there are a con-
siderable number of researchers, mainly biologists, who study the behavior of ants in
detail.

One of the most surprising behavioral patterns exhibited by ants is the ability of
certain ant species to “nd what computer scientists call shortest paths. Biologists
have shown experimentally that this is possible by exploiting communication based
only on pheromones, an odorous chemical substance that ants may deposit and
smell. It is this behavioral pattern that inspired computer scientists to develop algo-
rithms for the solution of optimization problems. The “rst attempts in this direction
appeared in the early •90s and can be considered as rather ••toy•• demonstrations,
though important for indicating the general validity of the approach. Since then,
these and similar ideas have attracted a steadily increasing amount of research„and
ant colony optimization (ACO) is one outcome of these research e¤orts. In fact,
ACO algorithms are the most successful and widely recognized algorithmic tech-
niques based on ant behaviors. Their success is evidenced by the extensive array of dif-
ferent problems to which they have been applied, and moreover by the fact that ACO
algorithms are for many problems among the currently top-performing algorithms.

Overview of the Book

This book introduces the rapidly growing “eld of ant colony optimization. It gives a
broad overview of many aspects of ACO, ranging from a detailed description of the
ideas underlying ACO, to the de“nition of how ACO can generally be applied to a
wide range of combinatorial optimization problems, and describes many of the avail-
able ACO algorithms and their main applications. The book is divided into seven
chapters and is organized as follows.

Chapter 1 explains how ants “nd shortest paths under controlled experimental
conditions, and illustrates how the observation of this behavior has been translated
into working optimization algorithms.

In chapter 2, the ACO metaheuristic is introduced and put into the general context
of combinatorial optimization. Basic notions of complexity theory, such asN P -
hardness, are given and other major metaheuristics are brie”y overviewed.

Chapter 3 is dedicated to the in-depth description of all the major ACO algorithms
currently available in the literature. This description, which is developed using the
traveling salesman problem as a running example, is completed by a guide to imple-
menting the algorithms. A short description of a basic C implementation, as well
aspointers to the public software available at www.aco-metaheuristic.org/aco-code/,
is given.

Chapter 4 reports on what is currently known about the theory of ACO algorithms.
In particular, we prove convergence for a speci“c class of ACO algorithms and we
discuss the formal relation between ACO and other methods such as stochastic gra-
dient descent, mutual-information-maximizing input clustering, and cross-entropy.

Chapter 5 is a survey of current work exploiting ACO to solve a variety of combi-
natorial optimization problems. We cover applications to routing, assignment, sched-
uling, and subset problems, as well as a number of other problems in such diverse
“elds as machine learning and bioinformatics. We also give a few ••application prin-
ciples,•• that is, criteria to be followed when attacking a new problem using ACO.

Chapter 6 is devoted to the detailed presentation of AntNet, an ACO algorithm
especially designed for the network routing problem, that is, the problem of building
and maintaining routing tables in a packet-switched telecommunication network.

Finally, chapter 7 summarizes the main achievements of the “eld and outlines some
interesting directions for future research.

Each chapter of the book (with the exception of the last chapter) ends with the
following three sections: bibliographical remarks, things to remember, and exercises.

9 Bibliographical remarks, a kind of short annotated bibliography, contains pointers
to further literature on the topics discussed in the chapter.
9 Things to remember is a bulleted list of the important points discussed in the
chapter.
9 Exercises come in two forms, thought exercises and computer exercises, depending
on the material presented in the chapter.

Finally, there is a long list of references about ACO algorithms that gives a lot of
pointers to more in-depth literature.

Overall, this book can be read easily by anyone with a college-level scienti“c back-
ground. The use of mathematics is rather limited throughout, except for chapter 4,
which requires some deeper knowledge of probability theory. However, we assume

x Preface

that the reader is familiar with some basic notions of graph theory, programming,
and probabilities. The book is intended primarily for (1) academic and industry
researchers in operations research, arti“cial intelligence, and computational intelli-
gence; (2) practitioners willing to learn how to implement ACO algorithms to solve
combinatorial optimization problems; and (3) graduate and last-year undergraduate
students in computer science, management science, operations research, and arti“cial
intelligence.

Preface xi

Acknowledgments

The “eld of ant colony optimization has been shaped by a number of people who
have made valuable contributions to the development and success of the “eld.

First of all, we wish to acknowledge the contributions of Alberto Colorni and
Vittorio Maniezzo. Alberto and Vittorio collaborated closely with Marco Dorigo
in the de“nition of the “rst ACO algorithms while Marco was a doctoral student
at Politecnico di Milano, in Milan, Italy. Without their contribution, there would
probably be no ACO research to describe. Our thoughts turn next to Jean-Louis
Deneubourg and Luca Maria Gambardella. Jean-Louis, a recognized expert in the
study of social insects, provided the inspiration (as described in chapter 1 of this
book) for the ACO work. Luca, a computer scientist with a strong feeling for prac-
tical applications, was the one who most helped in transforming ACO from a fasci-
nating toy into a competitive metaheuristic.

More generally, many researchers have written papers on ACO (applications,
theoretical results, and so on). This book is clearly in”uenced by their research and
results, which are reported in chapter 5.

Several colleagues and students of ours have checked large parts of the book. We
appreciated very much the comments by Maria Blesa, Christian Blum, Julia Handl,
Elena Marchiori, Martin Middendorf, Michael Samples, and Tommaso Schiavinotto.
In addition, we would like to thank those colleagues who checked parts of the book:
Mauro Birattari, Roberto Cordone, Gianni Di Caro, Karl Do¨rner, Alex Freitas,
Luca Maria Gambardella, Jose Antonio Gámez, Walther Gutjahr, Richard Hartl,
Holger Hoos, Joshua Knowles, Guillermo Leguizamo´n, John Levine, Helena
Lourenço, M ax Manfrin, Vittorio Maniezzo, Daniel Merkle, José Miguel Puerta,
Marc Reimann, Andrea Roli, Alena Shmygelska, Krzysztof Socha, Christine Solnon,
and Mark Zlochin. Our special thanks goes to Cristina Versino, for providing the ant
drawings used in “gures 1.7 and 3.2, and to all the people at the IRIDIA and Intel-
lectics groups, for providing a stimulating scienti“c and intellectual environment in
which to work.

People at MIT Press, and in particular Robert Prior, have greatly helped to make
this project successful. We thank all of them, and in particular Bob, for gently
pressing us to deliver the draft of this book.

Final thanks go to our families, in particular to our wives Laura and Maria Jose´,
who have constantly provided the comfortable environment conducive to success-
fully completing this book, and to our children Luca, Alessandro, and Alexander,
who give meaning to our lives.

Marco Dorigo acknowledges support from the Belgian FNRS, of which he is a
senior research associate. The writing of this book has been indirectly supported by
the numerous institutions who funded the research of the two authors through the

years. We wish to thank the Politecnico di Milano, Milan, Italy; the International
Computer Science Institute, Berkeley, California; IDSIA, Lugano, Switzerland; the
Intellectics Group at Darmstadt University of Technology, Germany; the IRIDIA
group at the Université Libre de Bruxelles, Brussels, Belgium; and the Improving
Human Potential programme of the CEC, who supported this work through grant
HPRN-CT-1999-00106 to the Research Training Network ••Metaheuristics Net-
work.•• The information provided is the sole responsibility of the authors and does
not re”ect the community•s opinion. The community is not responsible for any use
that might be made of data appearing in this publication.

xiv Acknowledgments

1From Real to Arti“cial Ants

I am lost! Where is the line?!
„ A Bug•s Life, Walt Disney, 1998

Ant colonies, and more generally social insect societies, are distributed systems that,
in spite of the simplicity of their individuals, present a highly structured social orga-
nization. As a result of this organization, ant colonies can accomplish complex tasks
that in some cases far exceed the individual capabilities of a single ant.

The “eld of ••ant algorithms•• studies models derived from the observation of real
ants• behavior, and uses these models as a source of inspiration for the design of
novel algorithms for the solution of optimization and distributed control problems.

The main idea is that the self-organizing principles which allow the highly coordi-
nated behavior of real ants can be exploited to coordinate populations of arti“cial
agents that collaborate to solve computational problems. Several di¤erent aspects of
the behavior of ant colonies have inspired di¤erent kinds of ant algorithms. Ex-
amples are foraging, division of labor, brood sorting, and cooperative transport. In
all these examples, ants coordinate their activities viastigmergy, a form of indirect
communication mediated by modi“cations of the environment. For example, a for-
aging ant deposits a chemical on the ground which increases the probability that
other ants will follow the same path. Biologists have shown that many colony-level
behaviors observed in social insects can be explained via rather simple models in
which only stigmergic communication is present. In other words, biologists have
shown that it is often su‹cient to consider stigmergic, indirect communication to
explain how social insects can achieve self-organization. The idea behind ant algo-
rithms is then to use a form ofarti“cial stigmergy to coordinate societies of arti“cial
agents.

One of the most successful examples of ant algorithms is known as ••ant colony
optimization,•• or ACO, and is the subject of this book. ACO is inspired by the for-
aging behavior of ant colonies, and targets discrete optimization problems. This in-
troductory chapter describes how real ants have inspired the de“nition of arti“cial
ants that can solve discrete optimization problems.

1.1 Ants• Foraging Behavior and Optimization

The visual perceptive faculty of many ant species is only rudimentarily developed
and there are ant species that are completely blind. In fact, an important insight of
early research on ants• behavior was that most of the communication among indi-
viduals, or between individuals and the environment, is based on the use of chemicals
produced by the ants. These chemicals are calledpheromones. This is di¤erent from,

for example, what happens in humans and in other higher species, whose most im-
portant senses are visual or acoustic. Particularly important for the social life of some
ant species is thetrail pheromone. Trail pheromone is a speci“c type of pheromone
that some ant species, such asLasius nigeror the Argentine ant Iridomyrmex humilis
(Goss, Aron, Deneubourg, & Pasteels, 1989), use for marking paths on the ground,
for example, paths from food sources to the nest. By sensing pheromone trails for-
agers can follow the path to food discovered by other ants. This collective trail-laying
and trail-following behavior whereby an ant is in”uenced by a chemical trail left by
other ants is the inspiring source of ACO.

1.1.1 Double Bridge Experiments

The foraging behavior of many ant species, as, for example,I. humilis (Goss et al.,
1989), Linepithema humile, and Lasius niger(Bonabeau et al., 1997), is based on in-
direct communication mediated by pheromones. While walking from food sources to
the nest and vice versa, ants deposit pheromones on the ground, forming in this way
a pheromone trail. Ants can smell the pheromone and they tend to choose, proba-
bilistically, paths marked by strong pheromone concentrations.

The pheromone trail-laying and -following behavior of some ant species has been
investigated in controlled experiments by several researchers. One particularly bril-
liant experiment was designed and run by Deneubourg and colleagues (Deneubourg,
Aron, Goss, & Pasteels, 1990; Goss et al., 1989), who used a double bridge connect-
ing a nest of ants of the Argentine ant speciesI. humilis and a food source. They ran
experiments varying the ratior ¼ ll=ls between the length of the two branches of the
double bridge, wherell was the length of the longer branch andls the length of the
shorter one.

In the “rst experiment the bridge had two branches of equal length (r ¼ 1; see
“gure 1.1a). At the start, ants were left free to move between the nest and the food
source and the percentage of ants that chose one or the other of the two branches
were observed over time. The outcome was that (see also “gure 1.2a), although in the
initial phase random choices occurred, eventually all the ants used the same branch.
This result can be explained as follows. When a trial starts there is no pheromone on
the two branches. Hence, the ants do not have a preference and they select with the
same probability any of the branches. Yet, because of random ”uctuations, a few
more ants will select one branch over the other. Because ants deposit pheromone
while walking, a larger number of ants on a branch results in a larger amount of
pheromone on that branch; this larger amount of pheromone in turn stimulates more
ants to choose that branch again, and so on until “nally the ants converge to one

2 Chapter 1 From Real to Arti“cial Ants

Nest Food600

15 cm

Nest Food1 2

(a) (b)

Figure 1.1
Experimental setup for the double bridge experiment. (a) Branches have equal length. (b) Branches have
di¤erent length. Modi“ed from Goss et al. (1989).

0

50

100

0-20 20-40 40-60 60-80 80-100

 % of traffic on one of the branches

0

50

100

0-20 20-40 40-60 60-80 80-100

(a) (b)

%
 o

f e
xp

er
im

en
ts

%
 o

f e
xp

er
im

en
ts

 % of traffic on the short branch

Figure 1.2
Results obtained withIridomyrmex humilisants in the double bridge experiment. (a) Results for the case in
which the two branches have the same length (r ¼ 1); in this case the ants use one branch or the other in
approximately the same number of trials. (b) Results for the case in which one branch is twice as long as
the other (r ¼ 2); here in all the trials the great majority of ants chose the short branch. Modi“ed from
Goss et al. (1989).

1.1 Ants• Foraging Behavior and Optimization 3

single path. Thisautocatalytic or positive feedbackprocess is, in fact, an example of
a self-organizing behavior of the ants: a macroscopic pattern (corresponding to the
convergence toward one branch) emerges out of processes and interactions taking
place at a ••microscopic•• level (Camazine, Deneubourg, Franks, Sneyd, Theraulaz,
& Bonabeau, 2001; Haken, 1983; Nicolis & Prigogine, 1977). In our case the con-
vergence of the ants• paths to one branch represents the macroscopic collective be-
havior, which can be explained by the microscopic activity of the ants, that is, by the
local interactions among the individuals of the colony. It is also an example of stig-
mergic communication (for a de“nition of stigmergy, see section 1.4): ants coordinate
their activities, exploiting indirect communication mediated by modi“cations of the
environment in which they move.

In the second experiment, the length ratio between the two branches was set to
r ¼ 2 (Goss et al., 1989), so that the long branch was twice as long as the short one
(“gure 1.1b shows the experimental setup). In this case, in most of the trials, after
some time all the ants chose to use only the short branch (see “gure 1.2b). As in the
“rst experiment, ants leave the nest to explore the environment and arrive at a deci-
sion point where they have to choose one of the two branches. Because the two
branches initially appear identical to the ants, they choose randomly. Therefore, it
can be expected that, on average, half of the ants choose the short branch and the
other half the long branch, although stochastic oscillations may occasionally favor
one branch over the other. However, this experimental setup presents a remarkable
di¤erence with respect to the previous one: because one branch is shorter than the
other (see “gure 1.1b), the ants choosing the short branch are the “rst to reach the
food and to start their return to the nest. But then, when they must make a decision
between the short and the long branch, the higher level of pheromone on the short
branch will bias their decision in its favor. Therefore, pheromone starts to accumu-
late faster on the short branch, which will eventually be used by all the ants because
of the autocatalytic process described previously. When compared to the experiment
with the two branches of equal length, the in”uence of initial random ”uctuations
is much reduced, and stigmergy, autocatalysis, anddi¤erential path lengthare the
main mechanisms at work. Interestingly, it can be observed that, even when the long
branch is twice as long as the short one, not all the ants use the short branch, but a
small percentage may take the longer one. This may be interpreted as a type of ••path
exploration.••

It is also interesting to see what happens when the ant colony is o¤ered, after
convergence, a new shorter connection between the nest and the food. This situation
was studied in an additional experiment in which initially only the long branch was

4 Chapter 1 From Real to Arti“cial Ants

o¤ered to the colony and after 30 minutes the short branch was added (see “gure
1.3). In this case, the short branch was only selected sporadically and the colony was
trapped on the long branch. This can be explained by the high pheromone concen-
tration on the long branch and by the slow evaporation of pheromone. In fact, the
great majority of ants choose the long branch because of its high pheromone con-
centration, and this autocatalytic behavior continues to reinforce the long branch,
even if a shorter one appears. Pheromone evaporation, which could favor explora-
tion of new paths, is too slow: the lifetime of the pheromone is comparable to the
duration of a trial (Goss et al., 1989), which means that the pheromone evaporates
too slowly to allow the ant colony to ••forget•• the suboptimal path to which they
converged so that the new and shorter one can be discovered and ••learned.••

1.1.2 A Stochastic Model

Deneubourg and colleagues (Deneubourg et al., 1990; Goss et al., 1989) proposed a
simple stochastic model that adequately describes the dynamics of the ant colony as
observed in the double bridge experiment. In this model,c ants per second cross the
bridge in each direction at a constant speed ofv cm/s, depositing one unit of phero-
mone on the branch. Given the lengthsls and ll (in cm) of the short and of the long
branch, an ant choosing the short branch will traverse it ints ¼ ls=v seconds, while
an ant choosing the long branch will user � ts seconds, wherer ¼ ll=ls.

The probability piaðtÞthat an ant arriving at decision point i Af 1; 2g (see “gure
1.1b) selects brancha Af s; lg, where s and l denote the short and long branch re-
spectively, at instantt is set to be a function of the total amount of pheromonej iaðtÞ

Nest Food

30 min

Nest Food

(a)

0

50

100

0-20 20-40 40-60 60-80 80-100

% of traffic on the short branch

(b)

%
 o

f e
xp

er
im

en
ts

Figure 1.3
In this experiment initially only the long branch was o¤ered to the colony. After 30 minutes, when a stable
pheromone trail has formed on the only available branch, a new shorter branch is added. (a) The initial
experimental setup and the new situation after 30 minutes, when the short branch was added. (b) In the
great majority of the experiments, once the short branch is added the ants continue to use the long branch.

1.1 Ants• Foraging Behavior and Optimization 5

on the branch, which is proportional to the number of ants that used the branch until
time t. For example, the probability pisðtÞof choosing the short branch is given by

pisðtÞ ¼
ðts þ j isðtÞÞa

ðts þ j isðtÞÞa þ ðts þ j il ðtÞÞa
; ð1:1Þ

where the functional form of equation (1.1), as well as the valuea ¼ 2, was derived
from experiments on trail-following (Deneubourg et al., 1990);pil ðtÞ is computed
similarly, with pisðtÞ þ pil ðtÞ ¼1.

This model assumes that the amount of pheromone on a branch is proportional to
the number of ants that used the branch in the past. In other words, no pheromone
evaporation is considered by the model (this is in accordance with the experimental
observation that the time necessary for the ants to converge to the shortest path has
the same order of magnitude as the mean lifetime of the pheromone (Goss et al.,
1989; Beckers, Deneubourg, & Goss, 1993)). The di¤erential equations that describe
the evolution of the stochastic system are

dj is=dt ¼ c pjsðt � tsÞ þ c pisðtÞ; ði ¼ 1; j ¼ 2; i ¼ 2; j ¼ 1Þ; ð1:2Þ

dj il =dt ¼ c pjl ðt � r � tsÞ þ c pil ðtÞ; ði ¼ 1; j ¼ 2; i ¼ 2; j ¼ 1Þ: ð1:3Þ

Equation (1.2) can be read as follows: the instantaneous variation, at timet, of
pheromone on branchs and at decision pointi is given by the ants• ”owc , assumed
constant, multiplied by the probability of choosing the short branch at decision point
j at time t � ts plus the ants• ”ow multiplied by the probability of choosing the short
branch at decision pointi at time t. The constantts represents a time delay, that is,
the time necessary for the ants to traverse the short branch. Equation (1.3) expresses
the same for the long branch, except that in this case the time delay is given byr � ts.

The dynamic system de“ned by these equations was simulated using the Monte
Carlo method (Liu, 2001). In “gure 1.4, we show the results of two experiments
consisting of 1000 simulations each and in which the branch length ratio was set to
r ¼ 1 and to r ¼ 2. It can be observed that when the two branches have the same
length (r ¼ 1) the ants converge toward the use of one or the other of the branches
with equal probability over the 1000 simulations. Conversely, when one branch is
twice as long as the other (r ¼ 2), then in the great majority of experiments most of
the ants choose the short branch (Goss et al., 1989).

In this model the ants deposit pheromone both on their forward and their back-
ward paths. It turns out that this is a necessary behavior to obtain convergence of the
ant colony toward the shortest branch. In fact, if we consider a model in which ants
deposit pheromone only during the forward or only during the backward trip, then

6 Chapter 1 From Real to Arti“cial Ants

the result is that the ant colony is unable to choose the shortest branch. The obser-
vation of real ant colonies has con“rmed that ants that deposit pheromone only
when returning to the nest are unable to “nd the shortest path between their nest and
the food source (Deneubourg, 2002).

1.2 Toward Arti“cial Ants

The double bridge experiments show clearly that ant colonies have a built-in opti-
mization capability: by the use of probabilistic rules based on local information they
can “nd the shortest path between two points in their environment. Interestingly, by
taking inspiration from the double bridge experiments, it is possible to design arti“-
cial ants that, by moving on a graph modeling the double bridge, “nd the shortest
path between the two nodes corresponding to the nest and to the food source.

As a “rst step toward the de“nition of arti“cial ants, consider the graph of “gure
1.5a, which is a model of the experimental setup shown in “gure 1.1b. The graph
consists of two nodes (1 and 2, representing the nest and the food respectively) that
are connected by a short and a long arc (in the example the long arc isr times longer
than the short arc, wherer is an integer number). Additionally, we assume the time
to be discreteðt ¼ 1; 2; . . .Þ and that at each time step each ant moves toward a
neighbor node at constant speed of one unit of length per time unit. By doing so, ants
add one unit of pheromone to the arcs they use. Ants move on the graph by choosing
the path probabilistically: pisðtÞis the probability for an ant located in nodei at time
t to choose the short path, andpil ðtÞthe probability to choose the long path. These
probabilities are a function of the pheromone trailsj ia that ants in nodei ði Af 1; 2gÞ

0

50

100

0-20 20-40 40-60 60-80 80-100 0-20 20-40 40-60 60-80 80-100

(a) (b)
% of traffic on the short branch % of traffic on one of the branches

%
 o

f e
xp

er
im

en
ts

%
 o

f e
xp

er
im

en
ts

0

50

100

Figure 1.4
Results of 1000 Monte Carlo simulations of the model given by equations (1.1), (1.2), and (1.3), with
c ¼ 0:5 ant per second. Ants were counted between the 501st and 1000th ant crossing the bridge. (a) The
ratio between the long and the short branch was set tor ¼ 1. (b) The ratio between the long and the short
branch was set tor ¼ 2. Modi“ed from Goss et al. (1989).

1.2 Toward Arti“cial Ants 7

encounter on the brancha, ða Af s; lgÞ:

pisðtÞ ¼
½j isðtÞ�a

½j isðtÞ�a þ ½j il ðtÞ�a
; pil ðtÞ ¼

½j il ðtÞ�a

½j isðtÞ�a þ ½j il ðtÞ�a
: ð1:4Þ

Trail update on the two branches is performed as follows:

j isðtÞ ¼j isðt � 1Þ þ pisðt � 1Þmiðt � 1Þ þ pjsðt � 1Þmjðt � 1Þ;

ði ¼ 1; j ¼ 2; i ¼ 2; j ¼ 1Þ; ð1:5Þ

j il ðtÞ ¼j il ðt � 1Þ þ pil ðt � 1Þmiðt � 1Þ þ pjl ðt � rÞmjðt � rÞ;

ði ¼ 1; j ¼ 2; i ¼ 2; j ¼ 1Þ; ð1:6Þ

wheremiðtÞ, the number of ants on nodei at time t, is given by

miðtÞ ¼pjsðt � 1Þmjðt � 1Þ þ pjl ðt � rÞmjðt � rÞ;

ði ¼ 1; j ¼ 2; i ¼ 2; j ¼ 1Þ: ð1:7Þ

This model di¤ers from the one presented in section 1.1.2 in two important
aspects:

9 It considers the average behavior of the system, and not the stochastic behavior of
the single ants.
9 It is a discrete time model, whereas the previous one was a continuous time model;
accordingly, it uses di¤erence instead of di¤erential equations.

1

2

1

2

3

(a) (b)

Figure 1.5
The graphs are two equivalent models of the experimental setup shown in “gure 1.1b. In both cases, ants
move from the nest to the food and back either via a short or via a long branch. (a) In this model the long
branch isr times longer than the shorter one. An ant entering the long branch updates the pheromone on it
r time units later. (b) In this model, each arc of the graph has the same length, and a longer branch is
represented by a sequence of arcs. Here, for example, the long branch is twice as long as the short branch.
Pheromone updates are done with one time unit delay on each arc.

8 Chapter 1 From Real to Arti“cial Ants

Another way of modeling the experimental apparatus of “gure 1.1b with a graph
is shown in “gure 1.5b. In this model each arc of the graph has the same length, and
a longer branch is represented by a sequence of arcs. In the “gure, for example, the
long branch is twice as long as the short branch. Pheromone updates are done with
one time unit delay on each arc. The two models are equivalent from a computa-
tional point of view, yet the second model permits an easier algorithmic implemen-
tation when considering graphs with many nodes.

Simulations run with this discrete time model give results very similar to those
obtained with the continuous time model of equations (1.1) to (1.3). For example, by
setting the number of ants to twenty, the branch length ratio tor ¼ 2, and the pa-
rameter a to 2, the system converges rather rapidly toward the use of the short
branch (see “gure 1.6).

1.3 Arti“cial Ants and Minimum Cost Paths

In the previous section we have shown that a set of di¤erence equations can repro-
duce rather accurately the mean behavior of the continuous model of Deneubourg
et al. Yet, our goal is to de“ne algorithms that can be used to solve minimum cost
problems on more complicated graphs than those representing the double bridge ex-
periment (see, e.g., the graph in “gure 1.7).

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of iterations

C
ho

ic
e

pr
ob

ab
ili

tie
s p(1,2)

p(1,3)
p(2,3)

Figure 1.6
Result of the simulation of the model described by equations (1.4) through (1.7). The “gure shows the
probability of choosing the three branches of the graph in “gure 1.5b. After a short transitory period the
probabilities of choosing the long branch (ðpð1; 3Þ1 p1l and (pð2; 3Þ1 p2l) become vanishingly small (in
the graph they are superimposed after a few iterations from the start), while the probability of choosing
the short branch (pð1; 2Þ1 p1s 1 p2s) tends to 1. Note that probabilities are symmetric:pði; jÞ ¼pðj; iÞ.
Parameter settings:a ¼ 2, r ¼ 2, t ¼ 100.

1.3 Arti“cial Ants and Minimum Cost Paths 9

With this goal in mind, let us consider a static, connected graphG ¼ ðN; AÞ, where
N is the set ofn ¼ jNj nodes andA is the set of undirected arcs connecting them. The
two points between which we want to establish a minimum cost path are called
source and destination nodes, as typically done in the literature on minimum cost
path problems (when the cost of arcs is given by their length, the minimum cost
path problem is the same as the shortest-path problem); sometimes, in analogy to
the shortest-path…“nding behavior of real ants, we will also call themnestand food
source.

Unfortunately, if we try to solve the minimum cost path problem on the graphG
using arti“cial ants whose behavior is a straightforward extension of the behavior of
the ants described in the previous section, the following problem arises: the ants,
while building a solution, may generate loops. As a consequence of the forward
pheromone trail updating mechanism, loops tend to become more and more attrac-
tive and ants can get trapped in them. But even if an ant can escape such loops, the
overall pheromone trail distribution becomes such that short paths are no longer
favored and the mechanism that in the simpler double bridge situation made the ant
choose the shortest path with higher probability does not work anymore. Because
this problem is due to forward pheromone trail updating, it might seem that the
simplest solution to this problem would be the removal of the forward updating
mechanism: in this way ants would rely only on backward updating. Still, this is not
a solution: as was said before (see section 1.1.2, but see also exercise 1.1 at the end of
this chapter), if the forward update is removed the system does not work anymore,
not even in the simple case of the double bridge experiment.

We therefore need to extend the capabilities of the arti“cial ants in a way that,
while retaining the most important characteristics of real ants, allows them to solve
minimum cost path problems on generic graphs. In particular, arti“cial ants are

Source

Destination

Figure 1.7
Ants build solutions, that is, paths from a source to a destination node.

10 Chapter 1 From Real to Arti“cial Ants

given a limited form of memory in which they can store the partial paths they have
followed so far, as well as the cost of the links they have traversed. Via the use of
memory, the ants can implement a number of useful behaviors that allow them to
e‹ciently build solutions to the minimum cost path problem. These behaviors are (1)
probabilistic solution construction biased by pheromone trails, without forward
pheromone updating; (2) deterministic backward path with loop elimination and
with pheromone updating; and (3) evaluation of the quality of the solutions gen-
erated and use of the solution quality in determining the quantity of pheromone to
deposit (note that while in the simple case of minimum cost path search an estimate
of the solution quality can be made by the ant also during the solution construction,
this is not necessarily true in other problems, in which there may not exist an easy
way to evaluate partial solutions).

Additionally, we show that by taking into account pheromone evaporation,
which was not necessary to explain real ants• behavior, performance can be greatly
improved.

In the following we brie”y explain how the above-mentioned ants• behavior, as
well as pheromone evaporation, is implemented in an algorithm that we call Simple-
ACO (S-ACO for short). It should be noted that, although it represents a signi“cant
step toward the de“nition of an e‹cient algorithm for the solution of minimum cost
problems on graphs, S-ACO should be taken for what it is: a didactic tool to explain
the basic mechanisms underlying ACO algorithms.

Probabilistic forward ants and solution construction.S-ACO ants can be thought of
as having two working modes:forward and backward. They are in forward mode
when they are moving from the nest toward the food, and they are in backward
mode when they are moving from the food back to their nest. Once an ant in forward
mode reaches its destination, it switches to backward mode and starts its travel back
to the source. In S-ACO, forward ants build a solution by choosing probabilistically
the next node to move to among those in the neighborhood of the graph node on
which they are located. (Given a graphG ¼ ðN; AÞ, two nodesi; j AN are neighbors
if there exists an arcði; jÞAA.) The probabilistic choice is biased by pheromone trails
previously deposited on the graph by other ants. Forward ants do not deposit any
pheromone while moving. This, together with deterministic backward moves, helps
in avoiding the formation of loops.

Deterministic backward ants and pheromone update.The use of an explicit memory
allows an ant to retrace the path it has followed while searching the destination
node. Moreover, S-ACO ants improve the system performance by implementing
loop elimination. In practice, before starting to move backward on the path they

1.3 Arti“cial Ants and Minimum Cost Paths 11

memorized while searching the destination node (i.e., the forward path), S-ACO ants
eliminate any loops from it. While moving backward, S-ACO ants leave pheromone
on the arcs they traverse.

Pheromone updates based on solution quality.In S-ACO the ants memorize the
nodes they visited during the forward path, as well as the cost of the arcs traversed if
the graph is weighted. They can therefore evaluate the cost of the solutions they
generate and use this evaluation to modulate the amount of pheromone they deposit
while in backward mode. Making pheromone update a function of the generated
solution quality can help in directing future ants more strongly toward better solu-
tions. In fact, by letting ants deposit a higher amount of pheromone on short paths,
the ants• path searching is more quickly biased toward the best solutions. Interest-
ingly, the dependence of the amount of pheromone trail deposit on the solution
quality is also present in some ant species: Beckers et al. (1993) found that in the ant
speciesLasius niger the ants returning from rich food sources tend to drop more
pheromone than those returning from poorer food sources.

Pheromone evaporation. In real ant colonies, pheromone intensity decreases over
time because of evaporation. In S-ACO evaporation is simulated by applying an ap-
propriately de“ned pheromone evaporation rule. For example, arti“cial pheromone
decay can be set to a constant rate. Pheromone evaporation reduces the in”uence of
the pheromones deposited in the early stages of the search, when arti“cial ants can
build poor-quality solutions. Although in the experiments run by Deneubourg and
colleagues (Deneubourg et al., 1990; Goss et al., 1989) pheromone evaporation did
not play any noticeable role, it can be very useful for arti“cial ant colonies, as we will
show in the following sections.

1.3.1 S-ACO

We now present the details of the S-ACO algorithm which adapts the real ants• be-
havior to the solution of minimum cost path problems on graphs. To each arcði; jÞ
of the graph G ¼ ðN; AÞwe associate a variablet ij called arti“cial pheromone trail,
shortened to pheromone trail in the following. Pheromone trails are read and written
by the ants. The amount (intensity) of a pheromone trail is proportional to the util-
ity, as estimated by the ants, of using that arc to build good solutions.

Ants• Path-Searching Behavior
Each ant builds, starting from the source node, a solution to the problem by applying
a step-by-step decision policy. At each node, local information stored on the node
itself or on its outgoing arcs is read (sensed) by the ant and used in a stochastic way
to decide which node to move to next. At the beginning of the search process, a

12 Chapter 1 From Real to Arti“cial Ants

constant amount of pheromone (e.g.,t ij ¼ 1, Eði; jÞAA) is assigned to all the arcs.
When located at a nodei an ant k uses the pheromone trailst ij to compute the
probability of choosing j as next node:

pk
ij ¼

t a
ijP

l AN k
i

t a
il

; if j AN k
i ;

0; if j BN k
i ;

8
><

>:
ð1:8Þ

where N k
i is the neighborhood of antk when in node i. In S-ACO the neighbor-

hood of a node i contains all the nodes directly connected to nodei in the graph
G ¼ ðN; AÞ, except for the predecessor of nodei (i.e., the last node the ant visited
before moving to i). In this way the ants avoid returning to the same node they
visited immediately before nodei. Only in caseN k

i is empty, which corresponds to
a dead end in the graph, nodei•s predecessor is included intoN k

i . Note that this
decision policy can easily lead to loops in the generated paths (recall the graph of
“gure 1.7).

An ant repeatedly hops from node to node using this decision policy until it even-
tually reaches the destination node. Due to di¤erences among the ants• paths, the
time step at which ants reach the destination node may di¤er from ant to ant (ants
traveling on shorter paths will reach their destinations faster).

Path Retracing and Pheromone Update
When reaching the destination node, the ant switches from the forward mode to the
backward mode and then retraces step by step the same path backward to the source
node. An additional feature is that, before starting the return trip, an ant eliminates
the loops it has built while searching for its destination node. The problem of loops is
that they may receive pheromone several times when an ant retraces its path back-
ward to deposit pheromone trail, leading to the problem of self-reinforcing loops.
Loop elimination can be done by iteratively scanning the node identi“ers position by
position starting from the source node: for the node at thei-th position, the path is
scanned starting from the destination node until the “rst occurrence of the node is
encountered, say, at positionj (it always holds that i a j because the scanning pro-
cess stops at positioni at the latest). If we havej > i, the subpath from positioni þ 1
to position j corresponds to a loop and can be eliminated. The scanning process is
visualized in “gure 1.8. The example also shows that our loop elimination procedure
does not necessarily eliminate the largest loop. In the example, the loop 3-4 -5 -3 of
length 3 is eliminated. Yet, the longest loop in this example, the loop 5-3 -2 -8 -5 of
length 4, is not eliminated because it is no longer present after eliminating the “rst
loop. In general, if the path contains nested loops, the “nal loop-free path will

1.3 Arti“cial Ants and Minimum Cost Paths 13

depend on the sequence in which the loops are eliminated. In S-ACO, loop elimina-
tion is implemented so that loops are eliminated in the same order as they are created.

During its return travel to the source thek-th ant deposits an amountDt k of
pheromone on arcs it has visited. In particular, if antk is in the backward mode and
it traverses the arcði; jÞ, it changes the pheromone valuet ij as follows:

t ij t ij þ Dt k: ð1:9Þ

By this rule an ant using the arc connecting nodei to node j increases the proba-
bility that forthcoming ants will use the same arc in the future.

An important aspect is the choice ofDt k. In the simplest case, this can be the same
constant value for all the ants. In this case, only thedi¤erential path lengthworks in
favor of the detection of short paths: ants which have detected a shorter path can
deposit pheromone earlier than ants traveling on a longer path. In addition to the
deterministic backward pheromone trail update, the ants may also deposit an
amount of pheromone trail which is a function of the path length„the shorter the
path the more pheromone is deposited by an ant. Generally, we require the amount
of pheromone deposited by an ant to be a nonincreasing function of the path length.

Pheromone Trail Evaporation
Pheromone trail evaporation can be seen as an exploration mechanism that avoids
quick convergence of all the ants toward a suboptimal path. In fact, the decrease in

 0 - 1 - 3 - 4 - 5 - 3 - 2 - 8 - 5 - 6 - 9

First node to scan

Source Destination

Scanning direction

.

.

 0 - 1 - 3 - 4 - 5 - 3 - 2 - 8 - 5 - 6 - 9

Scanning for node 3

Source Destination

First occurrence of node
3 when scanning from
destination node

Eliminated loop

 0 - 1 - 3 - 2 - 8 - 5 - 6 - 9

Final loop free path

Figure 1.8
Illustration of the scanning process for loop elimination.

14 Chapter 1 From Real to Arti“cial Ants

pheromone intensity favors the exploration of di¤erent paths during the whole search
process. In real ant colonies, pheromone trails also evaporate, but, as we have seen,
evaporation does not play an important role in real ants• shortest-path “nding. The
fact that, on the contrary, pheromone evaporation seems to be important in arti“cial
ants is probably due to the fact that the optimization problems tackled by arti“cial
ants are much more complex than those real ants can solve. A mechanism like
evaporation that, by favoring the forgetting of errors or of poor choices done in the
past, allows a continuous improvement of the ••learned•• problem structure seems
therefore to be necessary for arti“cial ants. Additionally, arti“cial pheromone evap-
oration also plays the important function of bounding the maximum value achiev-
able by pheromone trails.

Evaporation decreases the pheromone trails with exponential speed. In S-ACO,
the pheromone evaporation is interleaved with the pheromone deposit of the ants.
After each ant k has moved to a next node according to the ants• search behavior
described earlier, pheromone trails are evaporated by applying the following equa-
tion to all the arcs:

t ij ð 1 � r Þt ij ; Eði; jÞAA; ð1:10Þ

where r Að0; 1� is a parameter. After pheromone evaporation has been applied to
all arcs, the amount of pheromoneDt k is added to the arcs. We call an iteration
of S-ACO a complete cycle involving ants• movement, pheromone evaporation, and
pheromone deposit.

1.3.2 Experiments with S-ACO

We have run experiments to evaluate the importance of some aspects of S-ACO:
evaporation, number of ants, and type of pheromone update (function of the solution
quality or not).

In the experiments presented in the following the behavior of S-ACO is judged
with respect to convergence toward the minimum cost (shortest) path, in a way sim-
ilar to what was done for the outcome of the simulation experiments of Deneubourg
et al. and for the experiments with the discrete model introduced in section 1.2. In-
formally, by convergence we mean that, as the algorithm runs for an increasing
number of iterations, the ants• probability of following the arcs of a particular path
increases„in the limit to a point where the probability of selecting the arcs of this
path becomes arbitrarily close to 1 while for all the others, it becomes arbitrarily
close to 0.

The experiments have been run using two simple graphs: the double bridge of
“gure 1.5b and the more complex graph calledextended double bridgegiven in “gure

1.3 Arti“cial Ants and Minimum Cost Paths 15

1.9. This second graph is designed in such a way that converging to the minimum
cost path is not a trivial task for S-ACO. The di‹culty of the graph is given by the
fact that, in order to “nd the minimum cost path, an ant has to make a number of
••correct•• choices and if some of these choices are wrong, the ant generates sub-
optimal paths. To understand why, consider the graph of “gure 1.9: ants exiting the
source node have to choose between the loop-free, but worse than optimal, upper
path of the graph, and the set of paths in the lower part of the same graph that con-
tains two optimal paths of length 5, as well as many longer loop-free paths and in“-
nitely many, much longer ••loopy•• paths. There is a trade-o¤ between converging
toward the use of an ••easy•• but suboptimal path, and searching for the optimal path
in a region of the search space where suboptimal paths can easily be generated. In
other words, to obtain convergence to the optimal solutions the ants need to choose
the lower part of the graph, but then the greater number of decisions to be taken
makes converging to the minimum cost path a di‹cult task.

Note that the choice of judging the algorithm using convergence as de“ned above
instead of using more standard performance indices, such as the time or the number
of iterations necessary to “nd the optimal solution, is consistent with our goals, that
is, studying and understanding the relationship between design choices and the algo-

Source

Destination

Figure 1.9
Extended double bridge. An ant starting in the source node can choose between the upper and the lower
parts of the graph. The upper part consists of a single path of length 8 leading directly to the destination
node. Di¤erently, the lower part of the graph consists of a set of paths (which includes many paths shorter
than eight steps) and the ant has many decisions to do before reaching the destination node. Therefore,
ants choosing the upper part will always “nd a path of length 8, while ants choosing the lower part may
“nd paths shorter than 8, but they may also enter loops and generate very long paths.

16 Chapter 1 From Real to Arti“cial Ants

rithm•s behavior. In fact, such a study requires working on simple graphs like those
discussed above so that simulation times remain reasonably short and the behavior
of ants can be easily observed. But in simple graphs the shortest path is always found
very quickly because of the large number of ants compared to the relatively small
search space. Therefore, a performance index based on the time (or number of iter-
ations) necessary to “nd the optimal solution would not be very meaningful. In fact,
convergence as de“ned above, by requiring that all the ants do use the same path, is a
more reasonable index for our purposes.

On the contrary, as we will see in the forthcoming chapters, when attacking more
complex problems likeN P -hard optimization problems or routing in dynamic net-
works, the way experimental results are judged is di¤erent. InN P -hard optimization
problems the main goal is to “nd quickly very high-quality solutions and therefore
we are interested mainly in the solution quality of the best solution(s) found by the
ACO algorithm. In dynamic networks routing the algorithm has to be able to react
rapidly to changing conditions and to maintain exploration capabilities so that it can
e¤ectively evaluate alternative paths which, due to the dynamics of the problem, may
become more desirable; in both cases we will need a di¤erent de“nition of algorithm
convergence.

Number of Ants and Types of Pheromone Update: Experiments with the Double Bridge
We ran a “rst set of experiments in which we studied the in”uence that the number of
ants used and the way the amount of pheromone to be deposited is determined by
ants have on the behavior of S-ACO. The experiments were run using the double
bridge (see “gure 1.5b). The choice of the double bridge was due to the desire of
comparing the results obtained with S-ACO to those obtained with the model of real
ants• behavior described in section 1.2. Note that a major di¤erence between that
model and S-ACO is that equations (1.4) through (1.7) describe the average behavior
of the system, whereas in S-ACO a “xed number of ants move autonomously on the
graph. Intuitively, an increasing number of ants in S-ACO should approximate better
and better the average behavior given by equations (1.4) through (1.7).

In the following we report the results of two experiments:

1. Run S-ACO with di¤erent values for the numberm of ants and with ants depos-
iting a constant amount of pheromone on the visited arcs [i.e.,Dt k ¼ constant in
equation (1.9)].

2. Same as in 1. above, except that the ants deposit an amount of pheromone which
is inversely proportional to the length of the path they have found (i.e.,Dt k ¼ 1=L k,
whereL k is the length of antk•s path).

1.3 Arti“cial Ants and Minimum Cost Paths 17

For each experiment we ran 100 trials and each trial was stopped after each ant
had moved 1000 steps. Evaporation [see equation (1.10)] was set tor ¼ 0, and the
parameter a [see equation (1.8)] was set to 2, as in equation (1.1) of Deneubourg
et al. approximating real ants• behavior. At the end of the trial we checked whether
the pheromone trail was higher on the short or on the long path. In table 1.1, which
gives the results of the two experiments, we report the percentage of trials in which
the pheromone trail was higher on the long path. We found that, for the given pa-
rameter settings, S-ACO showed convergence behavior after 1000 ant steps so that
the reported percentage is signi“cant for understanding the algorithm behavior.

Let us focus “rst on the results of experiment 1. For a small number of ants (up
to 32), S-ACO converged relatively often to the longer path. This is certainly due to
”uctuations in the path choice in the initial iterations of the algorithm which can lead
to a strong reinforcement of the long path. Yet, with an increasing number of ants,
the number of times we observed this behavior decreased drastically, and for a large
number of ants (here 512) we never observed convergence to the long path in any of
the 100 trials. The experiments also indicate that, as could be expected, S-ACO per-
forms poorly when only one ant is used: the number of ants has to be signi“cantly
larger than one to obtain convergence to the short path.

The results obtained in experiment 2 with pheromone updates based on solution
quality are much better. As can be observed in table 1.1, S-ACO converged to the
long path far less frequently than when pheromone updates were independent of the
solution quality. With only one ant, S-ACO converged to the long path in only 18
out of 100 trials, which is signi“cantly less than in experiment 1, and with eight ants
or more it always converged to the short path.

In additional experiments, we examined the in”uence of the parametera of equa-
tion (1.8) on the convergence behavior of S-ACO, in particular investigating the
cases wherea was changed in step sizes of 0.25 from 1 to 2. Again, the behavior was
dependent on whether pheromone updates based on solution quality were used or

Table 1.1
Percentage of trials in which S-ACO converged to the long path (100 independent trials for varying values
of m, with a ¼ 2 and r ¼ 0)

m 1 2 4 8 16 32 64 128 256 512

without path length 50 42 26 29 24 18 3 2 1 0
with path length 18 14 8 0 0 0 0 0 0 0

Column headings give the numberm of ants in the colony. The “rst row shows results obtained performing
pheromone updates without considering path length; the second row reports results obtained performing
pheromone updates proportional to path length.

18 Chapter 1 From Real to Arti“cial Ants

not. In the “rst case we found that increasinga had a negative e¤ect on the con-
vergence behavior, while in the second case the results were rather independent of
the particular value of a. In general, we found that, for a “xed number of ants, the
algorithm tended to converge to the shortest path more often whena was close to 1.
This is intuitively clear because large values ofa tend to amplify the in”uence of
initial random ”uctuations. If, by chance, the long path is initially selected by the
majority of ants, then the search of the whole colony is quickly biased toward it. This
happens to a lower extent when the value ofa is close to 1.

These results show that, as in the case of real ants, in S-ACO bothautocatalysis
and di¤erential path lengthare at work to favor the emergence of short paths. While
the results with S-ACO indicate that di¤erential path length alone can be enough to
let S-ACO converge to the optimal solution on small graphs, they also show that
relying on this e¤ect as the main driving force of the algorithm comes at the price of
having to use large colony sizes, which results in long simulation times. In addition,
the e¤ectiveness of the di¤erential path length e¤ect strongly decreases with increas-
ing problem complexity. This is what is shown by the experiments reported in the
next subsection.

Pheromone Evaporation: Experiments with the Extended Double Bridge
In a second set of experiments, we studied the in”uence that pheromone trail evapo-
ration has on the convergence behavior of S-ACO. Experiments were run using the
extended double bridge graph (see “gure 1.9).

In these experiments the ants deposit an amount of pheromone that is the inverse
of their path length (i.e.,Dt k ¼ 1=L k); also, before depositing it, they eliminate loops
using the procedure described in “gure 1.8.

To evaluate the behavior of the algorithm we observe the development of the path
lengths found by the ants. In particular, we plot the moving averages of the path
lengths after loop elimination (moving averages are calculated using the 4� m most
recent paths found by the ants, wherem is the number of ants). In other words, in the
graph of “gure 1.10 a point is plotted each time an ant has completed a journey from
the source to the destination and back (the number of journeys is on thex-axis), and
the corresponding value on they-axis is given by the length of the above-mentioned
moving average after loop elimination.

We ran experiments with S-ACO and di¤erent settings for the evaporation rate
r Af 0; 0:01; 0:1g (a ¼ 1 and m ¼ 128 in all experiments). Ifr ¼ 0, no pheromone
evaporation takes place. Note that an evaporation rate ofr ¼ 0:1 is rather large,
because evaporation takes place at each iteration of the S-ACO algorithm: after ten
iterations, which corresponds to the smallest number of steps that an ant needs to

1.3 Arti“cial Ants and Minimum Cost Paths 19

build the shortest path and to come back to the source, roughly 65% of the pher-
omone on each arc evaporates, while withr ¼ 0:01 this evaporation is reduced to
around 10%.

Figure 1.10 gives the observed moving averages. Although the graphs only show
results of a single run of the algorithm, they are representative of the typical algo-
rithm behavior. If no evaporation is used, the algorithm does not converge, which
can be seen by the fact that the moving average has approximately the value 7.5,
which does not correspond to the length of any path (with these parameter settings,
this result typically does not change if the run lasts a much higher number of itera-
tions). With pheromone evaporation, the behavior of S-ACO is signi“cantly di¤er-
ent. After a short transitory phase, S-ACO converges to a single path: either the
shortest one (the moving average takes the value 5 forr ¼ 0:01) or the path of length
6 for r ¼ 0:1. A closer examination of the results revealed that in both cases at con-
vergence all the ants had built loop-free paths of the indicated length.

In further experiments with S-ACO on this graph we made the following general
observations:

9 Without pheromone updates based on solution quality, S-ACO performance is
much worse. In particular, the algorithm converges very often to the suboptimal so-

4.5

5

5.5

6

6.5

7

7.5

8

8.5

100 1000 10000 100000

M
ov

in
g

av
er

ag
e

of
 th

e
pa

th
 le

ng
th

Number of shortest paths found

� = 0
� = 0.01

� = 0.1

Figure 1.10
The graph plots the moving averages (given on they-axis) of the ants• path length for the graph of “gure
1.9 as a function of the number of completed paths (given on thex-axis). We give plots for not using
evaporation (r ¼ 0), low evaporation (r ¼ 0:01), and high evaporation (r ¼ 0:1). The trials were stopped
after 5000 iterations;a ¼ 1 and m ¼ 128.

20 Chapter 1 From Real to Arti“cial Ants

lution of length 8; the larger the parametersa or r , the faster S-ACO converges to
this suboptimal solution.
9 The pheromone evaporation rater can be critical. In particular, we observed that
S-ACO often converged to suboptimal paths when evaporation was set to a value
that was too high. For example, in “fteen trials withr set to 0:2, S-ACO converged
once to a path of length 8, once to a path of length 7, and twice to a path of length 6.
Settingr to 0.01 S-ACO converged to the shortest path in all trials.
9 Large values ofa generally result in a worse behavior of S-ACO because they ex-
cessively emphasize the initial random ”uctuations.

Discussion
We have seen that in real ant colonies the emergence of high-level patterns like
shortest paths is only possible through the interaction of a large number of individ-
uals. It is interesting that experimental results show that the same is true to a large
extent for S-ACO: the use of a colony of ants is important to exploit the di¤erential
path length e¤ect and to increase the robustness of the algorithm and reduce its de-
pendence on parameter settings. As we have seen, a colony size larger than one is
necessary to solve even simple problems like the double bridge.

In general, we noticed that as problems become more complex, the parameter set-
tings of S-ACO become increasingly important to obtain convergence to the optimal
solution. In particular, the experimental results presented above support the follow-
ing conclusions: (1) the di¤erential path length e¤ect, although important, is not
enough to allow the e¤ective solution of large optimization problems; (2) pheromone
updates based on solution quality are important for fast convergence; (3) large values
for parametera lead to a strong emphasis of initial, random ”uctuations and to bad
algorithm behavior; (4) the larger the number of ants, the better the convergence be-
havior of the algorithm, although this comes at the cost of longer simulation times;
and (5) pheromone evaporation is important when trying to solve more complex
problems. These observations will be of importance in the following chapters, where
design decisions will be made both to de“ne the ACO metaheuristic and to apply it
to a multitude of di¤erent discrete optimization problems.

1.4 Bibliographical Remarks

The term stigmergywas introduced by Grasse´ to describe a form of indirect com-
munication mediated by modi“cations of the environment that he observed in the
workers caste of two species of termites,Bellicositermes natalensisand Cubitermessp.

1.4 Bibliographical Remarks 21

The original de“nition of stigmergy (see Grasse´, 1959, p. 79), was: ••Stimulation of
workers by the performance they have achieved.••

Termite nest building is the typical example of stigmergy, and is also the original
example used by Grasse´ to introduce the concept. Termite workers build their nest
using soil pellets, which they impregnate with a di¤using chemical substance called
pheromone. They start nest construction (Grasse´, 1959) by randomly depositing pel-
lets on the ground. The deposits of soil pellets stimulate workers to accumulate more
material on top of them through a positive feedback mechanism, since the accumu-
lation of material reinforces the attraction of deposits by means of the di¤using
pheromone emitted by the pellets (Bruinsma, 1979). This process works only if the
density of the termites is above a given threshold. In fact, if the density is too low,
pheromones are not added quickly enough and the positive feedback mechanism is
inhibited by pheromone evaporation.

Although Grasséintroduced the term stigmergy to explain the behavior of termite
societies, the same term has later been used to indicate indirect communication
mediated by modi“cations of the environment that can be observed also in other so-
cial insects. As we have seen, the foraging behavior of ant colonies described in this
chapter is an example of stigmergy: ants stimulate other ants by modifying the envi-
ronment via pheromone trail updating. A brief history of the notion of stigmergy can
be found in Theraulaz & Bonabeau (1999).

1.5 Things to Remember

9 Deneubourg and colleagues (Deneubourg et al., 1990; Goss et al., 1989) have
shown in controlled experimental conditions that foraging ants can “nd the shortest
path between their nest and a food source by marking the path they follow with a
chemical called pheromone.
9 The foraging behavior of ant colonies can be replicated in simulation and inspires a
class of ant algorithms known as ••ant colony optimization•• (ACO). ACO, the sub-
ject of this book, is currently one of the most successful examples of ant algorithms.
9 In experiments with foraging ants, it was shown that the pheromone evaporation
rate is so slow compared to the time necessary for the ant colony to converge to the
short path that, for modeling purposes, it can be neglected. When considering arti“-
cial ants things are di¤erent. Experimental results show that on very simple graphs,
like the ones modeling the double bridge or the extended double bridge setups,
pheromone evaporation is also not necessary. On the contrary, it improves the algo-
rithm•s performance in “nding good solutions to the minimum cost path problem on
more complex graphs.

22 Chapter 1 From Real to Arti“cial Ants

9 Biologists have found that stigmergy is a useful concept to help explain the self-
organizing capabilities of social insects (Theraulaz & Bonabeau, 1999; Dorigo,
Bonabeau, & Theraulaz, 2000a).

1.6 Thought and Computer Exercises

Exercise 1.1 Prove by hand calculation that arti“cial ants using only forward (or
only backward) pheromone update do not converge toward the common use of the
minimum cost path in the double bridge experiment.

Exercise 1.2 Prove by hand calculation that, if arti“cial ants are given the capabil-
ity (through the use of memory) to retrace their path to the destination node (recall
section 1.3), then they are able to “nd the minimum cost path in the double bridge
experiment even when they use only backward pheromone update.

Exercise 1.3 Implement a computer program that simulates the arti“cial ants in the
double bridge experiment. You can do this in two ways: either by numerically solv-
ing equations (1.4) through (1.7), in this way obtaining the expected behavior of the
system, or by running simulations. Is there any di¤erence in the results? What hap-
pens if you only use a few ants in the simulation?

Exercise 1.4 Using the program above, study what happens when you change the
a and r parameters. In particular, if you seta ¼ 1, does the probability of choosing
the short branch still converge to 1? And how do the convergence properties of the
algorithm change when increasing the branch length ratior?

Exercise 1.5 An alternative model of the double bridge experiment to the one pre-
sented in section 1.2 [equations (1.4)…(1.7)] is the following. Let the amount of pher-
omone on a branch be proportional to the number of ants that used the branch in the
past and letmsðtÞand mlðtÞbe the numbers of ants that have used the short and the
long branches after a total oft ants have crossed the bridge, withmsðtÞ þ mlðtÞ ¼t.
The probability psðtÞwith which the ðt þ 1Þ-th ant chooses the short branch can then
be written as

psðtÞ ¼
msðtÞ

a

msðtÞ
a þ ml ðtÞ

a ¼ 1 � pl ðtÞ: ð1:11Þ

The number of ants choosing the short branch is given by

msðt þ 1Þ ¼
msðtÞ þ 1; if qa psðtÞ;
msðtÞ; otherwise;

�
ð1:12Þ

1.6 Thought and Computer Exercises 23

and the number of ants choosing the long branch by

ml ðt þ 1Þ ¼
mlðtÞ þ 1; if q > plðtÞ;
mlðtÞ; otherwise;

�
ð1:13Þ

whereq is a uniform random number drawn from the interval½0; 1�.
Run Monte Carlo simulations of the dynamic system de“ned by the above equa-

tions and compare the results with those obtained in the “rst and second computer
exercise.

Exercise 1.6 The ants• path-marking and foraging behavior can also be studied in
unconstrained settings. Consider the following experimental setup: a squared envi-
ronment contains three food sources and one nest. Ants leave the nest to search for
food and, once food has been found, they go back to the nest depositing a pher-
omone trail on the ground. When they are looking for food, ants move stochastically
using a probabilistic rule biased by pheromones they sense in the environment (see
also Resnick, 1994). Implement a program which simulates the system described
above and study how the ants• performance changes for di¤erent implementation
choices. For example, you can study di¤erent forms of the probabilistic rules used by
the ants, di¤erent ways of depositing pheromone on the ground (only while searching
for food, only when going back to the nest, in both cases), di¤erent pheromone
evaporation rates, and so on. (Hint : You may want to use Mitchel Resnick•s Star-
Logo programming language, available at education.mit.edu/starlogo/).

Exercise 1.7 Develop an outline for the implementation of S-ACO (section 1.3.1).
Consider the following issues:

9 How do you build a structure which represents the individual ants?
9 How do you represent the graph, the pheromone trails, and the heuristic informa-
tion?
9 How do you implement the solution construction policy?
9 How do you implement loop elimination?
9 How do you implement pheromone update?

Once you have implemented the algorithm, run it on a number of graphs. What are
your experiences with the algorithm? How do you judge the quality and the conver-
gence of the algorithm? Would you use this algorithm for attacking large minimum
cost path problems? (Consider that there exist algorithms, such as the one proposed
by Dijkstra [1959], that solve the minimum cost (shortest) path problem inOðn2Þ).

24 Chapter 1 From Real to Arti“cial Ants

2The Ant Colony Optimization Metaheuristic

A metaheuristic refers to a master strategy that guides and modi“es other heuristics to produce
solutions beyond those that are normally generated in a quest for local optimality.
„ Tabu Search, Fred Glover and Manuel Laguna, 1998

Combinatorial optimization problems are intriguing because they are often easy to
state but very di‹cult to solve. Many of the problems arising in applications are
N P -hard, that is, it is strongly believed that they cannot be solved to optimality
within polynomially bounded computation time. Hence, to practically solve large
instances one often has to use approximate methods which return near-optimal solu-
tions in a relatively short time. Algorithms of this type are loosely calledheuristics.
They often use some problem-speci“c knowledge to either build or improve solutions.

Recently, many researchers have focused their attention on a new class of algo-
rithms, called metaheuristics. Ametaheuristicis a set of algorithmic concepts that
can be used to de“ne heuristic methods applicable to a wide set of di¤erent problems.
The use of metaheuristics has signi“cantly increased the ability of “nding very high-
quality solutions to hard, practically relevant combinatorial optimization problems
in a reasonable time.

A particularly successful metaheuristic is inspired by the behavior of real ants.
Starting with Ant System, a number of algorithmic approaches based on the very
same ideas were developed and applied with considerable success to a variety of
combinatorial optimization problems from academic as well as from real-world
applications. In this chapter we introduce ant colony optimization, a metaheuristic
framework which covers the algorithmic approach mentioned above. The ACO
metaheuristic has been proposed as a common framework for the existing applica-
tions and algorithmic variants of a variety of ant algorithms. Algorithms that “t
into the ACO metaheuristic framework will be called in the following ACO
algorithms.

2.1 Combinatorial Optimization

Combinatorial optimization problems involve “nding values for discrete variables
such that the optimal solution with respect to a given objective function is found.
Many optimization problems of practical and theoretical importance are of combi-
natorial nature. Examples are the shortest-path problems described in the previous
chapter, as well as many other important real-world problems like “nding a mini-
mum cost plan to deliver goods to customers, an optimal assignment of employees
to tasks to be performed, a best routing scheme for data packets in the Internet, an

optimal sequence of jobs which are to be processed in a production line, an alloca-
tion of ”ight crews to airplanes, and many more.

A combinatorial optimization problem is either amaximization or a minimization
problem which has associated a set of problem instances. The termproblemrefers to
the general question to be answered, usually having several parameters or variables
with unspeci“ed values. The terminstancerefers to a problem with speci“ed values
for all the parameters. For example, the traveling salesman problem (TSP), de“ned
in section 2.3.1, is the general problem of “nding a minimum cost Hamiltonian cir-
cuit in a weighted graph, while a particular TSP instance has a speci“ed number of
nodes and speci“ed arc weights.

More formally, an instance of a combinatorial optimization problemP is a triple
ðS; f ; WÞ, where S is the set of candidate solutions, f is the objective functionwhich
assigns an objective function valuef ðsÞto each candidate solutions AS, and W is a
set of constraints. The solutions belonging to the set~SS J S of candidate solutions
that satisfy the constraintsW are calledfeasible solutions. The goal is to “nd a glob-
ally optimal feasible solutions� . For minimization problems this consists in “nding a
solution s� A ~SS with minimum cost, that is, a solution such thatf ðs� Þa f ðsÞfor all
s A ~SS; for maximization problems one searches for a solution with maximum objec-
tive value, that is, a solution with f ðs� Þb f ðsÞfor all s A ~SS. Note that in the follow-
ing we focus on minimization problems and that the obvious adaptations have to be
made if one considers maximization problems.

It should be noted that an instance of a combinatorial optimization problem is
typically not speci“ed explicitly by enumerating all the candidate solutions (i.e., the
setS) and the corresponding cost values, but is rather represented in a more concise
mathematical form (e.g., shortest-path problems are typically de“ned by a weighted
graph).

2.1.1 Computational Complexity

A straightforward approach to the solution of combinatorial optimization problems
would be exhaustive search, that is, the enumeration of all possible solutions and the
choice of the best one. Unfortunately, in most cases, such a naive approach becomes
rapidly infeasible because the number of possible solutions grows exponentially with
the instance sizen, where the instance size can be given, for example, by the num-
ber of binary digits necessary to encode the instance. For some combinatorial opti-
mization problems, deep insight into the problem structure and the exploitation of
problem-speci“c characteristics allow the de“nition of algorithms that “nd an opti-
mal solution much quicker than exhaustive search does. In other cases, even the best
algorithms of this kind cannot do much better than exhaustive search.

26 Chapter 2 The Ant Colony Optimization Metaheuristic

When attacking a combinatorial optimization problem it is useful to know how
di‹cult it is to “nd an optimal solution. A way of measuring this di‹culty is given
by the notion of worst-case complexity. Worst-case complexity can be explained as
follows (see also box 2.1): a combinatorial optimization problemP is said to have
worst-case complexityOðgðnÞÞif the best algorithm known for solving P “nds an
optimal solution to any instance ofP having sizen in a computation time bounded
from above by const� gðnÞ.

In particular, we say that P is solvable in polynomial time if the maximum
amount of computing time necessary to solve any instance of sizen of P is bounded
from above by a polynomial in n. If k is the largest exponent of such a polynomial,
then the combinatorial optimization problem is said to be solvable inOðnkÞtime.

Although some important combinatorial optimization problems have been shown
to be solvable in polynomial time, for the great majority of combinatorial problems
no polynomial bound on the worst-case solution time could be found so far. For
these problems the run time of the best algorithms known increases exponentially
with the instance size and, consequently, so does the time required to “nd an optimal
solution. A notorious example of such a problem is the TSP.

An important theory that characterizes the di‹culty of combinatorial problems is
that of N P -completeness. This theory classi“es combinatorial problems in two main
classes: those that are known to be solvable in polynomial time, and those that are
not. The “rst are said to betractable, the latter intractable.

Combinatorial optimization problems as de“ned above correspond to what are
usually calledsearch problems. Each combinatorial optimization problem P has an

Box 2.1
Worst-Case Time Complexity and Intractability

The time complexity functionof an algorithm for a given problem P indicates, for each possible
input size n, the maximum time the algorithm needs to “nd a solution to an instance of that size.
This is often calledworst-case time complexity.

The worst-case time complexity of an algorithm is often formalized using theOð�Þnotation. Let
gðnÞand hðnÞbe functions from the positive integers to the positive reals. A functiongðnÞis said to
beOðhðnÞÞif two positive constantsconstand n0 exist such thatgðnÞa const� hðnÞfor all nb n0. In
other words, theOð�Þnotation gives asymptotic upper bounds on the worst-case time complexity of
an algorithm.

An algorithm is said to be apolynomial time algorithmif its time complexity function is OðgðnÞÞ
for some polynomial function gð�Þ. If an algorithm has a time complexity function that cannot be
bounded by a polynomial, it is called anexponential time algorithm. Note that this includes also
functions such asnlog n, which are sometimes referred to as subexponential; in any case, sub-
exponential functions grow faster than any polynomial. A problem is said to beintractable if there
is no polynomial time algorithm capable of solving it.

2.1 Combinatorial Optimization 27

associateddecision problemde“ned as follows: givenP , that is, the triple ðS; f ; WÞ,
and a parameter%, does a feasible solutions A ~SS exist such that f ðsÞa %, in caseP
was a minimization problem? It is clear that solving the search version of a combi-
natorial problem implies being able to give the solution of the corresponding decision
problem, while the opposite is not true in general. This means thatP is at least as
hard to solve as the decision version ofP and proving that the decision version is
intractable implies intractability of the original search problem.

The theory of N P -completeness distinguishes between two classes of problems of
particular interest: the classP for which an algorithm outputs in polynomial time the
correct answer (••yes•• or ••no••), and the classN P for which an algorithm exists that
veri“es for every instance, independently of the way it was generated, in polynomial
time whether the answer ••yes•• is correct. (Note that formally, the complexity classes
P and N P are de“ned via idealized models of computation: in the theory ofN P -
completeness, typically Turing machines are used. For details, see Garey & Johnson
(1979).) It is clear thatP J N P , while nothing can be said on the question whether
P ¼ N P or not. Still, an answer to this question would be very useful because prov-
ing P ¼ N P implies proving that all problems inN P can be solved in polynomial
time.

On this subject, a particularly important role is played bypolynomial time reduc-
tions. Intuitively, a polynomial time reduction is a procedure that transforms a prob-
lem into another one by a polynomial time algorithm. The interesting point is that if
problem P A can be solved in polynomial time and problemP B can be transformed
into P A via a polynomial time reduction, then also the solution toP B can be found
in polynomial time. We say that a problem isN P -hard, if every other problem in
N P can be transformed to it by a polynomial time reduction. Therefore, anN P -
hard problem is at least as hard as any of the other problems inN P . However,
N P -hard problems do not necessarily belong toN P . An N P -hard problem that is
in N P is said to beN P -complete. Therefore, theN P -complete problems are the
hardest problems inN P : if a polynomial time algorithm could be found for anN P -
complete problem, then all problems in theN P -complete class (and consequently all
the problems inN P) could be solved in polynomial time. Because after many years
of research e¤orts no such algorithm has been found, most scientists tend to accept
the conjectureP 0 N P . Still, the ••P ¼ N P ?•• question remains one of the most im-
portant open questions in theoretical computer science.

Until today, a large number of problems have been proved to beN P -complete,
including the above-mentioned TSP; see Garey & Johnson (1979) for a long list of
such problems.

28 Chapter 2 The Ant Colony Optimization Metaheuristic

2.1.2 Solution Methods forN P -Hard Problems

Two classes of algorithms are available for the solution of combinatorial optimiza-
tion problems: exact and approximate algorithms.

Exact algorithms are guaranteed to “nd the optimal solution and to prove its opti-
mality for every “nite size instance of a combinatorial optimization problem within
an instance-dependent run time. In the case ofN P -hard problems, exact algorithms
need, in the worst case, exponential time to “nd the optimum. Although for some
speci“c problems exact algorithms have been improved signi“cantly in recent years,
obtaining at times impressive results (Applegate, Bixby, Chva´tal, & Cook, 1995,
1998), for mostN P -hard problems the performance of exact algorithms is not satis-
factory. So, for example, for the quadratic assignment problem (QAP) (to be dis-
cussed in chapter 5), an important problem that arises in real-world applications and
whose goal is to “nd the optimal assignment ofn items to n locations, most instances
of dimension around 30 are currently the limit of what can be solved with state-
of-the-art exact algorithms (Anstreicher, Brixius, Goux, & Linderoth, 2002; Hahn,
Hightower, Johnson, Guignard-Spielberg, & Roucairol, 2001; Hahn & Krarup,
2001). For example, at the time of writing, the largest, nontrivial QAP instance from
QAPLIB, a benchmark library for the QAP, solved to optimality has 36 locations
(Brixius & Anstreicher, 2001; Nyström, 1999). Despite the small size of the instance,
the computation time required to solve it is extremely high. For example, the solu-
tion of instanceste36a from a backboard wiring application (Steinberg, 1961) took
approximately 180 hours of CPU time on a 800 MHz Pentium III PC. This is to be
compared to the currently best-performing ACO algorithms (see section 5.2.1, for
how to apply ACO to the QAP), which typically require an average time of about
10 seconds to “nd the optimal solution for this instance on a comparable machine.
In addition to the exponential worst-case complexity, the application of exact algo-
rithms to N P -hard problems in practice also su¤ers from a strong rise in compu-
tation time when the problem size increases, and often their use quickly becomes
infeasible.

If optimal solutions cannot be e‹ciently obtained in practice, the only possibility
is to trade optimality for e‹ciency. In other words, the guarantee of “nding optimal
solutions can be sacri“ced for the sake of getting very good solutions in polynomial
time. Approximate algorithms, often also loosely calledheuristic methodsor simply
heuristics, seek to obtain good, that is, near-optimal solutions at relatively low com-
putational cost without being able to guarantee the optimality of solutions. Based on
the underlying techniques that approximate algorithm use, they can be classi“ed as
being eitherconstructiveor local searchmethods (approximate methods may also be

2.1 Combinatorial Optimization 29

Box 2.2
Constructive Algorithms

Constructive algorithms build a solution to a combinatorial optimization problem in an incremen-
tal way. Step by step and without backtracking, they add solution components until a complete
solution is generated. Although the order in which to add components can be random, typically
some kind of heuristic rule is employed. Often, greedy construction heuristics are used which at
each construction step add a solution component with maximum myopic bene“t as estimated by a
heuristic function. An algorithmic outline of a greedy construction heuristic is given below.

procedureGreedyConstructionHeuristic
sp ChooseFirstComponent
while (sp is not a complete solution)do

c GreedyComponent(sp)
sp sp n c

end-while
s sp
return s

end-procedure

Here, the function ChooseFirstComponent chooses the “rst solution component (this is done at ran-
dom or according to a greedy choice depending on the particular construction heuristic) and
GreedyComponent returns a solution componentc with best heuristic estimate. The addition of
componentc to a partial solution sp is denoted by the operatorn . The procedure returns a com-
plete solutions.

An example of a constructive algorithm for the TSP is the nearest-neighbor procedure, which
treats the cities as components. The procedure works by randomly choosing an initial city and by
iteratively adding the closest among the remaining cities to the solution under construction (ties are
broken randomly).

In the example tour below the nearest-neighbor procedure starts from citya and sequentially
adds citiesb, c, d, e, and f .

c

b

a d

e

f

30 Chapter 2 The Ant Colony Optimization Metaheuristic

obtained by stopping exact methods before completion (Bellman, Esogbue, & Nabe-
shima, 1982; Ju¨nger, Reinelt, & Thienel, 1994), for example, after some given time
bound; yet, here, this type of approximate algorithm will not be discussed further).
Usually, if for an approximate algorithm it can be proved that it returns solutions
that are worse than the optimal solution by at most some “xed value or factor, such
an algorithm is also called anapproximation algorithm(Hochbaum, 1997; Hrom-
kovic, 2003; Vazirani, 2001).

Constructive algorithms (see box 2.2) generate solutions from scratch by iteratively
adding solution components to an initially empty solution until the solution is com-
plete. For example, in the TSP a solution is built by adding city after city in an in-
cremental way. Although constructive algorithms are typically the fastest among the
approximate methods, the quality of the solutions they generate is most of the time
inferior to the quality of the solutions found by local search algorithms.

Local search starts from some initial solution and repeatedly tries to improve the
current solution by local changes. The “rst step in applying local search is the de“-
nition of a neighborhood structure(see box 2.3) over the set of candidate solutions. In

Box 2.3
Local Search

Local search is a general approach for “nding high-quality solutions to hard combinatorial opti-
mization problems in reasonable time. It is based on the iterative exploration of neighborhoods of
solutions trying to improve the current solution by local changes. The types of local changes that
may be applied to a solution are de“ned by a neighborhood structure.

De“nition 2.1 A neighborhood structureis a functionN : S 7! 2S that assigns a set of neighbors
N ðsÞJ S to every sAS. N ðsÞis also called the neighborhood of s.

The choice of an appropriate neighborhood structure is crucial for the performance of a local
search algorithm and is problem-speci“c. The neighborhood structure de“nes the set of solutions
that can be reached froms in one single step of a local search algorithm. Typically, a neighborhood
structure is de“ned implicitly by de“ning the possible local changes that may be applied to a solu-
tion, and not by explicitly enumerating the set of all possible neighbors.

The solution found by a local search algorithm may only be guaranteed to be optimal with re-
spect to local changes and, in general, will not be a globally optimal solution.

De“nition 2.2 A local optimum for a minimization problem(a local minimum) is a solution s such
that Es0 AN ðsÞ: f ðsÞa f ðs0Þ. Similarly, a local optimum for a maximization problem(a local
maximum) is a solution s such thatEs0 AN ðsÞ: f ðsÞb f ðs0Þ.

A local search algorithm also requires the de“nition of a neighborhood examination scheme that
determines how the neighborhood is searched and which neighbor solutions are accepted. While the
neighborhood can be searched in many di¤erent ways, in the great majority of cases the acceptance
rule is either thebest-improvementrule, which chooses the neighbor solution giving the largest im-
provement of the objective function, or the“rst-improvementrule, which accepts the “rst improved
solution found.

2.1 Combinatorial Optimization 31

practice, the neighborhood structure de“nes for each current solution the set of pos-
sible solutions to which the local search algorithms can move. One common way of
de“ning neighborhoods is via k-exchange moves that exchange a set ofk components
of a solution with a di¤erent set ofk components (see box 2.4).

In its most basic version, often callediterative improvement, or sometimeshill-
climbing or gradient-descentfor maximization and minimization problems, respec-
tively, the local search algorithm searches for an improved solution within the
neighborhood of the current solution. If an improving solution is found, it replaces
the current solution and the local search is continued. These steps are repeated until
no improving solution is found in the neighborhood and the algorithm terminates in
a local optimum. A disadvantage of iterative improvement is that the algorithm may
stop at very poor-quality local optima.

2.1.3 What Is a Metaheuristic?

A disadvantage of single-run algorithms like constructive methods or iterative im-
provement is that they either generate only a very limited number of di¤erent
solutions, which is the case for greedy construction heuristics, or they stop at poor-
quality local optima, which is the case for iterative improvement methods. Unfortu-

Box 2.4
k…Exchange Neighborhoods

An important class of neighborhood structures for combinatorial optimization problems is that of
k…exchange neighborhoods.

De“nition 2.3 The k…exchange neighborhoodof a candidate solution s is the set of candidate solu-
tions s0 that can be obtained from s by exchanging k solution components.

Example 2.1: The 2…exchange and k…exchange neighborhoods in the TSPGiven a candidate solu-
tion s, the TSP 2…exchange neighborhood of a candidate solutions consists of the set of all the
candidate solutionss0 that can be obtained froms by exchanging two pairs of arcs in all the possible
ways. The “gure below gives an example of one speci“c 2…exchange: the pair of arcsðb; cÞand
ða; f Þis removed and replaced by the pairða; cÞand ðb; f Þ.

c

b

a

e

f

c

b

a d

e

f

d

The k…exchange neighborhood is the obvious generalization in which a set ofk arcs is replaced by a
di¤erent set ofk arcs.

32 Chapter 2 The Ant Colony Optimization Metaheuristic

nately, the obvious extension of local search, that is, to restart the algorithm several
times from new starting solutions, does not produce signi“cant improvements in
practice (Johnson & McGeoch, 1997; Schreiber & Martin, 1999). Several general
approaches, which are nowadays often called metaheuristics, have been proposed
which try to bypass these problems.

A metaheuristicis a set of algorithmic concepts that can be used to de“ne heuristic
methods applicable to a wide set of di¤erent problems. In other words, a meta-
heuristic can be seen as a general-purpose heuristic method designed to guide an
underlying problem-speci“c heuristic (e.g., a local search algorithm or a construc-
tion heuristic) toward promising regions of the search space containing high-quality
solutions. A metaheuristic is therefore a general algorithmic framework which can be
applied to di¤erent optimization problems with relatively few modi“cations to make
them adapted to a speci“c problem.

Examples of metaheuristics include simulated annealing (Cerny´, 1985; Kirk-
patrick, Gelatt, & Vecchi, 1983), tabu search (Glover, 1989, 1990; Glover & Laguna,
1997), iterated local search (Lourenc¸o, M artin, & Stützle, 2002), evolutionary com-
putation (Fogel, Owens, & Walsh, 1966; Holland, 1975; Rechenberg, 1973; Schwefel,
1981; Goldberg, 1989), and ant colony optimization (Dorigo & Di Caro, 1999b;
Dorigo, Di Caro, & Gambardella, 1999; Dorigo, Maniezzo, & Colorni, 1996; Dorigo
& Stützle, 2002) (see Glover & Kochenberger [2002] for a comprehensive overview).

The use of metaheuristics has signi“cantly increased the ability of “nding very
high-quality solutions to hard, practically relevant combinatorial optimization prob-
lems in a reasonable time. This is particularly true for large and poorly understood
problems. A detailed description of the ant colony optimization metaheuristic is given
in the next section; the other metaheuristics mentioned above are brie”y described in
section 2.4.

2.2 The ACO Metaheuristic

Ant colony optimization is a metaheuristic in which a colony of arti“cial ants coop-
erate in “nding good solutions to di‹cult discrete optimization problems. Coopera-
tion is a key design component of ACO algorithms: The choice is to allocate the
computational resources to a set of relatively simple agents (arti“cial ants) that com-
municate indirectly by stigmergy, that is, by indirect communication mediated by the
environment (see chapter 1, section 1.4). Good solutions are an emergent property of
the agents• cooperative interaction.

ACO algorithms can be used to solve both static and dynamic combinatorial
optimization problems. Static problems are those in which the characteristics of the

2.2 The ACO Metaheuristic 33

problem are given once and for all when the problem is de“ned, and do not change
while the problem is being solved. A paradigmatic example of such problems is the
TSP (Johnson & McGeoch, 1997; Lawler, Lenstra, Rinnooy Kan, & Shmoys, 1985;
Reinelt, 1994), in which city locations and their relative distances are part of the
problem de“nition and do not change at run time. On the contrary, dynamic prob-
lems are de“ned as a function of some quantities whose value is set by the dynamics
of an underlying system. The problem instance changes therefore at run time and the
optimization algorithm must be capable of adapting online to the changing environ-
ment. An example of this situation, which we discuss at length in chapter 6, are net-
work routing problems in which the data tra‹c and the network topology can vary
in time.

In this section we give a formal characterization of the class of problems to which
the ACO metaheuristic can be applied, of the behavior governing the arti“cial ants,
and of the general structure of the ACO metaheuristic.

2.2.1 Problem Representation

An arti“cial ant in ACO is a stochastic constructive procedure that incrementally
builds a solution by adding opportunely de“ned solution components to a partial
solution under construction. Therefore, the ACO metaheuristic can be applied to
any combinatorial optimization problem for which a constructive heuristic can be
de“ned.

Although this means that the ACO metaheuristic can be applied to any interesting
combinatorial optimization problems, the real issue is how to map the considered
problem to a representation that can be used by the arti“cial ants to build solutions.
In the following we give a formal characterization of the representation that the
arti“cial ants use and of the policy they implement.

Let us consider the minimization problemðS; f ; WÞ, whereS is theset of candidate
solutions, f is the objective functionwhich assigns an objective function (cost) value
f ðs; tÞ to each candidate solutions AS, and WðtÞ is a set of constraints. The pa-
rameter t indicates that the objective function and the constraints can be time-
dependent, as is the case, for example, in applications to dynamic problems (e.g., in
telecommunication network routing problems the cost of links is proportional to
tra‹c, which is time-dependent; and constraints on the reachable nodes can also
change with time: think of a network node that suddenly becomes unreachable).

The goal is to “nd a globally optimal feasible solutions� , that is, a minimum cost
feasible solution to the minimization problem.

The combinatorial optimization problem ðS; f ; WÞis mapped on a problem that
can be characterized by the following list of items:

34 Chapter 2 The Ant Colony Optimization Metaheuristic

9 A “nite set C ¼ f c1; c2; . . . ; cNC g of componentsis given, whereNC is the number of
components.
9 The statesof the problem are de“ned in terms of sequencesx ¼ hci ; cj ; . . . ; ch; . . .i
of “nite length over the elements ofC. The set of all possible states is denoted byX .
The length of a sequencex, that is, the number of components in the sequence, is
expressed byjxj. The maximum length of a sequence is bounded by a positive con-
stant n < þ y .
9 The set of (candidate) solutionsS is a subset ofX (i.e., S J X).
9 A set of feasible states~XX , with ~XX J X , de“ned via a problem-dependent test that
veri“es that it is not impossible to complete a sequencex A ~XX into a solution satisfy-
ing the constraintsW. Note that by this de“nition, the feasibility of a statex A ~XX
should be interpreted in aweaksense. In fact, it does not guarantee that a completion
s of x exists such thats A ~XX .
9 A non-empty setS� of optimal solutions, with S� J ~XX and S� J S.
9 A cost gðs; tÞ is associated with each candidate solutions AS. In most cases
gðs; tÞ1 f ðs; tÞ, Es A ~SS, where ~SS J S is the set of feasible candidate solutions, ob-
tained from S via the constraintsWðtÞ.
9 In some cases a cost, or the estimate of a cost,Jðx; tÞcan be associated with states
other than candidate solutions. Ifxj can be obtained by adding solution components
to a statexi , then Jðxi ; tÞa Jðxj ; tÞ. Note that Jðs; tÞ1 gðs; tÞ.

Given this formulation, arti“cial ants build solutions by performing randomized
walks on the completely connected graphGC ¼ ðC; LÞ whose nodes are the com-
ponentsC, and the setL fully connects the componentsC. The graph GC is called
construction graphand elements ofL are calledconnections.

The problem constraintsWðtÞare implemented in the policy followed by the arti-
“cial ants, as explained in the next section. The choice of implementing the con-
straints in the construction policy of the arti“cial ants allows a certain degree of
”exibility. In fact, depending on the combinatorial optimization problem considered,
it may be more reasonable to implement the constraints in a hard way, allowing the
ants to build only feasible solutions, or in a soft way, in which case the ants can build
infeasible solutions (i.e., candidate solutions inSn~SS) that can be penalized as a func-
tion of their degree of infeasibility.

2.2.2 Ants• Behavior

As we said, in ACO algorithms arti“cial ants are stochastic constructive procedures
that build solutions by moving on the construction graphGC ¼ ðC; LÞ, where the set

2.2 The ACO Metaheuristic 35

L fully connects the componentsC. The problem constraintsWðtÞare built into the
ants• constructive heuristic. In most applications, ants construct feasible solutions.
However, sometimes it may be necessary or bene“cial to also let them construct
infeasible solutions. Componentsci AC and connectionslij AL can have associated
a pheromone trailt (t i if associated with components,t ij if associated with con-
nections), and aheuristic valueh (hi and hij , respectively). The pheromone trail en-
codes a long-term memory about the entire ant search process, and is updated by the
ants themselves. Di¤erently, the heuristic value, often calledheuristic information,
represents a priori information about the problem instance or run-time information
provided by a source di¤erent from the ants. In many casesh is the cost, or an esti-
mate of the cost, of adding the component or connection to the solution under con-
struction. These values are used by the ants• heuristic rule to make probabilistic
decisions on how to move on the graph.

More precisely, each antk of the colony has the following properties:

9 It exploits the construction graph GC ¼ ðC; LÞ to search for optimal solutions
s� AS� .
9 It has a memoryM k that it can use to store information about the path it followed
so far. Memory can be used to (1) build feasible solutions (i.e., implement constraints
W); (2) compute the heuristic valuesh; (3) evaluate the solution found; and (4) retrace
the path backward.
9 It has a start state xk

s and one or moretermination conditions ek. Usually, the start
state is expressed either as an empty sequence or as a unit length sequence, that is, a
single component sequence.
9 When in statexr ¼ hxr� 1; i i , if no termination condition is satis“ed, it moves to a
node j in its neighborhoodN kðxrÞ, that is, to a statehxr; j i A X . If at least one of the
termination conditions ek is satis“ed, then the ant stops. When an ant builds a can-
didate solution, moves to infeasible states are forbidden in most applications, either
through the use of the ant•s memory, or via appropriately de“ned heuristic valuesh.
9 It selects a move by applying a probabilistic decision rule. The probabilistic deci-
sion rule is a function of (1) the locally available pheromone trails and heuristic
values (i.e., pheromone trails and heuristic values associated with components and
connections in the neighborhood of the ant•s current location on graphGC); (2) the
ant•s private memory storing its current state; and (3) the problem constraints.
9 When adding a componentcj to the current state, it can update the pheromone
trail t associated with it or with the corresponding connection.
9 Once it has built a solution, it can retrace the same path backward and update the
pheromone trails of the used components.

36 Chapter 2 The Ant Colony Optimization Metaheuristic

It is important to note that ants act concurrently and independently and that
although each ant is complex enough to “nd a (probably poor) solution to the prob-
lem under consideration, good-quality solutions can only emerge as the result of the
collective interaction among the ants. This is obtained via indirect communication
mediated by the information ants read or write in the variables storing pheromone
trail values. In a way, this is a distributed learning process in which the single agents,
the ants, are not adaptive themselves but, on the contrary, adaptively modify the way
the problem is represented and perceived by other ants.

2.2.3 The Metaheuristic

Informally, an ACO algorithm can be imagined as the interplay of three procedures:
ConstructAntsSolutions, UpdatePheromones, and DaemonActions.

ConstructAntsSolutions manages a colony of ants that concurrently and asynchro-
nously visit adjacent states of the considered problem by moving through neighbor
nodes of the problem•s construction graphGC. They move by applying a stochastic
local decision policy that makes use of pheromone trails and heuristic information.
In this way, ants incrementally build solutions to the optimization problem. Once
an ant has built a solution, or while the solution is being built, the ant evaluates the
(partial) solution that will be used by theUpdatePheromones procedure to decide how
much pheromone to deposit.

UpdatePheromones is the process by which the pheromone trails are modi“ed. The
trails value can either increase, as ants deposit pheromone on the components or
connections they use, or decrease, due to pheromone evaporation (see also section
1.3 of chapter 1). From a practical point of view, the deposit of new pheromone
increases the probability that those components/connections that were either used by
many ants or that were used by at least one ant and which produced a very good
solution will be used again by future ants. Di¤erently, pheromone evaporation imple-
ments a useful form offorgetting: it avoids a too rapid convergence of the algorithm
toward a suboptimal region, therefore favoring the exploration of new areas of the
search space.

Finally, the DaemonActions procedure is used to implement centralized actions
which cannot be performed by single ants. Examples of daemon actions are the acti-
vation of a local optimization procedure, or the collection of global information that
can be used to decide whether it is useful or not to deposit additional pheromone to
bias the search process from a nonlocal perspective. As a practical example, the
daemon can observe the path found by each ant in the colony and select one or a few
ants (e.g., those that built the best solutions in the algorithm iteration) which are then
allowed to deposit additional pheromone on the components/connections they used.

2.2 The ACO Metaheuristic 37

In “gure 2.1, the ACO metaheuristic is described in pseudo-code. The main proce-
dure of the ACO metaheuristic manages the scheduling of the three above-discussed
components of ACO algorithms via the ScheduleActivities construct: (1)
management of the ants• activity, (2) pheromone updating, and (3) daemon actions.
The ScheduleActivities construct does not specify how these three activities
are scheduled and synchronized. In other words, it does not say whether they should
be executed in a completely parallel and independent way, or if some kind of syn-
chronization among them is necessary. The designer is therefore free to specify the
way these three procedures should interact, taking into account the characteristics of
the considered problem.

Nowadays numerous successful implementations of the ACO metaheuristic are
available and they have been applied to many di¤erent combinatorial optimization
problems. These applications are summarized in table 2.1 and they are discussed in
the forthcoming chapters of this book.

2.3 How Do I Apply ACO?

Probably, the best way of illustrating how the ACO metaheuristic operates is by de-
scribing how it has been applied to combinatorial optimization problems. This is
done with a full and detailed description of most of the current applications of ACO
in chapter 5. Here we limit ourselves to a brief description of the main points to
consider when applying ACO algorithms to a few examples of problems representa-
tive of important classes of optimization problems.

First, we illustrate the application to permutation problems in their unconstrained
and constrained forms: the TSP and the sequential ordering problem. Then we con-
sider generalized assignment as an example of assignment problems, and multiple

procedureACOMetaheuristic
ScheduleActivities

ConstructAntsSolutions

UpdatePheromones
DaemonActions % optional

end-ScheduleActivities
end-procedure

Figure 2.1
The ACO metaheuristic in pseudo-code. The procedureDaemonActions is optional and refers to centralized
actions executed by a daemon possessing global knowledge.

38 Chapter 2 The Ant Colony Optimization Metaheuristic

Table 2.1
Current applications of ACO algorithms listed according to problem types and chronologically

Problem type Problem name Main references

Routing Traveling salesman Dorigo, Maniezzo, & Colorni (1991a,b, 1996)
Dorigo (1992)
Gambardella & Dorigo (1995)
Dorigo & Gambardella (1997a,b)
Stützle & Hoos (1997, 2000)
Bullnheimer, Hartl, & Strauss (1999c)
Cordón, de Viana, Herrera, & Morena (2000)

Vehicle routing Bullnheimer, Hartl, & Strauss (1999a,b)
Gambardella, Taillard, & Agazzi (1999)
Reimann, Stummer, & Doerner (2002)

Sequential ordering Gambardella & Dorigo (1997, 2000)

Assignment Quadratic assignment Maniezzo, Colorni, & Dorigo (1994)
Stützle (1997b)
Maniezzo & Colorni (1999)
Maniezzo (1999)
Stützle & Hoos (2000)

Graph coloring Costa & Hertz (1997)

Generalized assignment Lourenc¸o & Serra (1998, 2002)

Frequency assignment Maniezzo & Carbonaro (2000)

University course
timetabling

Socha, Knowles, & Sampels (2002)
Socha, Sampels, & Manfrin (2003)

Scheduling Job shop Colorni, Dorigo, Maniezzo, & Trubian (1994)

Open shop Pfahringer (1996)

Flow shop Stützle (1998a)

Total tardiness Bauer, Bullnheimer, Hartl, & Strauss (2000)

Total weighted tardiness den Besten, Stu¨tzle, & Dorigo (2000)
Merkle & Middendorf (2000, 2003a)
Gagné, Price, & Gravel (2002)

Project scheduling Merkle, Middendorf, & Schmeck (2000a, 2002)

Group shop Blum (2002a, 2003a)

Subset Multiple knapsack Leguizamo´n & Michalewicz (1999)

Max independent set Leguizamo´n & Michalewicz (2000)

Redundancy allocation Liang & Smith (1999)

Set covering Leguizamo´n & Michalewicz (2000)
Hadji, Rahoual, Talbi, & Bachelet (2000)

Weight constrained graph
tree partition

Cordone & Ma‹oli (2001)

Arc-weighted l-cardinality
tree

Blum & Blesa (2003)

Maximum clique Fenet & Solnon (2003)

2.3 How Do I Apply ACO? 39

knapsack as an example of subset problems. Finally, applications to two dynamic
problems, network routing and dynamic TSP, are brie”y discussed.

2.3.1 The Traveling Salesman Problem

Intuitively, the traveling salesman problem is the problem faced by a salesman who,
starting from his home town, wants to “nd a shortest possible trip through a given
set of customer cities, visiting each city once before “nally returning home. The TSP
can be represented by a complete weighted graphG ¼ ðN; AÞwith N being the set
of n ¼ jN j nodes (cities),A being the set of arcs fully connecting the nodes. Each arc
ði; jÞAA is assigned a weightdij which represents the distance between citiesi and
j. The TSP is the problem of “nding a minimum length Hamiltonian circuit of the
graph, where a Hamiltonian circuit is a closed walk (a tour) visiting each node of
G exactly once. We may distinguish between symmetric TSPs, where the distances
between the cities are independent of the direction of traversing the arcs, that is,
dij ¼ dji for every pair of nodes, and the asymmetric TSP (ATSP), where at least for
one pair of nodesi; j we havedij 0 dji .

Table 2.1
(continued)

Problem type Problem name Main references

Other Shortest common
supersequence

Michel & Middendorf (1998, 1999)

Constraint satisfaction Solnon (2000, 2002)

2D-HP protein folding Shmygelska, Aguirre-Hernández, & Hoos (2002)

Bin packing Levine & Ducatelle (2003)

Machine learning Classi“cation rules Parpinelli, Lopes, & Freitas (2002b)

Bayesian networks de Campos, Ga´mez, & Puerta (2002b)

Fuzzy systems Casillas, Cordo´n, & Herrera (2000)

Network routing Connection-oriented
network routing

Schoonderwoerd, Holland, Bruten, &
Rothkrantz (1996)
Schoonderwoerd, Holland, & Bruten (1997)
White, Pagurek, & Oppacher (1998)
Di Caro & Dorigo (1998d)
Bonabeau, Henavy, Gue´rin, Snyers, Kuntz, &
Theraulaz (1998)

Connectionless network
routing

Di Caro & Dorigo (1997, 1998c,f)
Subramanian, Druschel, & Chen (1997)
Heusse, Snyers, Gue´rin, & Kuntz (1998)
van der Put (1998)

Optical network routing Navarro Varela, & Sinclair (1999)

40 Chapter 2 The Ant Colony Optimization Metaheuristic

A solution to an instance of the TSP can be represented as a permutation of the
city indices; this permutation is cyclic, that is, the absolute position of a city in a tour
is not important at all but only the relative order is important (in other words, there
are n permutations that map to the same solution).

Construction graph. The construction graph is identical to the problem graph: the
set of componentsC corresponds to the set of nodes (i.e.,C ¼ N), the connections
correspond to the set of arcs (i.e.,L ¼ A), and each connection has a weight which
corresponds to the distancedij between nodesi and j. The states of the problem are
the set of all possible partial tours.

Constraints. The only constraint in the TSP is that all cities have to be visited and
that each city is visited at most once. This constraint is enforced if an ant at each
construction step chooses the next city only among those it has not visited yet (i.e.,
the feasible neighborhoodN k

i of an ant k in city i, where k is the ant•s identi“er,
comprises all cities that are still unvisited).

Pheromone trails and heuristic information.The pheromone trails t ij in the TSP
refer to the desirability of visiting city j directly after i. The heuristic informationhij

is typically inversely proportional to the distance between citiesi and j, a straight-
forward choice beinghij ¼ 1=dij . In fact, this is also the heuristic information used in
most ACO algorithms for the TSP.

Solution construction. Each ant is initially put on a randomly chosen start city and
at each step iteratively adds one still unvisited city to its partial tour. The solution
construction terminates once all cities have been visited.

General comments. The TSP is a paradigmaticN P -hard combinatorial optimiza-
tion problem which has attracted a very signi“cant amount of research (Johnson &
McGeoch, 1997; Lawler et al., 1985; Reinelt, 1994). The TSP has played a central
role in ACO, because it was the application problem chosen when proposing the “rst
ACO algorithm called Ant System (Dorigo, 1992; Dorigo, Maniezzo, & Colorni,
1991b, 1996) and it was used as a test problem for almost all ACO algorithms pro-
posed later. Chapter 3 gives a detailed presentation of the ACO algorithms available
for the TSP.

2.3.2 The Sequential Ordering Problem

The sequential ordering problem (SOP) consists in “nding a minimum weight Ham-
iltonian path on a directed graph with weights on the arcs and the nodes, subject to
precedence constraints between nodes. It is easy to remove weights from nodes and
to add them to the arcs, obtaining a kind of asymmetric traveling salesman problem

2.3 How Do I Apply ACO? 41

in which, once all the nodes have been visited, the path is not closed (i.e., it does not
become a tour as in the ATSP).

Construction graph. Similar to the TSP, the set of componentsC contains all the
nodes. Solutions are permutations of the elements ofC, and costs (lengths) are asso-
ciated with connections between nodes.

Constraints. The only signi“cant di¤erence between the applications of ACO to the
SOP and to the TSP is the set of constraints: while building solutions, ants choose
components only among those that have not yet been used and, if possible, satisfy all
precedence constraints.

Pheromone trails and heuristic information.As in the TSP case, pheromone trails
are associated with connections, and the heuristic information can, for example, be
chosen as the inverse of the costs (lengths) of the connections.

Solution construction. Ants build solutions iteratively by adding, step by step, new
unvisited nodes to the partial solution under construction. They choose the new node
to add by using pheromone trails, heuristic, and constraint information.

2.3.3 The Generalized Assignment Problem

In the generalized assignment problem (GAP) a set of tasksi AI , has to be assigned
to a set of agentsj AJ. Each agent j has only a limited capacityaj and each taski
assigned to agentj consumes a quantityrij of the agent•s capacity. Also, the costdij

of assigning taski to agent j is given. The objective then is to “nd a feasible task
assignment with minimum cost.

Let yij be 1 if task i is assigned to agentj and 0 otherwise. Then the GAP can
formally be de“ned as

min f ðyÞ ¼
Xm

j ¼1

Xn

i ¼1

dij yij ð2:1Þ

subject to

Xn

i¼1

rij yij a aj ; j ¼ 1; . . . ; m; ð2:2Þ

Xm

j ¼1

yij ¼ 1; i ¼ 1; . . . ; n; ð2:3Þ

yij A f 0; 1g; i ¼ 1; . . . ; n; j ¼ 1; . . . ; m: ð2:4Þ

42 Chapter 2 The Ant Colony Optimization Metaheuristic

The constraints in equation (2.2) implement the limited resource capacity of the
agents, while the constraints given by equations (2.3) and (2.4) impose that each task
is assigned to exactly one agent and that a task cannot be split among several agents.

Construction graph. The GAP can easily be cast into the framework of the ACO
metaheuristic. For example, the problem could be represented on the construction
graph GC ¼ ðC; LÞ in which the set of components comprises the set of tasks and
agents, that is,C ¼ I WJ. Each assignment, which consists ofn couplings ði; jÞof
tasks and agents, corresponds to at least one ant•s walk on this graph and costsdij

are associated with all possible couplingsði; jÞof tasks and agents.

Constraints. Walks on the construction graphGC have to satisfy the constraints
given by equations (2.3) and (2.4) to obtain a valid assignment. One particular way
of generating such an assignment is by an ant•s walk which iteratively switches from
task nodes (nodes in the setI) to agent nodes (nodes in the setJ) without repeating
any task node but possibly using an agent node several times (several tasks may be
assigned to an agent). Moreover, the GAP involves resource capacity constraints that
can be enforced by an appropriately de“ned neighborhood. For example, for an
ant k, N k

i could be de“ned as consisting of all those agents to which taski can be
assigned without violating the agents• resource capacity. If no agent meets the task•s
resource requirement, then the ant is forced to build an infeasible solution; in this
caseN k

i becomes the set of all agents. Infeasibilities can then be handled, for exam-
ple, by assigning penalties proportional to the amount of resource violations.

Pheromone trails and heuristic information.During the construction of a solution,
ants repeatedly have to take the following two basic decisions: (1) choose the task to
assign next and (2) choose the agent the task should be assigned to. Pheromone trail
information can be associated with any of the two decisions: it can be used to learn
an appropriate order for task assignments or it can be associated with the desirability
of assigning a task to a speci“c agent. In the “rst case,t ij represents the desirability of
assigning taskj directly after task i, while in the second case it represents the desir-
ability of assigning agentj to task i.

Similarly, heuristic information can be associated with any of the two decisions.
For example, heuristic information could bias task assignment toward those tasks
that use more resources, and bias the choice of agents in such a way that small as-
signment costs are incurred and the agent only needs a relatively small amount of its
available resource to perform the task.

Solution construction. Solution construction can be performed as usual, by choosing
the components to add to the partial solution from among those that, as explained

2.3 How Do I Apply ACO? 43

above, satisfy the constraints with a probability biased by the pheromone trails and
heuristic information.

2.3.4 The Multiple Knapsack Problem

Given a set of itemsi AI with associated a vector of resource requirementsri and a
pro“t bi , the knapsack problem (KP) is the problem of selecting a subset of items
from I in such a way that they “t into a knapsack of limited capacity and maximize
the sum of pro“ts of the chosen items. The multiple knapsack problem (MKP), also
known as multidimensional KP, extends the single KP by considering multiple
resource constraints. Letyi be a variable associated with itemi, which has value 1 ifi
is added to the knapsack, and 0 otherwise. Also, letrij be the resource requirement of
item i with respect to resource constraintj , aj the capacity of resourcej, and m be
the number of resource constraints. Then the MKP can be formulated as

max f ðyÞ ¼
Xn

i ¼1

biyi ; ð2:5Þ

subject to

Xn

i¼1

rij yi a aj ; j ¼ 1; . . . ; m; ð2:6Þ

yi Af 0; 1g; i ¼ 1; . . . ; n: ð2:7Þ

In the MKP, it is typically assumed that all pro“ts bi and all weightsrij take posi-
tive values.

Construction graph. In the construction graphGC ¼ ðC; LÞ, the set of components
C corresponds to the set of items and, as usual, the set of connectionsL fully con-
nects the set of items. The pro“t of adding items can be associated with either the
connections or the components.

Constraints. The solution construction has to consider the resource constraints
given by equation (2.6). During the solution construction process, this can be easily
done by allowing ants to add only those components that, when added to their cur-
rent partial solution, do not violate any resource constraint.

Pheromone trails and heuristic information.The MKP has the particularity that
pheromone trailst i are associated only with components and refer to the desirability
of adding an item i to the current partial solution. The heuristic information, intui-

44 Chapter 2 The Ant Colony Optimization Metaheuristic

tively, should prefer items which have a high pro“t and low resource requirements.
One possible choice for the heuristic information is to calculate the average resource
requirement ri ¼

P m
j ¼1 rij =m for each item and then to de“nehi ¼ bi=ri . Yet this

choice has the disadvantage that it does not take into account how tight the single
resource constraints are. Therefore, more information can be provided if the heuristic
information is also made a function of theaj . One such possibility is to calculate
ri

0 ¼ 1=m �
P m

j ¼1 aj=rij and to compute the heuristic information ash0
i ¼ bi=ri

0.

Solution construction. Each ant iteratively adds items in a probabilistic way biased
by pheromone trails and heuristic information; each item can be added at most once.
An ant•s solution construction ends if no item can be added anymore without vio-
lating any of the resource constraints. This leads to one particularity of the ACO
application to the MKP: the length of the ants• walks is not “xed in advance and
di¤erent ants may have solutions of di¤erent length.

2.3.5 The Network Routing Problem

Let a telecommunications network be de“ned by a set of nodesN, a set of links be-
tween nodesLnet, and the costsdij associated with the links. Then, the network rout-
ing problem (NRP) is the problem of “nding minimum cost paths among all pairs of
nodes in the network. It should be noted that if the costsdij are “xed, then the NRP
is reduced to a set of minimum cost path problems, each of which can be solved
e‹ciently via a polynomial time algorithm like Dijkstra•s algorithm (Dijkstra, 1959).
The problem becomes interesting for heuristic approaches once, as happens in real-
world applications like routing in communications networks, costs (e.g., data tra‹c
in links) or the network topology varies in time.

Construction graph. The construction graph is the graphGC ¼ ðC; LÞ, where C
corresponds to the set of nodesN, and L fully connectsGC. Note that Lnet J L.

Constraints. The only constraint is that ants use only connectionslij ALnet.

Pheromone trails and heuristic information.Because the NRP is, in reality, a set
of minimum cost path problems, each connectionlij AL should have many di¤erent
pheromone trails associated. For example, each connectionlij could have associated
one trail value t ijd for each possible destination noded an ant located in nodei
can have. Each arc can also be assigned a heuristic valuehij independent of the “nal
destination. The heuristic valuehij can be set, for example, to a value inversely pro-
portional to the amount of tra‹c on the link connecting nodes i and j.

Solution construction. Solution construction is straightforward. In fact, the S-ACO
algorithm presented in chapter 1, section 1.3.1, is an example of how to proceed.

2.3 How Do I Apply ACO? 45

Each ant has a source nodes and a destination noded, and moves froms to d hop-
ping from one node to the next, until noded has been reached. When antk is
located at nodei, it chooses the next nodej to move to using a probabilistic decision
rule which is a function of the ant•s memory, of local pheromones, and heuristic
information.

2.3.6 The Dynamic Traveling Salesman Problem

The dynamic traveling salesman problem (DTSP) is a TSP in which cities can be
added or removed at run time. The goal is to “nd as quickly as possible the new
shortest tour after each transition.

Construction graph. The same as for the TSP:GC ¼ ðC; LÞ, whereC ¼ CðtÞis the
set of cities andL ¼ LðtÞcompletely connectsGC. The dependence ofC and L on
time is due to the dynamic nature of the problem.

Constraints. As in the TSP, the only constraint is that a solution should contain
each city once and only once.

Pheromone trails and heuristic information.As in the TSP: pheromone trails are
associated with connections, and heuristic values can be given by the inverse of the
distances between cities. An important question is how to handle the problem of con-
nections that disappear and appear in case a city is removed or a new city is added.
In the “rst case the values no longer used can simply be removed, while in the second
case the new pheromone values could be set, for example, either to values propor-
tional to the length of the associated connections or to the average of the other
pheromone values.

Solution construction. Solution construction follows the same rules as in the TSP.

2.4 Other Metaheuristics

The world of metaheuristics is rich and multifaceted and, besides ACO, a number of
other successful metaheuristics are available in the literature. Some of the best known
and most widely applied metaheuristics are simulated annealing (SA) (Cerny´, 1985;
Kirkpatrick et al., 1983), tabu search (TS) (Glover, 1989, 1990; Glover & Laguna,
1997), guided local search (GLS) (Voudouris & Tsang, 1995; Voudouris, 1997),
greedy randomized adaptive search procedures (GRASP) (Feo & Resende, 1989,
1995), iterated local search (ILS) (Lourenc¸o et al., 2002), evolutionary computation
(EC) (Fogel et al., 1966; Goldberg, 1989; Holland, 1975; Rechenberg, 1973; Schwefel,
1981), and scatter search (Glover, 1977).

46 Chapter 2 The Ant Colony Optimization Metaheuristic

All metaheuristics have in common that they try to avoid the generation of poor-
quality solutions by introducing general mechanisms that extend problem-speci“c,
single-run algorithms like greedy construction heuristics or iterative improvement
local search. Di¤erences among the available metaheuristics concern the techniques
employed to avoid getting stuck in suboptimal solutions and the type of trajectory
followed in the space of either partial or full solutions.

A “rst important distinction among metaheuristics is whether they are constructive
or local search based (see boxes 2.2 and 2.3). ACO and GRASP belong to the “rst
class; all the other metaheuristics belong to the second class. Another important dis-
tinction is whether at each iteration they manipulate a single solution or a population
of solutions. All the above-mentioned metaheuristics manipulate a single solution,
except for ACO and EC. Although constructive and population-based metaheuristics
can be used without recurring to local search, very often their performance can be
greatly improved if they are extended to include it. This is the case for both ACO and
EC, while GRASP is de“ned from the very beginning to include local search.

One further important dimension for the classi“cation of metaheuristics concerns
the use of memory. Metaheuristics that exploit memory to direct future search are
TS, GLS, and ACO. TS either explicitly memorizes previously encountered solutions
or memorizes components of previously seen solutions; GLS stores penalties asso-
ciated with solution components to modify the solutions• evaluation function; and
ACO uses pheromones to maintain a memory of past experiences.

It is interesting to note that, for all metaheuristics, there is no general termination
criterion. In practice, a number of rules of thumb are used: the maximum CPU time
elapsed, the maximum number of solutions generated, the percentage deviation from
a lower/upper bound from the optimum, and the maximum number of iterations
without improvement in solution quality are examples of such rules. In some cases,
metaheuristic-dependent rules of thumb can be de“ned. An example is TS which can
be stopped if the set of solutions in the neighborhood is empty; or SA, where the
termination condition is often de“ned by an annealing schedule.

In conclusion, we see that ACO possesses several characteristics which in their
particular combination make it a unique approach: it uses apopulation(colony) of
ants which constructsolutions exploiting a form of indirect memorycalled arti“cial
pheromones. The following sections describe in more detail the metaheuristics we
mentioned above.

2.4.1 Simulated Annealing

Simulated annealing (Cerny´, 1985; Kirkpatrick et al., 1983) is inspired by an analogy
between the physical annealing of solids (crystals) and combinatorial optimization

2.4 Other Metaheuristics 47

problems. In the physical annealing process a solid is “rst melted and then cooled
very slowly, spending a long time at low temperatures, to obtain a perfect lattice
structure corresponding to a minimum energy state. SA transfers this process to local
search algorithms for combinatorial optimization problems. It does so by associating
the set of solutions of the problem attacked with the states of the physical system, the
objective function with the physical energy of the solid, and the optimal solutions
with the minimum energy states.

SA is a local search strategy which tries to avoid local minima by accepting worse
solutions with some probability. In particular, SA starts from some initial solutions
and then proceeds as follows: At each step, a solutions0A N ðsÞis generated (often
this is done randomly according to a uniform distribution). Ifs0 improves ons, it is
accepted; ifs0 is worse thans, then s0 is accepted with a probability which depends on
the di¤erence in objective function valuef ðsÞ � f ðs0Þ, and on a parameterT , called
temperature.T is lowered (as is also done in the physical annealing process) during
the run of the algorithm, reducing in this way the probability of accepting solutions
worse than the current one. The probabilitypaccept to accept a solutions0 is often
de“ned according to the Metropolis distribution (Metropolis, Rosenbluth, Rosen-
bluth, Teller, & Teller, 1953):

pacceptðs; s0; T Þ ¼

1; if f ðs0Þ< f ðsÞ;

exp
f ðsÞ � f ðs0Þ

T

� �
; otherwise.

8
><

>:
ð2:8Þ

Figure 2.2 gives a general algorithmic outline for SA. To implement an SA algo-
rithm, the following parameters and functions have to be speci“ed:

9 The function GenerateInitialSolution, that generates an initial solution
9 The function InitializeAnnealingParameters that initializes several parameters used in
the annealing schedule; the parameters comprise
� an initial temperatureT0

� the number of iterations to be performed at each temperature (inner loop criterion
in “gure 2.2)
� a termination condition (outer loop criterion in “gure 2.2)
9 The function UpdateTemp that returns a new value for the temperature
9 The function GenerateNeighbor that chooses a new solutions0 in the neighborhood
of the current solutions
9 The function AcceptSolution that implements equation (2.8); it decides whether to
accept or not the solution returned byGenerateNeighbor

48 Chapter 2 The Ant Colony Optimization Metaheuristic

SA has been applied to a wide variety of problems with mixed success (Aarts,
Korst, & van Laarhoven, 1997). It is of special appeal to mathematicians due to the
fact that under certain conditions the convergence of the algorithm to an optimal
solution can be proved (Geman & Geman, 1984; Hajek, 1988; Lundy & Mees, 1986;
Romeo & Sangiovanni-Vincentelli, 1991). Yet, to guarantee convergence to the op-
timal solution, an impractically slow annealing schedule has to be used and theoreti-
cally an in“nite number of states has to be visited by the algorithm.

2.4.2 Tabu Search

Tabu search (TS) (Glover, 1989, 1990; Glover & Laguna, 1997) relies on the sys-
tematic use of memory to guide the search process. It is common to distinguish
betweenshort-term memory, which restricts the neighborhoodN ðsÞ of the current
solution s to a subsetN 0ðsÞJ N ðsÞ, and long-term memory, which may extendN ðsÞ
through the inclusion of additional solutions (Glover & Laguna, 1997).

TS uses a local search that, at every step, makes the best possible move froms to a
neighbor solution s0 even if the new solution is worse than the current one; in this
latter case, the move that least worsens the objective function is chosen. To prevent
local search from immediately returning to a previously visited solution and, more

procedureSimulatedAnnealing
s GenerateInitialSolution
InitializeAnnealingParameters

sbest s
n 0
while (outer-loop termination condition not met)do

while (inner-loop termination condition not met) do
s0 GenerateNeighbor(s)
s AcceptSolution(Tn; s; s0)
if (f ðsÞ< f ðsbestÞ) then

sbest s
end-if

end-while
UpdateTemp(n); n n þ 1

end-while
return sbest

end-procedure

Figure 2.2
High-level pseudo-code for simulated annealing (SA).

2.4 Other Metaheuristics 49

generally, to avoid cycling, TS can explicitly memorize recently visited solutions and
forbid moving back to them. More commonly, TS forbids reversing the e¤ect of
recently applied moves by declaringtabu those solution attributes that change in the
local search. The tabu status of solution attributes is then maintained for a num-
ber tt of iterations; the parametertt is called thetabu tenureor the tabu list length.
Unfortunately, this may forbid moves toward attractive, unvisited solutions. To
avoid such an undesirable situation, anaspiration criterion is used to override the
tabu status of certain moves. Most commonly, the aspiration criterion drops the tabu
status of moves leading to a better solution than the best solution visited so far.

The use of a short-term memory in the search process is probably the most widely
applied feature of TS. TS algorithms that only rely on the use of short-term memory
are called simple tabu searchalgorithms in Glover (1989). To increase the e‹ciency
of simple TS, long-term memory strategies can be used to intensify or diversify the
search. Intensi“cation strategies are intended to explore more carefully promising
regions of the search space either by recovering elite solutions (i.e., the best solutions
obtained so far) or attributes of these solutions. Diversi“cation refers to the explora-
tion of new search space regions through the introduction of new attribute com-
binations. Many long-term memory strategies in the context of TS are based on the
memorization of the frequency of solution attributes. For a detailed discussion of
techniques exploiting long-term memory, see Glover & Laguna (1997).

An algorithmic outline of a simple TS algorithm is given in “gure 2.3. The func-
tions needed to de“ne it are the following:

9 The function GenerateInitialSolution, which generates an initial solution
9 The function InitializeMemoryStructures, which initializes all the memory structures
used during the run of the TS algorithm
9 The function GenerateAdmissibleSolutions, which is used to determine the subset of
neighbor solutions which are not tabu or are tabu but satisfy the aspiration criterion
9 The function SelectBestSolution, which returns the best admissible move
9 The function UpdateMemoryStructures, which updates the memory structures

To date, TS appears to be one of the most successful and most widely used
metaheuristics, achieving excellent results for a wide variety of problems (Glover &
Laguna, 1997). Yet this e‹ciency is often due to a signi“cant “ne-tuning e¤ort of a
large collection of parameters and di¤erent implementation choices (Hertz, Taillard,
& de Werra, 1997). However, there have been several proposals such as reactive TS,
which try to make TS more robust with respect to parameter settings (Battiti & Tec-
chiolli, 1994). Interestingly, some theoretical proofs about the behavior of TS exist.

50 Chapter 2 The Ant Colony Optimization Metaheuristic

Faigle & Kern (1992) presented a convergence proof for probabilistic TS; Hana“
and Glover proved that several deterministic variants of TS implicitly enumerate the
search space and, hence, are also guaranteed to “nd the optimal solution in “nite
time (Hana“, 2000; Glover & Hana“, 2002).

2.4.3 Guided Local Search

One alternative possibility to escape from local optima is to modify the evaluation
function while searching. Guided local search (Voudouris, 1997; Voudouris & Tsang,
1995) is a metaheuristic that makes use of this idea. It uses an augmented cost func-
tion hðsÞ, h : s 7! R , which consists of the original objective functionf ð�Þplus addi-
tional penalty terms pni associated with each solution featurei. The augmented
cost function is de“ned ashðsÞ ¼f ðsÞ þ o �

P n
i ¼1 pni � I iðsÞ, where the parametero

determines the in”uence of the penalties on the augmented cost function,n is the
number of solution features,pni is the penalty cost associated with solution featurei,
and I iðsÞ is an indicator function that takes the value 1 if the solution featurei is
present in the solutions and 0 otherwise. A solution feature, for example, in the TSP
is an arc and the indicator function tells if a speci“c arc is used or not.

GLS uses the augmented cost function for choosing local search moves until it
gets trapped in a local optimumŝs with respect tohð�Þ. At this point, a utility value
ui ¼ I i ð̂ssÞ �ci=ð1 þ pniÞis computed for each feature, whereci is the cost of featurei.
Features with high costs will have a high utility. The utility values are scaled bypni

procedureSimpleTabuSearch
s GenerateInitialSolution
InitializeMemoryStructures

sbest s
while (termination condition not met) do

A GenerateAdmissibleSolutions(s)
s SelectBestSolution(A)
UpdateMemoryStructures
if (f ðsÞ< f ðsbestÞ) then

sbest s
end-if

end-while
return sbest

end-procedure

Figure 2.3
High-level pseudo-code for a simple tabu search (TS).

2.4 Other Metaheuristics 51

to avoid the same high cost features from getting penalized over and over again and
the search trajectory from becoming too biased. Then, the penalties of the features
with maximum utility are incremented and the augmented cost function is adapted
by using the new penalty values. Last, the local search is continued from̂ss, which,
in general, will no longer be locally optimal with respect to the new augmented cost
function.

Note that during the local search all solutions encountered must be evaluated with
respect to both the original objective function and the augmented cost functions. In
fact, the two provide di¤erent types of information: the original objective function
f ð�Þdetermines the quality of a solution, while the augmented cost function is used
for guiding the local search.

An algorithmic outline of GLS is given in “gure 2.4. The functions to be de“ned
for the implementation of a GLS algorithm are the following:

9 The function GenerateInitialSolution, which generates an initial solution
9 The function InitializePenalties, which initializes the penalties of the solution
features
9 The function ComputeAugmentedObjectiveFunction, which computes the new aug-
mented evaluation function after an update of the penalties
9 The function LocalSearch, which applies a local search algorithm using the aug-
mented evaluation function
9 The function UpdatePenalties, which, once the local search is stuck in a locally
optimal solution, updates the penalty vector

procedureGuidedLocalSearch
s GenerateInitialSolution
InitializePenalties

sbest s
while (termination condition not met) do

h ComputeAugmentedObjectiveFunction
ŝs LocalSearch(ŝs; h)
UpdatePenalties(ŝs)

end-while
return sbest

end-procedure

Figure 2.4
High-level pseudo-code for guided local search (GLS).

52 Chapter 2 The Ant Colony Optimization Metaheuristic

GLS has been derived from earlier approaches which dynamically modi“ed the
evaluation function during the search like thebreakout method(Morris, 1993) and
GENET (Davenport, Tsang, Wang, & Zhu, 1994). More generally, GLS has tight
connections to other weighting schemes like those used in local search algorithms
for the satis“ability problem in propositional logic (SAT) (Selman & Kautz, 1993;
Frank, 1996) or adaptations of Lagrangian methods to local search (Shang & Wah,
1998). In general, algorithms that modify the evaluation function at computation
time are becoming more widely used.

2.4.4 Iterated Local Search

Iterated local search (Lourenc¸o et al., 2002; Martin, Otto, & Felten, 1991) is a simple
and powerful metaheuristic, whose working principle is as follows. Starting from an
initial solution s, a local search is applied. Once the local search is stuck, the locally
optimal solution ŝs is perturbed by a move in a neighborhood di¤erent from the one
used by the local search. This perturbed solutions0 is the new starting solution for
the local search that takes it to the new local optimum̂ss0. Finally, an acceptance
criterion decides which of the two locally optimal solutions to select as a starting
point for the next perturbation step. The main motivation for ILS is to build a
randomized walk in a search space of the local optima with respect to some local
search algorithm.

An algorithmic outline of ILS is given in “gure 2.5. The four functions needed to
specify an ILS algorithm are as follows:

9 The function GenerateInitialSolution, which generates an initial solution
9 The function LocalSearch, which returns a locally optimal solutionŝs when applied
to s
9 The function Perturbation, which perturbs the current solutions generating an in-
termediate solutions0

9 The function AcceptanceCriterion, which decides from which solution the search is
continued at the next perturbation step

Additionally, the functions Perturbation and AcceptanceCriterion may also exploit
the search history to bias their decisions (Lourenc¸o et al., 2002).

The general idea of ILS was rediscovered by many authors, and has been given
many di¤erent names, such asiterated descent(Baum, 1986), large-step Markov
chains(Martin et al., 1991), chained local optimization(Martin & Otto, 1996), and so
on. One of the “rst detailed descriptions of ILS was given in Martin et al. (1991),
although earlier descriptions of the basic ideas underlying the approach exist (Baum,

2.4 Other Metaheuristics 53

1986; Baxter, 1981). Some of the “rst ILS implementations have shown that the ap-
proach is very promising and current ILS algorithms are among the best-performing
approximation methods for combinatorial optimization problems like the TSP
(Applegate, Bixby, Chvátal, & Cook, 1999; Applegate, Cook, & Rohe, 2003; Johnson
& M cGeoch, 1997; Martin & Otto, 1996) and several scheduling problems (Brucker,
Hurink, & Werner, 1996; Balas & Vazacopoulos, 1998; Congram, Potts, & de Velde,
2002).

2.4.5 Greedy Randomized Adaptive Search Procedures

Greedy randomized adaptive search procedures (Feo & Resende, 1989, 1995) ran-
domize greedy construction heuristics to allow the generation of a large number of
di¤erent starting solutions for applying a local search.

GRASP is an iterative procedure which consists of two phases, a construction
phase and a local search phase. In the construction phase a solution is constructed
from scratch, adding one solution component at a time. At each step of the con-
struction heuristic, the solution components are ranked according to some greedy
function and a number of the best-ranked components are included in arestricted
candidate list; typical ways of deriving the restricted candidate list are either to take
the bestg% of the solution components or to include all solution components that
have a greedy value within somed% of the best-rated solution component. Then, one

procedureIteratedLocalSearch
s GenerateInitialSolution
ŝs LocalSearch(s)
sbest ŝs
while (termination condition not met) do

s0 Perturbation(ŝs)
ŝs0 LocalSearch(s0)
if (f ð̂ss0Þ< f ðsbestÞ) then

sbest ŝs0

end-if
ŝs AcceptanceCriterion(ŝs; ŝs0)

end-while
return sbest

end-procedure

Figure 2.5
High-level pseudo-code for iterated local search (ILS).

54 Chapter 2 The Ant Colony Optimization Metaheuristic

of the components of the restricted candidate list is chosen randomly, according to a
uniform distribution. Once a full candidate solution is constructed, this solution is
improved by a local search phase.

A general outline of the GRASP procedure is given in “gure 2.6. For the imple-
mentation of a GRASP algorithm we need to de“ne two main functions:

9 The function ConstructGreedyRandomizedSolution, which generates a solution
9 The function LocalSearch, which implements a local search algorithm

The number of available applications of GRASP is large and several extensions of
the basic GRASP algorithm we have presented here have been proposed; see Festa &
Resende (2002) and Resende & Ribeiro (2002) for an overview. Regarding theoreti-
cal results, it should be mentioned that standard implementations of GRASP use
restricted candidate lists and therefore may not converge to the optimal solution
(Mockus, Eddy, Mockus, Mockus, & Reklaitis, 1997). One way around this problem
is to allow choosing the parameterg randomly according to a uniform distribution
so that occasionally all the solution components are eligible (Resende, Pitsoulis, &
Pardalos, 2000).

2.4.6 Evolutionary Computation

Evolutionary computation has become a standard term to indicate problem-solving
techniques which use design principles inspired from models of the natural evolution
of species.

Historically, there are three main algorithmic developments within the “eld of EC:
evolution strategies (Rechenberg, 1973; Schwefel, 1981), evolutionary programming

procedureGRASP
while (termination condition not met) do

s ConstructGreedyRandomizedSolution

ŝs LocalSearch(s)
if f ð̂ssÞ< f ðsbestÞthen

sbest ŝs
end-if

end-while
return sbest

end-procedure

Figure 2.6
High-level pseudo-code for greedy randomized adaptive search procedures (GRASP).

2.4 Other Metaheuristics 55

(Fogel et al., 1966), and genetic algorithms (Holland, 1975; Goldberg, 1989). Com-
mon to these approaches is that they are population-based algorithms that use oper-
ators inspired by population genetics to explore the search space (the most typical
genetic operators arereproduction, mutation, and recombination). Each individual in
the algorithm represents directly or indirectly (through a decoding scheme) a solution
to the problem under consideration. The reproduction operator refers to the process
of selecting the individuals that will survive and be part of the next generation. This
operator typically uses a bias toward good-quality individuals: The better the objec-
tive function value of an individual, the higher the probability that the individual will
be selected and therefore be part of the next generation. The recombination operator
(often also called crossover) combines parts of two or more individuals and generates
new individuals, also calledo¤spring. The mutation operator is a unary operator that
introduces random modi“cations to one individual.

Di¤erences among the di¤erent EC algorithms concern the particular representa-
tions chosen for the individuals and the way genetic operators are implemented. For
example, genetic algorithms typically use binary or discrete valued variables to rep-
resent information in individuals and they favor the use of recombination, while
evolution strategies and evolutionary programming often use continuous variables
and put more emphasis on the mutation operator. Nevertheless, the di¤erences be-
tween the di¤erent paradigms are becoming more and more blurred.

A general outline of an EC algorithm is given in “gure 2.7, wherepop denotes the
population of individuals. To de“ne an EC algorithm the following functions have to
be speci“ed:

9 The function InitializePopulation, which generates the initial population
9 The function EvaluatePopulation, which computes the “tness values of the indi-
viduals
9 The function BestOfPopulation, which returns the best individual in the current
population
9 The function Recombination, which repeatedly combines two or more individuals to
form one or more new individuals
9 The function Mutation, which, when applied to one individual, introduces a (small)
random perturbation
9 The function Reproduction, which generates a new population from the current one

EC is a vast “eld where a large number of applications and a wide variety of
algorithmic variants exist. Because an overview of the EC literature would “ll an

56 Chapter 2 The Ant Colony Optimization Metaheuristic

entire book, we refer to the following for more details on the subject: Fogel et al.,
1966; Fogel, 1995; Holland, 1975; Rechenberg, 1973; Schwefel, 1981; Goldberg,
1989; Michalewicz, 1994; Mitchell, 1996.

Still, one particular EC algorithm, called population-based incremental learning
(PBIL) (Baluja & Caruana, 1995), is mentioned here because of its similarities to
ACO. PBIL maintains a vector of probabilities called thegenerating vector. Starting
from this vector, a population of binary strings representing solutions to the problem
under consideration is randomly generated: each string in the population has thei-th
bit set to 1 with a probability given by thei-th value on the generating vector. Once
a population of solutions is created, the generated solutions are evaluated and this
evaluation is used to increase (or decrease) the probabilities of each separate com-
ponent in the generating vector with the hope that good (bad) solutions in future
generations will be produced with higher (lower) probability. It is clear that in ACO
the pheromone trail values play a role similar to PBIL•s generating vector, and
pheromone updating has the same goal as updating the probabilities in the generat-
ing vector. A main di¤erence between ACO and PBIL consists in the fact that in
PBIL all the components of the probability vector are evaluated independently, so
that PBIL works well only when the solution is separable in its components.

procedureEvolutionaryComputationAlgorithm
pop InitializePopulation
EvaluatePopulation(pop)
sbest BestOfPopulation(pop)
while (termination condition not met) do

pop• Recombination(pop)
pop•• Mutation(pop•)
EvaluatePopulation(pop••)
s BestOfPopulation(pop••)
if f ðsÞ< f ðsbestÞthen

sbest s
end-if
pop Reproduction(pop••)

end-while
return sbest

end-procedure

Figure 2.7
High-level pseudo-code for an evolutionary computation (EC) algorithm.

2.4 Other Metaheuristics 57

2.4.7 Scatter Search

The central idea of scatter search (SS), “rst introduced by Glover (1977), is to keep a
small population of reference solutions, called areference set, and to combine them to
create new solutions.

A basic version of SS proceeds as follows. It starts by creating a reference set. This
is done by “rst generating a large number of solutions using adiversi“cation genera-
tion method. Then, these solutions are improved by a local search procedure. (Typi-
cally, the number of solutions generated in this way is ten times the size of the
reference set [Glover, Laguna, & Martš,́ 2002], while the typical size of a reference
set is usually between ten and twenty solutions.) From these improved solutions, the
reference setrs is built. The solutions to be put inrs are selected by taking into ac-
count both their solution quality and their diversity. Then, the solutions inrs are
used to build a setc_candof subsets of solutions. The solutions in each subset, which
can be of size 2 in the simplest case, are candidates for combination. Solutions within
each subset ofc_candare combined; each newly generated solution is improved by
local search and possibly replaces one solution in the reference set. The process of
subset generation, solution combination, and local search is repeated until the refer-
ence set does not change anymore.

A general outline of a basic SS algorithm is given in “gure 2.8, wherepop denotes
a population of candidate solutions. To de“ne an SS algorithm, the following func-
tions have to be speci“ed:

9 The function GenerateDiverseSolutions, which generates a population of solutions
as candidates for building the “rst reference set. These solutions must be diverse in
the sense that they must be spread over the search space
9 The function LocalSearch, which implements an improvement algorithm
9 The function BestOfPopulation, which returns the best candidate solution in the
current population
9 The function GenerateReferenceSet, which generates the initial reference set
9 The function GenerateSubsets, which generates the setc_cand
9 The function SelectSubset, which returns one element ofc_cand
9 The function CombineSolutions, which, when applied to one of the subsets in
c_cand, returns one or more candidate solutions
9 The function WorstOfPopulation, which returns the worst candidate solution in the
current population

58 Chapter 2 The Ant Colony Optimization Metaheuristic

9 The function UpdateReferenceSet, which decides whether a candidate solution
should replace one of the solutions in the reference set, and updates the reference set
accordingly

SS is a population-based algorithm that shares some similarities with EC algo-
rithms (Glover, 1977; Glover et al., 2002; Laguna & Martš,́ 2003). Solution combi-
nation in SS is analogous torecombinationin EC algorithms; however, in SS solution
combination was conceived as a linear combination of solutions that can lead to both
convex and nonconvex combinations of solutions in the reference set (Glover, 1977);

procedureScatterSearch
pop GenerateDiverseSolutions
pop LocalSearch(pop)
sbest BestOfPopulation(pop)
rs GenerateReferenceSet(pop)
new_solution true
while (new_solution ¼ true) do

new_solution false
c_cand GenerateSubsets(rs)
while (c_cand0 q) do

cc SelectSubset(c_cand)
s CombineSolutions(cc)
ŝs LocalSearch(s)
sworst WorstOfPopulation(rs)
if ŝs Brs and f ð̂ssÞ< f ðsworstÞthen

UpdateReferenceSet(ŝs)
new_solution true

end-if
if (f ð̂ssÞ< f ðsbestÞ) then

sbest ŝs
end-if
c_cand c_cand\cc

end-while
end-while
return sbest

end-procedure

Figure 2.8
High-level pseudo-code for scatter search (SS).

2.4 Other Metaheuristics 59

nonconvex combination of solutions allows the generation of solutions that are
external to the subspace spanned by the original reference set. See Laguna & Martš´
(2003) for an overview of implementation principles and of current applications.

2.5 Bibliographical Remarks

Combinatorial Optimization
Combinatorial optimization is a widely studied “eld for which a large number of
textbooks and research articles exist. One of the standard references is the book by
Papadimitriou & Steiglitz (1982). There also exist a variety of other textbooks which
give rather comprehensive overviews of the “eld. Examples are books by Lawler
(1976), by Nemhauser & Wolsey (1988), and the more recent book by Cook, Cun-
ningham, Pulleyblank & Schrijver (1998). For readers interested in digging into the
huge literature on combinatorial optimization, a good starting point is the book of
annotated bibliographies edited by Dell•Amico, Ma‹oli, & Martello (1997).

The standard reference on the theory ofN P -completeness is the excellent book by
Garey & Johnson (1979). A question of particular interest for researchers in meta-
heuristics concerns the computational complexity of approximation algorithms. A
recent detailed overview of the current knowledge on this subject is given in Hoch-
baum (1997) and in Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela, &
Protasi (1999). Of particular interest also is the recently developed complexity theory
for local search algorithms, introduced in an article by Johnson, Papadimitriou, &
Yannakakis (1988).

ACO Metaheuristic
The “rst algorithm to fall into the framework of the ACO metaheuristic was Ant
System (AS) (Dorigo, 1992; Dorigo, Maniezzo, & Colorni, 1991a, 1996). AS was
followed by a number of di¤erent algorithmic variants that tried to improve its
performance. The ACO metaheuristic, “rst described in the articles by Dorigo &
Di Caro (1999a,b) and Dorigo, Di Caro, & Gambardella (1999), is the result of
a research e¤ort directed at building a common framework for these algorithmic
variants. Most of the available ACO algorithms are presented in chapter 3 (up-to-
date information on ACO is maintained on the Web at www.aco-metaheuristic.org).
To be mentioned here is also the international workshop series ••ANTS: From Ant
Colonies to Arti“cial Ants•• on ant algorithms, where a large part of the contribu-
tions focus on di¤erent aspects of the ACO metaheuristic (see the Web at iridia.ulb.
ac.be/~ants/ for up-to-date information on this workshop series). The proceedings
of the most recent workshop of this series in 2002 are published in theLecture

60 Chapter 2 The Ant Colony Optimization Metaheuristic

Notes in Computer Scienceseries of Springer-Verlag (Dorigo, Di Caro, & Sampels,
2002a).

Other Metaheuristics
The area of metaheuristics has now become a large “eld with its own conference
series, the Metaheuristics International Conference, which has been held biannually
since 1995. After each conference, an edited book covering current research issues in
the “eld is published (Hansen & Ribeiro, 2001; Osman & Kelly, 1996; Voss, Mar-
tello, Osman, & Roucairol, 1999).

Single-authored books which give an overview of the whole metaheuristics “eld
are few. An inspiring such book is the recent one by Michalewicz & Fogel (2000).
Two other books which cover a number of di¤erent metaheuristics are those of Sait
& Y oussef (1999) and Karaboga & Pham (2000). A recent survey paper is that of
Blum & Roli (2003).

As far as single metaheuristics are concerned, we gave basic references to the
literature in section 2.4. A large collection of references up to 1996 is provided by
Osman & Laporte (1996). A book that gives an extensive overview of local search
methods is that edited by Aarts & Lenstra (1997), which contains a number of con-
tributions by leading experts. Another book which gives an overview of a number
of metaheuristics (including some variants not covered in this chapter) was edited
by Reeves (1995). Recent new metaheuristic ideas are collected in a book edited by
Corne, Dorigo, & Glover (1999). Currently, the best overview of the “eld is the
Handbook of Metaheuristics, edited by Glover & Kochenberger (2002).

2.6 Things to Remember

9 Combinatorial optimization problems arise in many practical and theoretical
problems. Often, these problems are very hard to solve to optimality. The theory
of N P -completeness classi“es the problems according to their di‹culty. For many
combinatorial optimization problems it has been shown that they belong to the class
of N P -hard problems, which means that in the worst case the e¤ort needed to “nd
optimal solutions increases exponentially with problem size, unlessP ¼ N P.
9 Exact algorithms try to “nd optimal solutions and additionally prove their opti-
mality. Despite recent successes, for manyN P -hard problems the performance of
exact algorithms is not satisfactory and their applicability is often limited to rather
small instances.
9 Approximate algorithms trade optimality for e‹ciency. Their main advantage is
that in practice they often “nd reasonably good solutions in a very short time.

2.6 Things to Remember 61

9 A metaheuristic is a set of algorithmic concepts that can be used to de“ne heuristic
methods applicable to a wide set of di¤erent problems. In other words, a meta-
heuristic can be seen as a general algorithmic framework which can be applied to
di¤erent optimization problems with relatively few modi“cations to make them
adapted to a speci“c problem.
9 The ACO metaheuristic was inspired by the foraging behavior of real ants. It has
a very wide applicability: it can be applied to any combinatorial optimization prob-
lem for which a solution construction procedure can be conceived. The ACO meta-
heuristic is characterized as being a distributed, stochastic search method based on
the indirect communication of a colony of (arti“cial) ants, mediated by (arti“cial)
pheromone trails. The pheromone trails in ACO serve as a distributed numerical
information used by the ants to probabilistically construct solutions to the problem
under consideration. The ants modify the pheromone trails during the algorithm•s
execution to re”ect their search experience.
9 The ACO metaheuristic is based on a generic problem representation and the de“-
nition of the ants• behavior. Given this formulation, the ants in ACO build solutions
to the problem being solved by moving concurrently and asynchronously on an ap-
propriately de“ned construction graph. The ACO metaheuristic de“nes the way the
solution construction, the pheromone update, and possibledaemon actions„ actions
which cannot be performed by a single ant because they require access to nonlocal
information„interact in the solution process.
9 The application of ACO is particularly interesting for (1) N P -hard prob-
lems, which cannot be e‹ciently solved by more traditional algorithms; (2) dynamic
shortest-path problems in which some properties of the problem•s graph representa-
tion change over time concurrently with the optimization process; and (3) problems
in which the computational architecture is spatially distributed. The versatility of the
ACO metaheuristic has been shown using several example applications.
9 The ACO metaheuristic is one out of a number of metaheuristics which have
been proposed in the literature. Other metaheuristics, including simulated anneal-
ing, tabu search, guided local search, iterated local search, greedy randomized adap-
tive search procedures, and evolutionary computation, have been discussed in this
chapter. Several characteristics make ACO a unique approach: it is a constructive,
population-based metaheuristic which exploits an indirect form of memory of pre-
vious performance. This combination of characteristics is not found in any of the
other metaheuristics.

62 Chapter 2 The Ant Colony Optimization Metaheuristic

2.7 Thought and Computer Exercises

Exercise 2.1 We have exempli“ed the application of the ACO metaheuristic to a
number of di¤erent combinatorial optimization problems. For each of these prob-
lems, do the following (for this exercise and the next, consider only the static example
problems introduced in this chapter):

1. De“ne the set of candidate solutions and the set of feasible solutions.

2. De“ne a greedy construction heuristic. (Answering the following questions may be
of some help: What are appropriate solution components? How do you measure the
objective function contribution of adding a solution component? Is it always possible
to construct feasible candidate solutions? How many di¤erent solutions can be gen-
erated with the constructive heuristic?)

3. De“ne a local search algorithm. (Answering the following questions may be of
some help: How can local changes be de“ned? How many solution components are
involved in each local search step? How do you choose which neighboring solution to
move to? Does the local search always maintain feasibility of solutions?)

Exercise 2.2 Implement the construction heuristics and the local search algorithms
de“ned in the “rst exercise in your favorite programming language.

Evaluate the performance of the resulting algorithms using test instances. Test
instances that have already been used by other researchers are available, for ex-
ample, at ORLIB mscmga.ms.ic.ac.uk/info.html. Another possibility is to look at
www.metaheuristics.org.

How strongly do the local search algorithms improve the solution quality if they
are applied to the solutions generated by the construction heuristics?

Exercise 2.3 Develop a description of how to apply the ACO metaheuristic to the
combinatorial optimization problems you are familiar with. To do so, answer the fol-
lowing questions: What are the solution components? Are there di¤erent ways of
de“ning the solution components? If yes, in which aspects do the de“nitions di¤er?
How is the construction graph de“ned? How are the pheromone trails and the heu-
ristic information de“ned? Are there di¤erent ways of de“ning the heuristic infor-
mation? How are the constraints treated? How do you implement the ants• behavior
and, in particular, how do you construct solutions?

Exercise 2.4 We have introduced three criteria to classify metaheuristics. One is the
use of solution construction versus the use of local search; another is the use, or not,
of a population of solutions; and the last the use, or not, of a memory within the

2.7 Thought and Computer Exercises 63

search process. Additional criteria concern whether the evaluation function is modi-
“ed during the search or not, whether an algorithm uses several neighborhoods or
only a single one, and whether the metaheuristics are inspired by some process occur-
ring in nature. Recapitulate the classi“cation of section 2.4, for the metaheuristics
discussed in this chapter. Extend this classi“cation to also include the three addi-
tional criteria given above.

Exercise 2.5 There are a number of additional metaheuristics available, some of
which are described inNew Ideas in Optimization(Corne et al., 1999). Develop short
descriptions of these metaheuristics in a format similar to that used in this chapter.
To do so, “rst consider the general principles underlying the metaheuristics, develop
a general algorithmic outline for the metaheuristic, and describe the functions that
need to be de“ned to implement the metaheuristic. Finally, consider the range of
available applications of that metaheuristic and “nd out about the theoretical knowl-
edge on the convergence behavior of these metaheuristics.

64 Chapter 2 The Ant Colony Optimization Metaheuristic

3Ant Colony Optimization Algorithms for the Traveling Salesman Problem

But you•re sixty years old. They can•t expect you to keep traveling every week.
„ Linda in act 1, scene 1 ofDeath of a Salesman, Arthur Miller, 1949

The traveling salesman problem is an extensively studied problem in the literature
and for a long time has attracted a considerable amount of research e¤ort. The TSP
also plays an important role in ACO research: the “rst ACO algorithm, called Ant
System, as well as many of the ACO algorithms proposed subsequently, was “rst
tested on the TSP.

There are several reasons for the choice of the TSP as the problem to explain the
working of ACO algorithms: it is an important N P -hard optimization problem that
arises in several applications; it is a problem to which ACO algorithms are easily
applied; it is easily understandable, so that the algorithm behavior is not obscured
by too many technicalities; and it is a standard test bed for new algorithmic ideas„
a good performance on the TSP is often taken as a proof of their usefulness. Addi-
tionally, the history of ACO shows that very often the most e‹cient ACO algorithms
for the TSP were also found to be among the most e‹cient ones for a wide variety of
other problems.

This chapter is therefore dedicated to a detailed explanation of the main members
of the ACO family through examples of their application to the TSP: algorithms are
described in detail, and a guide to their implementation in a C-like programming
language is provided.

3.1 The Traveling Salesman Problem

Intuitively, the TSP is the problem of a salesman who, starting from his hometown,
wants to “nd a shortest tour that takes him through a given set of customer cities and
then back home, visiting each customer city exactly once. More formally, the TSP
can be represented by a complete weighted graphG ¼ ðN; AÞwith N being the set of
nodes representing the cities, andA being the set of arcs. (Note that if the graph is
not complete, one can always add arcs to obtain a new, complete graphG0 with ex-
actly the same optimal solutions asG; this can be achieved by assigning to the addi-
tional arcs weights that are large enough to guarantee that they will not be used in
any optimal solution.) Each arcði; jÞAA is assigned a value (length)dij , which is the
distance between citiesi and j, with i; j AN. In the general case of the asymmetric
TSP, the distance between a pair of nodesi; j is dependent on the direction of tra-
versing the arc, that is, there is at least one arcði; jÞfor which dij 0 dji . In the sym-
metric TSP, dij ¼ dji holds for all the arcs in A. The goal in the TSP is to “nd a
minimum length Hamiltonian circuit of the graph, where a Hamiltonian circuit is a

closed path visiting each of then ¼ jN j nodes ofG exactly once. Thus, an optimal
solution to the TSP is a permutationp of the node indicesf 1; 2; . . . ; ng such that the
length f ðpÞis minimal, where f ðpÞis given by

f ðpÞ ¼
Xn� 1

i ¼1

dpðiÞpðiþ 1Þþ dpðnÞpð1Þ: ð3:1Þ

In the remainder of this chapter we try to highlight di¤erences in performance among
ACO algorithms by running computational experiments on instances available from
the TSPLIB benchmark library (Reinelt, 1991), which is accessible on the Web at
www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/. TSPLIB instances
have been used in a number of in”uential studies of the TSP (Gro¨tschel & Holland,
1991; Reinelt, 1994; Johnson & McGeoch, 2002) and, in part, they stem from prac-
tical applications of the TSP such as drilling holes for printed circuit boards (Reinelt,
1994) or the positioning of X-ray devices (Bland & Shallcross, 1989). Most of the
TSPLIB instances are geometric TSP instances, that is, they are de“ned by the co-
ordinates of a set of points and the distance between these points is computed
according to some metric. Figure 3.1 gives two examples of such instances. We refer
the reader to the TSPLIB website for a detailed description of how the distances
are generated. In any case, independently of which metric is used, in all TSPLIB in-
stances the distances are rounded to integers. The main reason for this choice is of
a historical nature: in early computers integer computations were much quicker to
perform than computations using ”oating numbers.

Figure 3.1
Examples of TSP: The “gure on the left shows the TSP instanceatt532 , which comprises 532 cities in
the United States. The “gure on the the right shows instancepcb1173 , which represents the location of
1173 holes to be drilled on a printed circuit board. Each point gives the localization of cities or holes to be
drilled, respectively. Both instances are taken from TSPLIB.

66 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

3.2 ACO Algorithms for the TSP

ACO can be applied to the TSP in a straightforward way, as described in section
2.3.1; the construction graphG ¼ ðC; LÞ, where the setL fully connects the compo-
nentsC, is identical to the problem graph, that is,C ¼ N and L ¼ A; the set of states
of the problem corresponds to the set of all possible partial tours; and the constraints
Wenforce that the ants construct only feasible tours that correspond to permutations
of the city indices. This is always possible, because the construction graph is a com-
plete graph and any closed path that visits all the nodes without repeating any node
corresponds to a feasible tour.

In all available ACO algorithms for the TSP, the pheromone trails are associated
with arcs and thereforet ij refers to the desirability of visiting city j directly after city
i. The heuristic information is chosen ashij ¼ 1=dij , that is, the heuristic desirability
of going from city i directly to city j is inversely proportional to the distance between
the two cities. In casedij ¼ 0 for some arcði; jÞ, the correspondinghij is set to a very
small value. As we discuss later, for implementation purposes pheromone trails are
collected into a pheromone matrix whose elements are thet ij •s. This can be done
analogously for the heuristic information.

Tours are constructed by applying the following simple constructive procedure to
each ant: (1) choose, according to some criterion, a start city at which the ant is
positioned; (2) use pheromone and heuristic values to probabilistically construct a
tour by iteratively adding cities that the ant has not visited yet (see “gure 3.2), until
all cities have been visited; and (3) go back to the initial city. After all ants have
completed their tour, they may deposit pheromone on the tours they have followed.
We will see that, in some cases, before adding pheromone, the tours constructed by

i

j

k

g

� ij � ij

?
,

Figure 3.2
An ant arriving in city i chooses the next city to move to as a function of the pheromone valuest ij and of
the heuristic valueshij on the arcs connecting cityi to the cities j the ant has not visited yet.

3.2 ACO Algorithms for the TSP 67

the ants may be improved by the application of a local search procedure. This high-
level description applies to most of the published ACO algorithms for the TSP, one
notable exception being Ant Colony System (described in chapter 3, section 3.4.1), in
which pheromone evaporation is interleaved with tour construction. In fact, when
applied to the TSP and to virtually any other static combinatorial optimization
problem (see chapter 2, section 2.2), most ACO algorithms employ a more speci“c
algorithmic scheme than the general one of the ACO metaheuristic given in “gure
2.1. This algorithm•s scheme is shown in “gure 3.3; after initializing the parameters
and the pheromone trails, these ACO algorithms iterate through a main loop, in
which “rst all of the ants• tours are constructed, then an optional phase takes place in
which the ants• tours are improved by the application of some local search algorithm,
and “nally the pheromone trails are updated. This last step involves pheromone
evaporation and the update of the pheromone trails by the ants to re”ect their search
experience. In “gure 3.3 theDaemonActions procedure of “gure 2.1 is replaced by
the ApplyLocalSearch procedure, and by a routine (not shown in the “gure and most
often integrated in theUpdatePheromones procedure to facilitate implementation)
that helps selecting the ants that should be allowed to deposit pheromone.

As already mentioned, the “rst ACO algorithm, Ant System (Dorigo, 1992;
Dorigo et al., 1991a, 1996), was introduced using the TSP as an example application.
AS achieved encouraging initial results, but was found to be inferior to state-of-the-art
algorithms for the TSP. The importance of AS therefore mainly lies in the inspiration
it provided for a number of extensions that signi“cantly improved performance and
are currently among the most successful ACO algorithms. In fact, most of these ex-
tensions are direct extensions of AS in the sense that they keep the same solution
construction procedure as well as the same pheromone evaporation procedure. These
extensions include elitist AS, rank-based AS, andMAX …MIN AS. The main dif-

procedureACOMetaheuristicStatic
Set parameters, initialize pheromone trails
while (termination condition not met) do

ConstructAntsSolutions
ApplyLocalSearch % optional
UpdatePheromones

end
end

Figure 3.3
Algorithmic skeleton for ACO algorithms applied to ••static•• combinatorial optimization problems. The
application of a local search algorithm is a typical example of a possible daemon action in ACO algorithms.

68 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

ferences between AS and these extensions are the way the pheromone update is per-
formed, as well as some additional details in the management of the pheromone
trails. A few other ACO algorithms that more substantially modify the features of
AS were also proposed in the literature. These extensions, presented in section 3.4,
include Ant-Q and its successor Ant Colony System (ACS), the ANTS algorithm,
which exploits ideas taken from lower bounding techniques in mathematical pro-
gramming, and the hyper-cube framework for ACO. We note that not all available
ACO algorithms have been applied to the TSP: exceptions are Maniezzo•s ANTS
(see section 3.4.2) and ACO implementations based on the hyper-cube framework
(see section 3.4.3).

As a “nal introductory remark, let us note that we do not present the available
ACO algorithms in chronological order of their “rst publication but rather in the
order of increasing complexity in the modi“cations they introduce with respect to
AS. The chronological order of the “rst references and of the main publications on
the available ACO algorithms is indicated in table 3.1. Striking is the relatively large
gap between 1991…92 and 1995…96. In fact, the seminal publication on AS inIEEE
Transactions on Systems, Man, and Cybernetics, although submitted in 1991, ap-
peared only in 1996; starting from that publication the interest in ACO has grown
very quickly.

3.3 Ant System and Its Direct Successors

In this section we present AS and those ACO algorithms that are largely similar to
AS. We do not consider the use of the optional local search phase; the addition of
local search to ACO algorithms is the topic of section 3.7.

Table 3.1
ACO algorithms according to chronological order of appearance

ACO algorithm TSP Main references

Ant System (AS) yes Dorigo (1992); Dorigo, Maniezzo, & Colorni (1991a,b, 1996)
Elitist AS yes Dorigo (1992); Dorigo, Maniezzo, & Colorni (1991a,b, 1996)
Ant-Q yes Gambardella & Dorigo (1995); Dorigo & Gambardella (1996)
Ant Colony System yes Dorigo & Gambardella (1997a,b)
MAX …MIN AS yes Stützle & Hoos (1996, 2000); Stu¨tzle (1999)
Rank-based AS yes Bullnheimer, Hartl, & Strauss (1997, 1999c)
ANTS no Maniezzo (1999)
Hyper-cube AS no Blum, Roli, & Dorigo (2001); Blum & Dorigo (2004)

In the column TSP we indicate whether this ACO algorithm has already been applied to the traveling
salesman problem.

3.3 Ant System and Its Direct Successors 69

3.3.1 Ant System

Initially, three di¤erent versions of AS were proposed (Dorigo et al., 1991a; Colorni,
Dorigo, & Maniezzo, 1992a; Dorigo, 1992). These were calledant-density, ant-
quantity, and ant-cycle. Whereas in the ant-density and ant-quantity versions the ants
updated the pheromone directly after a move from one city to an adjacent city, in the
ant-cycle version the pheromone update was only done after all the ants had con-
structed the tours and the amount of pheromone deposited by each ant was set to be
a function of the tour quality. Nowadays, when referring to AS, one actually refers
to ant-cycle since the two other variants were abandoned because of their inferior
performance.

The two main phases of the AS algorithm constitute the ants• solution construc-
tion and the pheromone update. In AS a good heuristic to initialize the pheromone
trails is to set them to a value slightly higher than the expected amount of pheromone
deposited by the ants in one iteration; a rough estimate of this value can be obtained
by setting, Eði; jÞ, t ij ¼ t 0 ¼ m=C nn, where m is the number of ants, andC nn is the
length of a tour generated by the nearest-neighbor heuristic (in fact, any other rea-
sonable tour construction procedure would work “ne). The reason for this choice is
that if the initial pheromone valuest 0•s are too low, then the search is quickly biased
by the “rst tours generated by the ants, which in general leads toward the explora-
tion of inferior zones of the search space. On the other side, if the initial pheromone
values are too high, then many iterations are lost waiting until pheromone evapora-
tion reduces enough pheromone values, so that pheromone added by ants can start
to bias the search.

Tour Construction
In AS, m (arti“cial) ants concurrently build a tour of the TSP. Initially, ants are put
on randomly chosen cities. At each construction step, antk applies a probabilistic
action choice rule, calledrandom proportionalrule, to decide which city to visit next.
In particular, the probability with which ant k, currently at city i, chooses to go to
city j is

pk
ij ¼

½t ij �
a½hij �

b

P
l AN k

i
½t il �

a½hil �
b ; if j AN k

i ; ð3:2Þ

where hij ¼ 1=dij is a heuristic value that is available a priori,a and b are two pa-
rameters which determine the relative in”uence of the pheromone trail and the heu-
ristic information, and N k

i is the feasible neighborhood of antk when being at cityi,
that is, the set of cities that antk has not visited yet (the probability of choosing a

70 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

city outside N k
i is 0). By this probabilistic rule, the probability of choosing a partic-

ular arc ði; jÞincreases with the value of the associated pheromone trailt ij and of the
heuristic information valuehij . The role of the parametersa and b is the following. If
a ¼ 0, the closest cities are more likely to be selected: this corresponds to a classic
stochastic greedy algorithm (with multiple starting points since ants are initially ran-
domly distributed over the cities). Ifb ¼ 0, only pheromone ampli“cation is at work,
that is, only pheromone is used, without any heuristic bias. This generally leads to
rather poor results and, in particular, for values ofa > 1 it leads to the rapid emer-
gence of astagnationsituation, that is, a situation in which all the ants follow the
same path and construct the same tour, which, in general, is strongly suboptimal
(Dorigo, 1992; Dorigo et al., 1996). Good parameter values for the algorithms pre-
sented in this section are summarized in box 3.1.

Box 3.1
Parameter Settings for ACO Algorithms without Local Search

Our experimental study of the various ACO algorithms for the TSP has identi“ed parameter set-
tings that result in good performance. For the parameters that are common to almost all the ACO
algorithms, good settings (if no local search is applied) are given in the following table.

ACO algorithm a b r m t 0

AS 1 2 to 5 0.5 n m=C nn

EAS 1 2 to 5 0.5 n ðeþ mÞ=r C nn

ASrank 1 2 to 5 0.1 n 0:5rðr � 1Þ=r C nn

MM AS 1 2 to 5 0.02 n 1=r C nn

ACS „ 2 to 5 0.1 10 1 =nCnn

Here, n is the number of cities in a TSP instance. All variants of AS also require some additional
parameters. Good values for these parameters are:

EAS: The parametere is set toe ¼ n.

ASrank: The number of ants that deposit pheromones isw ¼ 6.

MM AS: The pheromone trail limits aret max ¼ 1=r C bs and t min ¼ t maxð1 �
���������
0:05n

p
Þ=ððavg� 1Þ ����������

0:05n
p

Þ, where avgis the average number of di¤erent choices available to an ant at each step while
constructing a solution (for a justi“cation of these values see Stu¨tzle & Hoos (2000). When applied
to small TSP instances with up to 200 cities, good results are obtained by using always the iteration-
best pheromone update rule, while on larger instances it becomes increasingly important to alter-
nate between the iteration-best and the best-so-far pheromone update rules.

ACS: In the local pheromone trail update rule:x ¼ 0:1. In the pseudorandom proportional action
choice rule:q0 ¼ 0:9.

It should be clear that in individual instances, di¤erent settings may result in much better per-
formance. However, these parameters were found to yield reasonable performance over a signi“-
cant set of TSP instances.

3.3 Ant System and Its Direct Successors 71

Each ant k maintains a memoryM k which contains the cities already visited, in
the order they were visited. This memory is used to de“ne the feasible neighborhood
N k

i in the construction rule given by equation (3.2). In addition, the memoryM k

allows ant k both to compute the length of the tourT k it generated and to retrace the
path to deposit pheromone.

Concerning solution construction, there are two di¤erent ways of implementing it:
parallel and sequential solution construction. In the parallel implementation, at each
construction step all the ants move from their current city to the next one, while in
the sequential implementation an ant builds a complete tour before the next one
starts to build another one. In the AS case, both choices for the implementation of
the tour construction are equivalent in the sense that they do not signi“cantly in”u-
ence the algorithm•s behavior. As we will see, this is not the case for other ACO
algorithms such as ACS.

Update of Pheromone Trails
After all the ants have constructed their tours, the pheromone trails are updated.
This is done by “rst lowering the pheromone value onall arcs by a constant factor,
and then adding pheromone on the arcs the ants have crossed in their tours. Phero-
mone evaporation is implemented by

t ij ð 1 � r Þt ij ; Eði; jÞAL; ð3:3Þ

where 0< r a 1 is the pheromone evaporation rate. The parameterr is used to
avoid unlimited accumulation of the pheromone trails and it enables the algorithm to
••forget•• bad decisions previously taken. In fact, if an arc is not chosen by the ants,
its associated pheromone value decreases exponentially in the number of iterations.
After evaporation, all ants deposit pheromone on the arcs they have crossed in their
tour:

t ij t ij þ
Xm

k¼1

Dt k
ij ; Eði; jÞAL; ð3:4Þ

whereDt k
ij is the amount of pheromone antk deposits on the arcs it has visited. It is

de“ned as follows:

Dt k
ij ¼

1=C k; if arc ði; jÞbelongs toT k;
0; otherwise;

�
ð3:5Þ

whereC k, the length of the tourT k built by the k-th ant, is computed as the sum of
the lengths of the arcs belonging toT k. By means of equation (3.5), the better an

72 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

ant•s tour is, the more pheromone the arcs belonging to this tour receive. In general,
arcs that are used by many ants and which are part of short tours, receive more
pheromone and are therefore more likely to be chosen by ants in future iterations of
the algorithm.

As we said, the relative performance of AS when compared to other metaheuristics
tends to decrease dramatically as the size of the test-instance increases. Therefore, a
substantial amount of research on ACO has focused on how to improve AS.

3.3.2 Elitist Ant System

A “rst improvement on the initial AS, called the elitist strategy for Ant System
(EAS), was introduced in Dorigo (1992) and Dorigo et al., (1991a, 1996). The idea is
to provide strong additional reinforcement to the arcs belonging to the best tour
found since the start of the algorithm; this tour is denoted asT bs (best-so-fartour) in
the following. Note that this additional feedback to the best-so-far tour (which can
be viewed as additional pheromone deposited by an additional ant calledbest-so-far
ant) is another example of adaemon actionof the ACO metaheuristic.

Update of Pheromone Trails
The additional reinforcement of tourT bs is achieved by adding a quantitye=C bs to
its arcs, wheree is a parameter that de“nes the weight given to the best-so-far tour
T bs, and C bs is its length. Thus, equation (3.4) for the pheromone deposit becomes

t ij t ij þ
Xm

k¼1

Dt k
ij þ eDt bs

ij ; ð3:6Þ

whereDt k
ij is de“ned as in equation (3.5) andDt bs

ij is de“ned as follows:

Dt bs
ij ¼

1=C bs; if arc ði; jÞbelongs toT bs;
0; otherwise:

�
ð3:7Þ

Note that in EAS, as well as in all other algorithms presented in section 3.3, phero-
mone evaporation is implemented as in AS.

Computational results presented in Dorigo (1992) and Dorigo et al. (1991a, 1996)
suggest that the use of the elitist strategy with an appropriate value for parametere
allows AS to both “nd better tours and “nd them in a lower number of iterations.

3.3.3 Rank-Based Ant System

Another improvement over AS is therank-basedversion of ASðASrankÞ, proposed by
Bullnheimer et al. (1999c). In ASrank each ant deposits an amount of pheromone that

3.3 Ant System and Its Direct Successors 73

decreases with its rank. Additionally, as in EAS, the best-so-far ant always deposits
the largest amount of pheromone in each iteration.

Update of Pheromone Trails
Before updating the pheromone trails, the ants are sorted by increasing tour length
and the quantity of pheromone an ant deposits is weighted according to the rankr
of the ant. Ties can be solved randomly (in our implementation they are solved by
lexicographic ordering on the ant namek). In each iteration only theðw � 1Þbest-
ranked ants and the ant that produced the best-so-far tour (this ant does not nec-
essarily belong to the set of ants of the current algorithm iteration) are allowed to
deposit pheromone. The best-so-far tour gives the strongest feedback, with weightw
(i.e., its contribution 1=C bs is multiplied by w); the r-th best ant of the current itera-
tion contributes to pheromone updating with the value 1=C r multiplied by a weight
given by maxf 0; w � rg. Thus, the ASrank pheromone update rule is

t ij t ij þ
Xw� 1

r¼1

ðw � rÞDt r
ij þ wDt bs

ij ; ð3:8Þ

where Dt r
ij ¼ 1=C r and Dt bs

ij ¼ 1=C bs. The results of an experimental evaluation by
Bullnheimer et al. (1999c) suggest that ASrank performs slightly better than EAS and
signi“cantly better than AS.

3.3.4 MAX …MIN Ant System

MAX …MIN Ant System (MM AS) (Stützle & Hoos, 1997, 2000; Stu¨tzle, 1999)
introduces four main modi“cations with respect to AS. First, it strongly exploits the
best tours found: only either the iteration-best ant, that is, the ant that produced the
best tour in the current iteration, or the best-so-far ant is allowed to deposit phero-
mone. Unfortunately, such a strategy may lead to a stagnation situation in which all
the ants follow the same tour, because of the excessive growth of pheromone trails
on arcs of a good, although suboptimal, tour. To counteract this e¤ect, a second
modi“cation introduced by MM AS is that it limits the possible range of pheromone
trail values to the interval ½t min; t max�. Third, the pheromone trails are initialized to
the upper pheromone trail limit, which, together with a small pheromone evapora-
tion rate, increases the exploration of tours at the start of the search. Finally, in
MM AS, pheromone trails are reinitialized each time the system approaches stagna-
tion or when no improved tour has been generated for a certain number of consecu-
tive iterations.

74 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

Update of Pheromone Trails
After all ants have constructed a tour, pheromones are updated by applying evapo-
ration as in AS [equation (3.3)], followed by the deposit of new pheromone as
follows:

t ij t ij þ Dt best
ij ; ð3:9Þ

where Dt best
ij ¼ 1=C best. The ant which is allowed to add pheromone may be either

the best-so-far, in which caseDt best
ij ¼ 1=C bs, or the iteration-best, in which case

Dt best
ij ¼ 1=C ib, where C ib is the length of the iteration-best tour. In general, in

MM AS implementations both the iteration-best and the best-so-far update rules are
used, in an alternate way. Obviously, the choice of the relative frequency with which
the two pheromone update rules are applied has an in”uence on how greedy the
search is: When pheromone updates are always performed by the best-so-far ant, the
search focuses very quickly aroundT bs, whereas when it is the iteration-best ant that
updates pheromones, then the number of arcs that receive pheromone is larger and
the search is less directed.

Experimental results indicate that for small TSP instances it may be best to use
only iteration-best pheromone updates, while for large TSPs with several hundreds of
cities the best performance is obtained by giving an increasingly stronger emphasis to
the best-so-far tour. This can be achieved, for example, by gradually increasing the
frequency with which the best-so-far tourT bs is chosen for the trail update (Stu¨tzle,
1999).

Pheromone Trail Limits
In MM AS, lower and upper limitst min and t max on the possible pheromone values
on any arc are imposed in order to avoid search stagnation. In particular, the im-
posed pheromone trail limits have the e¤ect of limiting the probabilitypij of selecting
a city j when an ant is in city i to the interval ½pmin; pmax�, with 0 < pmin a pij a
pmax a 1. Only when an antk has just one single possible choice for the next city,
that is jN k

i j ¼ 1, we havepmin ¼ pmax ¼ 1.
It is easy to show that, in the long run, the upper pheromone trail limit on any arc

is bounded by 1=r C � , whereC � is the length of the optimal tour (see proposition 4.1
in chapter 4). Based on this result,MM AS uses an estimate of this value, 1=r C bs, to
de“ne t max: each time a new best-so-far tour is found, the value oft max is updated.
The lower pheromone trail limit is set to t min ¼ t max=a, where a is a parameter
(Stützle, 1999; Stu¨tzle & Hoos, 2000). Experimental results (Stu¨tzle, 1999) suggest
that, in order to avoid stagnation, the lower pheromone trail limits play a more

3.3 Ant System and Its Direct Successors 75

important role than t max. On the other hand, t max remains useful for setting the
pheromone values during the occasional trail reinitializations.

Pheromone Trail Initialization and Reinitialization
At the start of the algorithm, the initial pheromone trails are set to an estimate of the
upper pheromone trail limit. This way of initializing the pheromone trails, in combi-
nation with a small pheromone evaporation parameter, causes a slow increase in the
relative di¤erence in the pheromone trail levels, so that the initial search phase of
MM AS is very explorative.

As a further means of increasing the exploration of paths that have only a
small probability of being chosen, inMM AS pheromone trails are occasionally re-
initialized. Pheromone trail reinitialization is typically triggered when the algorithm
approaches the stagnation behavior (as measured by some statistics on the phero-
mone trails) or if for a given number of algorithm iterations no improved tour is
found.

MM AS is one of the most studied ACO algorithms and it has been extended in
many ways. In one of these extensions, the pheromone update rule occasionally uses
the best tour found since the most recent reinitialization of the pheromone trails in-
stead of the best-so-far tour (Stu¨tzle, 1999; Stu¨tzle & Hoos, 2000). Another variant
(Stützle, 1999; Stu¨tzle & Hoos, 1999) exploits the same pseudorandom proportional
action choice rule as introduced by ACS [see equation (3.10) below], an ACO algo-
rithm that is presented in section 3.4.1.

3.4 Extensions of Ant System

The ACO algorithms we have introduced so far achieve signi“cantly better perfor-
mance than AS by introducing minor changes in the overall AS algorithmic structure.
In this section we discuss two additional ACO algorithms that, although strongly
inspired by AS, achieve performance improvements through the introduction of new
mechanisms based on ideas not included in the original AS. Additionally, we present
the hyper-cube framework for ACO algorithms.

3.4.1 Ant Colony System

ACS (Dorigo & Gambardella, 1997a,b) di¤ers from AS in three main points. First,
it exploits the search experience accumulated by the ants more strongly than AS
does through the use of a more aggressive action choice rule. Second, pheromone
evaporation and pheromone deposit take place only on the arcs belonging to the
best-so-far tour. Third, each time an ant uses an arcði; jÞto move from city i to city

76 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

j , it removes some pheromone from the arc to increase the exploration of alternative
paths. In the following, we present these innovations in more detail.

Tour Construction
In ACS, when located at cityi, ant k moves to a city j chosen according to the so-
called pseudorandom proportionalrule, given by

j ¼ argmaxl AN k
i

f t il ½hil �
bg; if qa q0;

J; otherwise;

�
ð3:10Þ

whereq is a random variable uniformly distributed in½0; 1�, q0 ð0a q0 a 1Þis a pa-
rameter, andJ is a random variable selected according to the probability distribution
given by equation (3.2) (witha ¼ 1).

In other words, with probability q0 the ant makes the best possible move as indi-
cated by the learned pheromone trails and the heuristic information (in this case, the
ant is exploiting the learned knowledge), while with probabilityð1 � q0Þit performs a
biased exploration of the arcs. Tuning the parameterq0 allows modulation of the
degree of exploration and the choice of whether to concentrate the search of the sys-
tem around the best-so-far solution or to explore other tours.

Global Pheromone Trail Update
In ACS only one ant (the best-so-far ant) is allowed to add pheromone after each
iteration. Thus, the update in ACS is implemented by the following equation:

t ij ð 1 � r Þt ij þ r Dt bs
ij ; Eði; jÞAT bs; ð3:11Þ

whereDt bs
ij ¼ 1=C bs. It is important to note that in ACS the pheromone trail update,

both evaporation and new pheromone deposit, only applies to the arcs ofT bs, not to
all the arcs as in AS. This is important, because in this way the computational com-
plexity of the pheromone update at each iteration is reduced fromOðn2Þto OðnÞ,
wheren is the size of the instance being solved. As usual, the parameterr represents
pheromone evaporation; unlike AS•s equations (3.3) and (3.4), in equation (3.11) the
deposited pheromone is discounted by a factorr ; this results in the new pheromone
trail being a weighted average between the old pheromone value and the amount of
pheromone deposited.

In initial experiments, the use of the iteration-best tour was also considered for
the pheromone updates. Although for small TSP instances the di¤erences in the
“nal tour quality obtained by updating the pheromones using the best-so-far or the
iteration-best tour was found to be minimal, for instances with more than 100 cities
the use of the best-so-far tour gave far better results.

3.4 Extensions of Ant System 77

Local Pheromone Trail Update
In addition to the global pheromone trail updating rule, in ACS the ants use a local
pheromone update rule that they apply immediately after having crossed an arcði; jÞ
during the tour construction:

t ij ð 1 � xÞt ij þ xt 0; ð3:12Þ

wherex, 0 < x < 1, and t 0 are two parameters. The value oft 0 is set to be the same
as the initial value for the pheromone trails. Experimentally, a good value forx was
found to be 0:1, while a good value fort 0 was found to be 1=nCnn, where n is the
number of cities in the TSP instance andC nn is the length of a nearest-neighbor tour.
The e¤ect of the local updating rule is that each time an ant uses an arcði; jÞ its
pheromone trail t ij is reduced, so that the arc becomes less desirable for the following
ants. In other words, this allows an increase in the exploration of arcs that have not
been visited yet and, in practice, has the e¤ect that the algorithm does not show a
stagnation behavior (i.e., ants do not converge to the generation of a common path)
(Dorigo & Gambardella, 1997b). It is important to note that, while for the previously
discussed AS variants it does not matter whether the ants construct the tours in par-
allel or sequentially, this makes a di¤erence in ACS because of the local pheromone
update rule. In most ACS implementations the choice has been to let all the ants
move in parallel, although there is, at the moment, no experimental evidence in favor
of one choice or the other.

Some Additional Remarks
ACS is based on Ant-Q, an earlier algorithm proposed by Gambardella & Dorigo
(1995) (see also Dorigo & Gambardella, 1996). In practice, the only di¤erence be-
tween ACS and Ant-Q is in the de“nition of the termt 0, which in Ant-Q is set to
t 0 ¼ g maxj AN k

i
f t ij g, whereg is a parameter and the maximum is taken over the set

of pheromone trails on the arcs connecting the cityi on which ant k is positioned to
all the cities the ant has not visited yet (i.e., those in the neighborhoodN k

i).
This particular choice for t 0 was motivated by an analogy with a similar formula

used in Q-learning (Watkins & Dayan, 1992), a well-known reinforcement learning
algorithm (Sutton & Barto, 1998). Because it was found that settingt 0 to a small
constant value resulted in a simpler algorithm with approximately the same perfor-
mance, Ant-Q was abandoned.

There also exists an interesting relationship betweenMM AS and ACS: they both
use pheromone trail limits, although these are explicit inMM AS and implicit in
ACS. In fact, in ACS implementations the pheromone trails can never drop below
t 0 because both pheromone update rules [equations (3.11) and (3.12)] always add an

78 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

amount of pheromone greater than or equal tot 0, and the initial pheromone trail
value is set to the valuet 0. On the other hand, as discussed in section 4.3.5.2 of
chapter 4, it can easily be veri“ed that the pheromone trails can never have a value
higher than 1=C bs. Therefore, in ACS it is implicitly guaranteed thatEði; jÞ: t 0 a
t ij a 1=C bs.

Finally, it should be mentioned that ACS was the “rst ACO algorithm to use
candidate liststo restrict the number of available choices to be considered at each
construction step. In general, candidate lists contain a number of the best rated
choices according to some heuristic criterion. In the TSP case, a candidate list con-
tains for each cityi those citiesj that are at a small distance. There are several ways
to de“ne which cities enter the candidate lists. ACS “rst sorts the neighbors of a city
i according to nondecreasing distances and then inserts a “xed numbercand of
closest cities intoi•s candidate list. In this case, the candidate lists can be built before
solving a TSP instance and they remain “xed during the whole solution process.
When located ati, an ant chooses the next city among those ofi•s candidate list that
are not visited yet. Only if all the cities of the candidate list are already marked as
visited, is one of the remaining cities chosen. In the TSP case, experimental results
have shown that the use of candidate lists improves the solution quality reached by
the ACO algorithms. Additionally, it leads to a signi“cant speedup in the solution
process (Gambardella & Dorigo, 1996).

3.4.2 Approximate Nondeterministic Tree Search

Approximate nondeterministic tree search (ANTS) (Maniezzo, 1999) is an ACO
algorithm that exploits ideas from mathematical programming. In particular, ANTS
computes lower bounds on the completion of a partial solution to de“ne the heuristic
information that is used by each ant during the solution construction. The name
ANTS derives from the fact that the proposed algorithm can be interpreted as an
approximate nondeterministic tree search since it can be extended in a straightfor-
ward way to a branch & bound (Bertsekas, 1995a) procedure. In fact, in Maniezzo
(1999) the ANTS algorithm is extended to an exact algorithm; we refer the interested
reader to the original reference for details; here we only present the ACO part of the
algorithm.

Apart from the use of lower bounds, ANTS also introduces two additional mod-
i“cations with respect to AS: the use of a novel action choice rule and a modi“ed
pheromone trail update rule.

Use of Lower Bounds
In ANTS, lower bounds on the completion cost of a partial solution are used to
compute heuristic information on the attractiveness of adding an arcði; jÞ. This is

3.4 Extensions of Ant System 79

achieved by tentatively adding the arc to the current partial solution and by estimat-
ing the cost of a complete tour containing this arc by means of a lower bound. This
estimate is then used to compute the valuehij that in”uences the probabilistic deci-
sions taken by the ant during the solution construction: the lower the estimate the
more attractive the addition of a speci“c arc.

The use of lower bounds to compute the heuristic information has the advantage
in that otherwise feasible moves can be discarded if they lead to partial solutions
whose estimated costs are larger than the best-so-far solution. A disadvantage is that
the lower bound has to be computed at each single construction step of an ant and
therefore a signi“cant computational overhead might be incurred. To avoid this as
much as possible, it is important that the lower bound is computed e‹ciently.

Solution Construction
The rule used by ANTS to compute the probabilities during the ants• solution con-
struction has a di¤erent form than that used in most other ACO algorithms. In
ANTS, an ant k that is situated at city i chooses the next cityj with a probability
given by

pk
ij ¼

zt ij þ ð1 � zÞhijP
l AN k

i
zt il þ ð1 � zÞhil

; if j AN k
i ; ð3:13Þ

where z is a parameter, 0a za 1, and N k
i is, as before, the feasible neighborhood

(as usual, the probability of choosing an arc not belonging toN k
i is 0).

An advantage of equation (3.13) is that, when compared to equation (3.2), only
one parameter is used. Additionally, simpler operations that are faster to compute,
like sums instead of multiplications for combining the pheromone trail and the heu-
ristic information, are applied.

Pheromone Trail Update
Another particularity of ANTS is that it has no explicit pheromone evaporation.
Pheromone updates are implemented as follows:

t ij t ij þ
Xm

k¼1

Dt k
ij : ð3:14Þ

In the above equation (3.14),Dt k
ij is given by

Dt k
ij ¼

Q 1 �
C k � LB
Lavg � LB

� �
; if arc ði; jÞbelongs toT k;

0; otherwise;

8
<

:
ð3:15Þ

80 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

where Q is a parameter,LB is the value of a lower bound on the optimal solution
value computed at the start of the algorithm and we haveLB a C � , whereC � is the
length of the optimal tour, and Lavg is the moving average of the lastl tours gen-
erated by the ants, that is, it is the average length of thel most recent tours
generated by the algorithm (withl being a parameter of the algorithm). If an ant•s
solution is worse than the current moving average, the pheromone trail of the arcs
used by the ant is decreased; if the ant•s solution is better, the pheromone trail is
increased. The additional e¤ect of using equation (3.15) is a dynamic scaling of the
objective function di¤erences which may be advantageous if in later stages of the
search the absolute di¤erence between the ant•s solution qualities becomes smaller
and, consequently,C k moves closer toLavg. (Note that once a solution with objective
function value equal to LB is found, the algorithm can be stopped, because this
means that an optimal solution is found.)

As said before, ANTS has not been applied to the TSP so far, although some
limited experiments were performed for the asymmetric TSP (Maniezzo, 2000). The
“rst and main publication of ANTS concerns the quadratic assignment problem
(Maniezzo, 1999), for which it obtained very good results (see chapter 5, section
5.2.1).

3.4.3 Hyper-Cube Framework for ACO

The hyper-cube framework for ACO was introduced by Blum, Roli, & Dorigo (2001)
to automatically rescale the pheromone values in order for them to lie always in the
interval ½0; 1�. This choice was inspired by the mathematical programming formula-
tion of many combinatorial optimization problems, in which solutions can be repre-
sented by binary vectors. In such a formulation, the decision variables, which can
assume the valuesf 0; 1g, typically correspond to the solution components as they are
used by the ants for solution construction. A solution to a problem then corresponds
to one corner of then-dimensional hyper-cube, wheren is the number of decision
variables. One particular way of generating lower bounds for the problem under
consideration is to relax the problem, allowing each decision variable to take values
in the interval ½0; 1�. In thiscase, the set of feasible solutionsSrx consists of all vectors
~vv AR n that are convex combinations of binary vectors~xx AB n:

~vv ASrx , ~vv ¼
X

~xxi AB n

gi � ~xxi ; gi A½0; 1�;
X

gi ¼ 1:

The relationship with ACO becomes clear once we normalize the pheromone
values to lie in the interval½0; 1�. In this case, the pheromone vector~tt ¼ ðt 1; . . . ; t nÞ

3.4 Extensions of Ant System 81

corresponds to a point in ~SS; in case~tt is a binary vector, it corresponds to a solution
of the problem.

When applied to the TSP, a decision variablexij can be associated with each arc
ði; jÞ. This decision variable is set toxij ¼ 1 when the arcði; jÞis used, and toxij ¼ 0
otherwise. In this case, a pheromone value is associated with each decision variable.
In fact, the reader may have noticed that this representation corresponds to the
standard way of attacking TSPs with ACO algorithms, as presented before.

Pheromone Trail Update Rules
In the hyper-cube framework the pheromone trails are forced to stay in the interval
½0; 1�. This is achieved by adapting the standard pheromone update rule of ACO
algorithms. Let us explain the necessary change considering the pheromone update
rule of AS [equations (3.3) and (3.4)]. The modi“ed rule is given by

t ij ð 1 � r Þt ij þ r
Xm

k¼1

Dt k
ij ; ð3:16Þ

where, to compute the rightmost term, instead of equation (3.7) we use

Dt k
ij ¼

1=C k
P m

h¼1ð1=C hÞ
; if arc ði; jÞis used by antk;

0; otherwise:

8
><

>:
ð3:17Þ

This pheromone trail update rule guarantees that the pheromone trails remain
smaller than 1; the update rule is also illustrated in “gure 3.4: The new pheromone
vector can be interpreted as a shift of the old pheromone vector toward the vector
given by the weighted average of the solutions used in the pheromone update.

3.5 Parallel Implementations

The very nature of ACO algorithms lends them to be parallelized in the data or
population domains. In particular, many parallel models used in other population-
based algorithms can be easily adapted to ACO. Most parallelization strategies can
be classi“ed into “ne-grained and coarse-grainedstrategies. Characteristic of “ne-
grained parallelization is that very few individuals are assigned to single processors
and that frequent information exchange among the processors takes place. In coarse-
grained approaches, on the contrary, larger subpopulations or even full populations
are assigned to single processors and information exchange is rather rare. See, for
example, Cantú-Paz (2000) for an overview.

82 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

Fine-grained parallelization schemes have been investigated with parallel versions
of AS for the TSP on the Connection Machine CM-2 adopting the approach of
attributing a single processing unit to each ant (Bolondi & Bondanza, 1993). Exper-
imental results showed that communication overhead can be a major problem with
this approach, since ants end up spending most of their time communicating the
modi“cations they made to pheromone trails. Similar negative results have been re-
ported by Bullnheimer, Kotsis, and Strauss (1998).

As shown by several researches (Bolondi & Bondanza, 1993; Bullnheimer et al.,
1998; Krüger, Merkle, & Middendorf, 1998; Middendorf, Reischle, & Schmeck,
2002; Stützle, 1998b), coarse-grained parallelization schemes are much more prom-
ising for ACO. In this case,p colonies run in parallel onp processors.

Stützle (1998b) has considered the extreme case in which there is no communica-
tion among the colonies. It is equivalent to the parallel independent run of many
ACO algorithms, and is the easiest way to parallelize randomized algorithms. The
computational results presented in Stu¨tzle (1998b) show that this approach is very
e¤ective.

A number of other researchers have considered the case in which information
among the colonies is exchanged at certain intervals. For example, Bullnheimer et al.
(1998) proposed thepartially asynchronous parallel implementation(PAPI). In PAPI,
pheromone information was exchanged among the colonies every “xed number of
iterations and a high speedup was experimentally observed. Kru¨ger et al. (1998)
investigated the type of information that should be exchanged among the colonies

(0,1,1)

(0,0,1)

(0,0,0) (1,0,0)

(1,1,0)

(1,0,1)

(1,1,1)

Solution
of ant 1

Solution
of ant 2

(0,1,1)

(0,0,1)

(0,0,0) (1,0,0)

(1,1,0)

(1,0,1)

(1,1,1)

d

�

Figure 3.4
Left: Assume that the set of feasible solutions consists of the three vectorsð0; 0; 0Þ; ð1; 1; 0Þ, and ð0; 1; 1Þ.
Then, the pheromone vector~tt moves over the gray shaded area. Right: The two solutionsð0; 0; 0Þand
ð1; 1; 0Þhave been generated by the ants and are used for the pheromone trail update:~tt will be shifted
toward ~dd. Note that ~dd is the weighted average of the two solutions, so that it belongs to the segment con-
necting them [in the exampleð0; 0; 0Þis considered of higher quality thanð1; 1; 0Þ, and therefore~tt is closer
to ð0; 0; 0Þthan to ð1; 1; 0Þ].

3.5 Parallel Implementations 83

and how this information should be used to update the colonies• pheromone trail in-
formation. Their results showed that it is better to exchange the best solutions found
so far and to use them in the pheromone update rather than to exchange complete
pheromone matrices. Middendorf et al. (2002), extending the original work of Michel
& M iddendorf (1998), investigated di¤erent ways of exchanging solutions amongm
ant colonies. They let colonies exchange information every “xed number of itera-
tions. The information exchanged is (1) the best-so-far solution that is shared among
all colonies, and (2) either the locally best-so-far solutions or thew iteration-best
ants, or a combination of the two, that are sent to neighbor colonies, where the
neighborhood was organized as a directed ring. Their main observation was that the
best results were obtained by limiting the information exchange to the locally best
solutions.

Some preliminary work on the parallel implementation of an ACO algorithm on
a shared memory architecture using OpenMP (Chandra, Dagum, Kohr, Maydan,
McDonald, & Menon, 2000) is presented in Delisle, Krajecki, Gravel, & Gagne´
(2001).

3.6 Experimental Evaluation

In order to establish a meaningful comparison of the di¤erent versions of ACO dis-
cussed in the previous sections, we have reimplemented all of them using the TSP as
an application problem, with the exception of ANTS, for which no application to
the TSP has been reported in the literature. The resulting software package is avail-
able for download at www.aco-metaheuristic.org/aco-code/. We used this software
package to study the dependence of the ACO algorithms• behavior on particular
con“gurations or parameters. All the experiments were performed either on a 700
MH z Pentium III double-processor machine with 512 MB of RAM or on a 1.2 GHz
Athlon MP double-processor machine with 1 GB of RAM; both machines were
running SUSE Linux 7.3. These experiments should be understood as giving an in-
dication of the general behavior of the available ACO algorithms when applied to
N P -hard combinatorial optimization problems and as an illustration of what hap-
pens when ACO algorithms are combined with local search algorithms. On the con-
trary, the experiments are not meant to present results competitive with current
state-of-the-art algorithms for the TSP. In fact, current state-of-the-art algorithms for
the TSP exploit complex data structures and local search routines that have not been
implemented for ACO. Nevertheless, the results of our study are interesting because
most of our “ndings remain true when ACO is applied to otherN P -hard problems.

84 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

3.6.1 The Behavior of ACO Algorithms

Arti“cial ants iteratively sample tours through a loop that includes a tour construc-
tion biased by the arti“cial pheromone trails and the heuristic information. The main
mechanism at work in ACO algorithms that triggers the discovery of good tours is
the positive feedback given through the pheromone update by the ants: the shorter
the ant•s tour, the higher the amount of pheromone the ant deposits on the arcs of its
tour. This in turn leads to the fact that these arcs have a higher probability of being
selected in the subsequent iterations of the algorithm. The emergence of arcs with
high pheromone values is further reinforced by the pheromone trail evaporation that
avoids an unlimited accumulation of pheromones and quickly decreases the phero-
mone level on arcs that only very rarely, or never, receive additional pheromone.

This behavior is illustrated in “gure 3.5, where AS is applied to the 14-city TSP
instance burma14 from TSPLIB. The “gure gives a visual representation of the
pheromone matrix: pheromone trail levels are translated into gray scale, where black

Figure 3.5
A visual representation of the pheromone matrix. The pheromone values on the arcs, stored in the phero-
mone matrix, are translated into gray-scale values; the darker an entry, the higher the associated phero-
mone trail value. The plots, from upper left to lower right, show the pheromone value for AS applied to
TSPLIB instanceburma14 with 14 cities after 0, 5, 10, and 100 iterations. Note the symmetry with respect
to the main diagonal, which is due to the fact thatburma14 is a symmetric TSP instance.

3.6 Experimental Evaluation 85

represents the highest pheromone trails and white the lowest ones. The four plots
give snapshots of the pheromone matrix after 0, 5, 10, and 100 iterations (from upper
left to lower right). At the beginning, all the matrix•s cells are black except for those
on the diagonal which are always white because they are initialized to zero and never
updated. After “ve iterations, the di¤erences between the pheromone trails are still
not very manifest; this is due to the fact that pheromone evaporation and pheromone
update could be applied only “ve times and therefore large di¤erences between the
pheromone trails could not be established yet. Also, after “ve iterations the phero-
mone trails are still rather high, which is due to the large initial pheromone values.
As the algorithm continues to iterate, the di¤erences between the pheromone values
become stronger and “nally a situation is reached in which only few connections
have a large amount of pheromone associated with them (and therefore a large
probability of being chosen) and several connections have pheromone values close to
zero, making a selection of these connections very unlikely.

With good parameter settings, the long-term e¤ect of the pheromone trails is to
progressively reduce the size of the explored search space so that the search concen-
trates on a small number of promising arcs. Yet, this behavior may become undesir-
able, if the concentration is so strong that it results in an early stagnation of the
search (remember that search stagnation is de“ned as the situation in which all the
ants follow the same path and construct the same solution). In such an undesirable
situation the system has ceased to explore new possibilities and no better tour is
likely to be found anymore.

Several measures may be used to describe the amount of exploration an ACO
algorithm still performs and to detect stagnation situations. One of the simplest
possibilities is to compute the standard deviationsL of the length of the tours the
ants construct after every iteration„if sL is zero, this is an indication that all the
ants follow the same path (althoughsL can go to zero also in the very unlikely case
in which the ants follow di¤erent tours of the same length).

Because the standard deviation depends on the absolute values of the tour lengths,
a better choice is the use of the variation coe‹cient, de“ned as the quotient between
the standard deviation of the tour lengths and the average tour length, which is in-
dependent of the scale.

The distance between tours gives a better indication of the amount of exploration
the ants perform. In the TSP case, a way of measuring the distancedistðT ; T 0Þbe-
tween two toursT and T 0 is to count the number of arcs contained in one tour but
not in the other. A decrease in the average distance between the ants• tours indicates
that preferred paths are appearing, and if the average distance becomes zero, then

86 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

the system has entered search stagnation. A disadvantage of this measure is that it is
computationally expensive: there areOðn2Þpossible pairs to be compared and each
single comparison has a complexity ofOðnÞ.

While these measures only use the “nal tours constructed by the ants, thel -
branching factor, 0< l < 1, introduced in Dorigo & Gambardella (1997b), measures
the distribution of the pheromone trail values more directly. Its de“nition is based on
the following notion: If for a given city i the concentration of pheromone trail on
almost all the incident arcs becomes very small but is large for a few others, the
freedom of choice for extending partial tours from that city is very limited. Conse-
quently, if this situation arises simultaneously for all the nodes of the graph, the part
of the search space that is e¤ectively searched by the ants becomes relatively small.
The l -branching factor for a city i is de“ned as follows: If t i

max is the maximal and
t i

min the minimal pheromone trail value on arcs incident to nodei, the l -branching
factor is given by the number of arcs incident toi that have a pheromone trail value
t ij b t i

min þ l ðt i
max � t i

minÞ. The value of l ranges over the interval½0; 1�, while the
values of thel -branching factors range over the interval½2; n � 1�, where n is the
number of nodes in the construction graph (which, in the TSP case, is the same as
the number of cities). The averagel -branching factor l is the average of thel -
branching factors of all nodes and gives an indication of the size of the search space
e¤ectively being explored by the ants. If, for example,l is very close to 3, on average
only three arcs for each node have a high probability of being chosen. Note that in
the TSP the minimall is 2, because for each city there must be at least two arcs used
by the ants to reach and to leave the city while building their solutions.

A disadvantage of thel -branching factor is that its values depend on the setting of
the parameterl . Another possibility for a measure of stagnation would be to use the
averageE ¼

P n
i ¼1 Ei=n of the entropiesEi of the selection probabilities at each node:

Ei ¼ �
Xl

j ¼1

pij log pij ; ð3:18Þ

where pij is the probability of choosing arcði; jÞwhen being in nodei, and l , 1a
l a n � 1, is the number of possible choices. Still another way to measure stagnation
is given by the following formula:
P

t ij AT minf t max � t ij ; t ij � t ming

n2 ; ð3:19Þ

whose value tends to 0 as the algorithm moves toward stagnation.

3.6 Experimental Evaluation 87

Behavior of AS
In this section we show the typical behavior of the averagel -branching factor and
of the average distance among tours when AS has parameter settings that result in
either good or bad algorithm performance. The parameter settings are denoted by
goodand bad in “gure 3.6, and the values used area ¼ 1, b ¼ 2, m ¼ n and to a ¼ 5,
b ¼ 0, m ¼ n respectively. Figure 3.6 shows that for bad parameter settings thel -
branching factor converges to its minimum value much faster than for good param-
eter settings (l is set to 0.05). A similar situation occurs when observing the average
distance between tours. In fact, the experimental results of Dorigo et al. (1996) sug-
gest that AS enters stagnation behavior ifa is set to a large value, and does not “nd
high-quality tours if a is chosen to be much smaller than 1. Dorigo et al. (1996) tested
values of a Af 0; 0:5; 1; 2; 5g. An example of bad system behavior that occurs if the
amount of exploration is too large is shown in “gure 3.7. Here,good refers to the
same parameter setting as above andbadto the settinga ¼ 1, b ¼ 0, and m ¼ n. For
both stagnation measures, averagel -branching factor and average distance between
tours, the algorithm using the bad parameter setting is not able to focus the search on
the most promising parts of the search space.

The overall result suggests that for AS good parameter settings are those that “nd
a reasonable balance between a too narrow focus of the search process, which in the
worst case may lead to stagnation behavior, and a too weak guidance of the search,
which can cause excessive exploration.

0

20

40

60

80

100

1 10 100 1000

A
ve

ra
ge

 d
is

ta
nc

e
am

on
g

to
ur

s

Number of iterations

good
bad

0

5

10

15

20

25

30

1 10 100 1000

A
ve

ra
ge

�-
br

an
ch

in
g

fa
ct

or

Number of iterations

good
bad

Figure 3.6
Bad behavior because of early stagnation: The plots give (left) the averagel -branching factor, l ¼ 0:05,
and (right) the average distance among the tours generated by AS on the symmetric TSPLIB instance
kroA100 . ••Good•• system behavior is observed setting parameters toa ¼ 1, b ¼ 2, m ¼ n. ••Bad•• system
behavior is observed setting parametersa ¼ 5, b ¼ 0, m ¼ n.

88 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

Behavior of Extensions of AS
One particularity of AS extensions is that they direct the ants• search in a more ag-
gressive way. This is mainly achieved by a stronger emphasis given to the best tours
found during each iteration (e.g., inMM AS) or the best-so-far tour (e.g., in ACS).
We would expect that this stronger focus of the search is re”ected by statistical
measures of the amount of exploration. Figure 3.8 indicates the development of the
l -branching factor and the average distance between tours as observed in AS, EAS,
ASrank, MM AS, and ACS. For this comparison we used the same parameter set-
tings as in box 3.1, except for the value ofb which was set to 2 for all algorithms.

The various ACO algorithms show, in part, strongly di¤erent behaviors, which
gives an indication that there are substantial di¤erences in their ways of directing
the search. While ACS shows a lowl -branching factor and small average distances
between the tours throughout the algorithm•s entire run, for the others a transi-
tion from a more explorative search phase, characterized by a rather high average
l -branching factor, to an exploitation phase, characterized by a very low average
l -branching factor, can be observed. While this transition happens very soon in AS
and ASrank, it occurs only later in MM AS. On the other hand, ASrank is the only
algorithm that enters stagnation when run for a su‹ciently high number of itera-
tions. This observation also suggests that ASrank could pro“t from occasional phero-
mone trail reinitializations, as was proposed forMM AS (Stützle & Hoos, 2000).

It is interesting to note that, althoughMM AS also converges to the minimum
averagel -branching factor, which suggests stagnation behavior, the average distance

0

20

40

60

80

100

1 10 100 1000

A
ve

ra
ge

 d
is

ta
nc

e
am

on
g

to
ur

s

Number of iterations

good
bad

0

5

10

15

20

25

30

1 10 100 1000

A
ve

ra
ge

�-
br

an
ch

in
g

fa
ct

or

Number of iterations

good
bad

Figure 3.7
Bad behavior because of excessive exploration: The plots give (left) the averagel -branching factor,
l ¼ 0:05, and (right) the average distance among the tours generated by AS on the symmetric TSPLIB
instancekroA100 . ••Good•• system behavior is observed setting parameters toa ¼ 1; b ¼ 2; m ¼ n. ••Bad••
system behavior is observed setting parametersa ¼ 1, b ¼ 0, m ¼ n.

3.6 Experimental Evaluation 89

between the tours it generates remains signi“cantly higher than zero. The reason for
this apparently contradictory result is thatMM AS uses pheromone trail limitst max

and t min. So, even when the pheromone trails on the arcs of a tour reach the value
t max and all others have the valuet min, new tours will still be explored.

A common characteristic of all of the AS extensions is that their search is focused
on a speci“c region of the search space. An indication of this is given by the lowerl -
branching factor and the lower average distance between the tours of these exten-
sions when compared to AS. Because of this, AS extensions need to be endowed with
features intended to counteract search stagnation.

It should be noted that the behavior of the various ACO algorithms also de-
pends strongly on the parameter settings. For example, it is easy to forceMM AS to
converge much faster to good tours by making the search more aggressive through
the use of only the best-so-far update or by a higher evaporation rate. Nevertheless,
the behavior we show in “gure 3.8 is typical for reasonable parameter settings (see
box 3.1).

In the following, we discuss the behavior ofMM AS and ACS in more detail. This
choice is dictated by the fact that these two algorithms are the most used and often
the best-performing of ACO algorithms.

Behavior ofMM AS
Of the ACO algorithms considered in this chapter,MM AS has the longest explor-
ative search phase. This is mainly due to the fact that pheromone trails are ini-
tialized to the initial estimate of t max, and that the evaporation rate is set to a low

0

20

40

60

80

100

1 10 100 1000 10000

A
ve

ra
ge

 d
is

ta
nc

e
am

on
g

to
ur

s

Number of iterations

AS
EAS

AS-RANK
MMAS

ACS

2

4

6

8

10

12

14

16

1 10 100 1000 10000

A
ve

ra
ge

�-
br

an
ch

in
g

fa
ct

or

Number of iterations

AS
EAS

AS-RANK
MMAS

ACS

Figure 3.8
Comparing AS extensions: The plots give (left) the averagel -branching factor, l ¼ 0:05, and (right)
the average distance among the tours for several ACO algorithms on the symmetric TSPLIB instance
kroA100 . Parameters were set as in box 3.1, except forb which was set tob ¼ 2 for all the algorithms.

90 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

value (a value that gives good results for long runs of the algorithm was found to be
r ¼ 0:02). In fact, because of the low evaporation rate, it takes time before signi“cant
di¤erences among the pheromone trails start to appear.

When this happens,MM AS behavior changes from explorative search to a phase
of exploitation of the experience accumulated in the form of pheromone trails. In this
phase, the pheromone on the arcs corresponding to the best-found tour rises up to
the maximum valuet max, while on all the other arcs it decreases down to the mini-
mum value t min. This is re”ected by an averagel -branching factor of 2.0. Neverthe-
less, the exploration of tours is still possible, because the constraint on the minimum
value of pheromone trails has the e¤ect of giving to each arc a minimum probability
pmin > 0 of being chosen. In practice, during this exploitation phaseMM AS con-
structs tours that are similar to either the best-so-far or the iteration-best tour, de-
pending on the algorithm implementation.

Behavior of ACS
ACS uses a very aggressive search that focuses from the very beginning around the
best-so-far tourT bs. In other words, it generates tours that di¤er only in a relatively
small number of arcs from the best-so-far tourT bs. This is achieved by choosing a
large value forq0 in the pseudorandom proportional action choice rule [see equation
(3.10)], which leads to tours that have many arcs in common with the best-so-far
tour. An interesting aspect of ACS is that while arcs are traversed by ants, their as-
sociated pheromone is diminished, making them less attractive, and therefore favor-
ing the exploration of still unvisited arcs. Local updating has the e¤ect of lowering
the pheromone on visited arcs so that they will be chosen with a lower probability by
the other ants in their remaining steps for completing a tour. As a consequence, the
ants never converge to a common tour, as is also shown in “gure 3.8.

3.6.2 Comparison of Ant System with Its Extensions

There remains the “nal question about the solution quality returned by the various
ACO algorithms. In “gure 3.9 we compare the development of the average solution
quality measured in twenty-“ve trials for instanced198 (left side) and in “ve trials
for instancerat783 (right side) of several ACO algorithms as a function of the com-
putation time, which is indicated in seconds on thex-axis. We found experimentally
that all extensions of AS achieve much better “nal solutions than AS, and in all cases
the worst “nal solution returned by the AS extensions is better than the average “nal
solution quality returned by AS.

In particular, it can be observed that ACS is the most aggressive of the ACO
algorithms and returns the best solution quality for very short computation times.

3.6 Experimental Evaluation 91

Di¤erently, MM AS initially produces rather poor solutions and in the initial phases
it is outperformed even by AS. Nevertheless, its “nal solution quality, for these two
instances, is the best among the compared ACO algorithms.

These results are consistent with the “ndings of the various published research
papers on AS extensions: in all these publications it was found that the respective
extensions improved signi“cantly over AS performance. Comparisons among the
several AS extensions indicate that the best performing variants areMM AS and
ACS, closely followed by ASrank.

3.7 ACO plus Local Search

The vast literature on metaheuristics tells us that a promising approach to obtaining
high-quality solutions is to couple a local search algorithm with a mechanism to
generate initial solutions. As an example, it is well known that, for the TSP, iterated
local search algorithms are currently among the best-performing algorithms. They
iteratively apply local search to initial solutions that are generated by introducing
modi“cation to some locally optimal solutions (see chapter 2, section 2.4.4, for a
detailed description of iterated local search).

ACO•s de“nition includes the possibility of using local search (see “gure 3.3); once
ants have completed their solution construction, the solutions can be taken to their
local optimum by the application of a local search routine. Then pheromones are
updated on the arcs of the locally optimized solutions. Such a coupling of solution

0

5

10

15

20

25

30

35

10 100 1000 10000

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

AS
EAS

AS-RANK
MMAS

ACS

0
2
4
6
8

10
12
14
16
18
20
22

0.1 1 10 100

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

AS
EAS

AS-RANK
MMAS

ACS

Figure 3.9
Comparing AS extensions: The plots give the development of the average percentage deviation from the
optimum as a function of the computation time in seconds for AS, EAS, ASrank, MM AS, and ACS for the
symmetric TSPLIB instancesd198 (left), and rat783 (right). Parameters were set as indicated in box 3.1,
except forb, which was set tob ¼ 5 for all algorithms.

92 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

construction with local search is a promising approach. In fact, because ACO•s so-
lution construction uses a di¤erent neighborhood than local search, the probability
that local search improves a solution constructed by an ant is quite high. On the
other hand, local search alone su¤ers from the problem of “nding good starting so-
lutions; these solutions are provided by the arti“cial ants.

In the following, we study how the performance of one of the ACO algorithms
presented before,MM AS, is improved when coupled with a local search. To do
so, we implemented three of the most used types of local search for the TSP:2-opt,
2.5-opt, and 3-opt. 2-opt was explained in box 2.4 (with the name 2-exchange), while
2.5-opt and 3-opt are explained in box 3.2. All three implementations exploit three
standard speedup techniques: the use of nearest-neighbor lists of limited length (here
20), the use of a “xed radius nearest-neighbor search, and the use ofdon•t look bits.
These techniques together make the computation time increase subquadratically with
the instance size. See Bentley (1992) and Johnson & McGeoch (1997) for details on
these speedup techniques.

3.7.1 How to Add Local Search to ACO Algorithms?

There exist a large number of possible choices when combining local search with
ACO algorithms. Some of these possibilities relate to the fundamental question of
how e¤ective and how e‹cient the local search should be. In fact, in most local
search procedures, the better the solution quality returned, the higher the computa-
tion time required. This translates into the question whether for a given computation
time it is better to frequently apply a quick local search algorithm that only slightly
improves the solution quality of the initial solutions, or whether a slow but more
e¤ective local search should be used less frequently.

Other issues are related to particular parameter settings and to which solutions the
local search should be applied. For example, the number of ants to be used, the
necessity to use heuristic information or not, and which ants should be allowed to
improve their solutions by a local search, are all questions of particular interest
when an ACO algorithm is coupled with a local search routine. An interesting ques-
tion is whether the implementation choices done and the parameter values chosen in
the case of ACO algorithms are still the best once local search is added. In general,
there may be signi“cant di¤erences regarding particular parameter settings. For
example, for MM AS it was found that when applied without local search, a good
strategy is to frequently use the iteration-best ant to update pheromone trails. Yet,
when combined with local search a stronger emphasis of the best-so-far update
seemed to improve performance (Stu¨tzle, 1999).

3.7 ACO plus Local Search 93

Box 3.2
2.5-opt and 3-opt

The 3-opt neighborhood consists of those tours that can be obtained from a tours by replacing at
most three of its arcs. The removal of three arcs results in three partial tours that can be recombined
into a full tour in eight di¤erent ways. However, only four of these eight ways involve the intro-
duction of three new arcs, the other four reduce to2-opt moves (see box 2.4 for details on the2-opt
neighborhood). (Note that in a 3-opt local search procedure2-opt moves are also examined.) The
“gure below gives one particular example of a3-opt exchange move.

h-1

jj+1

i+1

h

i+1

h-1

jj+1

i+1

h

i+1

2.5-opt is a local search algorithm that includes a strongly restricted version of a3-opt move on top
of a 2-opt local search. When checking for an improving2-opt move, it is also checked whether
inserting the city between a cityi and its successor, as illustrated in the “gure below, results in an
improved tour.

h-1

ii+1

h+1h h-1

ii+1

h+1h

2.5-opt leads only to a small, constant overhead in computation time over that required by a2-opt
local search but, as experimental results show (Bentley, 1992), it leads to signi“cantly better tours.
However, the tour quality returned by2.5-opt is still signi“cantly worse than that of 3-opt. Imple-
mentations of the above-mentioned local search procedures not using any speedup techniques result
in the following time complexities for a single neighborhood search:Oðn2Þfor 2-opt and 2.5-opt, and
Oðn3Þfor 3-opt.

94 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

In the following, we give some exemplary results, focusing our attention on
MM AS and ACS. In particular, we examine the in”uence that the strength of the
local search, the number of ants, and the use of heuristic information have on the
algorithms• performance.

Strength of the Local Search
We combinedMM AS with 2-opt, 2.5-opt, and 3-opt local search procedures. While
the solution quality returned by these local search algorithms increases from2-opt to
3-opt, the same is true for the necessary computation time to identify local optima
(Reinelt, 1994; Johnson & McGeoch, 2002).

Figure 3.10 plots the solution quality as a function of the CPU time. For the
largest amount of computation time,MM AS combined with 3-opt gives the best
average solution quality. The fact that for a short interval of timeMM AS combined
with 2-opt or 2.5-opt gives slightly better results thanMM AS combined with 3-opt

can be explained as follows. First, remember (see section 3.6.2 and “gure 3.9) that
MM AS moves from an initial explorative phase to an exploitation phase by in-
creasing over time the relative frequency with which the best-so-far pheromone up-
date is applied with respect to the iteration-best pheromone update. Second, we have
seen (see box 3.2) that3-opt has a higher time complexity than2-opt and 2.5-opt. This
means that an iteration of theMM AS with 3-opt algorithm requires more CPU time
than an iteration of MM AS with 2-opt or 2.5-opt. Therefore, the explanation for the
observed temporary better behavior ofMM AS with 2-opt or 2.5-opt is that there is a

0

1

2

3

4

5

6

7

8

9

1 10 100 1000

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

2-opt
2.5-opt

3-opt

0

1

2

3

4

5

6

7

8

9

10 100 1000 10000

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

2-opt
2.5-opt

3-opt

Figure 3.10
Comparing local search procedures: The plots give the average percentage deviation from the optimal tour
as a function of the CPU time in seconds forMM AS using a 2-opt, a 2.5-opt, and a 3-opt local search
procedure for the symmetric TSPLIB instancespcb1173 (left) and pr2392 (right). Parameters are set to
the values given in box 3.3.

3.7 ACO plus Local Search 95

period of time in which while MM AS with 3-opt is still in the explorative phase,
MM AS with 2-opt and MM AS with 2.5-opt are already in the exploitation phase.

In any case, once the “nal tour quality obtained by the di¤erent variants is taken
into account, the computational results clearly suggest that the use of more e¤ective
local searches improves the solution quality ofMM AS.

Number of Ants
In a second series of experiments we investigated the role of the number of antsm
on the “nal performance of MM AS. We ran MM AS using parameter settings of
m Af 1; 2; 5; 10; 25; 50; 100g leaving all other choices the same. The result was that on
small problem instances with up to 500 cities, the number of ants did not matter very

Box 3.3
Parameter Settings for ACO Algorithms with Local Search

The only ACO algorithms that have been applied with local search to the TSP are ACS and
MM AS. Good settings, obtained experimentally (see, e.g., Stu¨tzle & Hoos [2000] forMM AS and
Dorigo & Gambardella [1997b] for ACS), for the parameters common to both algorithms are indi-
cated below.

ACO algorithm a b r m t 0

MM AS 1 2 0.2 25 1=r C nn

ACS „ 2 0.1 10 1 =nCnn

The remaining parameters are:

MM AS: t max is set, as in box 3.1, tot max ¼ 1=ðr C bsÞ, while t min ¼ 1=ð2nÞ. For the pheromone
deposit, the schedule for the frequency with which the best-so-far pheromone update is applied is

fbs ¼

y if i a 25

5 if 26a i a 75
3 if 76a i a 125

2 if 126a i a 250

1 otherwise

8
>>>>><

>>>>>:

ð3:20Þ

where fbs is the number of algorithm iterations between two updates performed by the best-so-far
ant (in the other iterations it is the iteration-best ant that makes the update) andi is the iteration
counter of the algorithm.

ACS: We havex ¼ 0:1 and q0 ¼ 0:98.

Common to both algorithms is also that after each iteration all the tours constructed by the ants are
improved by the local search. Additionally, inMM AS occasional pheromone trail reinitializations
are applied. This is done when the averagel -branching factor becomes smaller than 2.00001 and if
for more than 250 iterations no improved tour has been found.

Note that on individual instances di¤erent settings may result in much better performance.

96 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

much with respect to the best “nal performance. In fact, the best trade-o¤ between
solution quality and computation time seems to be obtained when using a small
number of ants„between two and ten. Yet, on the larger instances, the usefulness of
having a population of ants became more apparent. For instances with more than
500 cities the worst computational results were always obtained when using only one
ant and the second worst results when using two ants (see “gure 3.11).

Heuristic Information
It is well known that when ACO algorithms are applied to the TSP without local
search, the heuristic information is essential for the generation of high-quality tours.
In fact, in the initial phases of the search, the pheromones, being set to initial random
values, do not guide the arti“cial ants, which end up constructing (and reinforcing)
tours of very bad quality. The main role of the heuristic information is to avoid this,
by biasing ants so that they build reasonably good tours from the very beginning.
Once local search is added to the ACO implementation, the randomly generated
initial tours become good enough. It is therefore reasonable to expect that heuristic
information is no longer necessary.

Experiments with MM AS and ACS on the TSP con“rmed this conjecture: when
used with local search, even without using heuristic information, very high-quality
tours were obtained. For example, “gure 3.12 plots the average percentage devia-
tion from the optimal tour as a function of CPU time obtained with MM AS and
ACS with local search on the symmetric TSPLIB instancepcb1173 . The “gure
shows thatMM AS without heuristic information converged in most cases somewhat

0

1

2

3

4

5

10 100 1000 10000

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

1 ant
2 ants
5 ants

10 ants
25 ants
50 ants

100 ants

0

1

2

3

4

5

1 10 100 1000

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

1 ant
2 ants
5 ants

10 ants
25 ants
50 ants

100 ants

Figure 3.11
Varying the number of ants used: The plots give the average percentage deviation from the optimal tour as
a function of the CPU time in seconds forMM AS with 3-opt using a number of ants varying from 1 ant to
100 ants on the symmetric TSPLIB instancespcb1173 (left) and pr2392 (right). Parameters are set to
the values given in box 3.3.

3.7 ACO plus Local Search 97

slower to tours that were slightly worse than those obtained using heuristic infor-
mation, while in most cases ACS•s “nal tour length with heuristic information was
slightly worse than without.

One might argue that the question whether heuristic information is used or not is
just a matter of parameter settings (not using heuristic information is simply achieved
by setting b ¼ 0). Yet, the importance of our computational results is somewhat
more far-reaching. While in the TSP the distance between cities is an obvious and
computationally inexpensive heuristic to use, in other problems it may be much more
di‹cult to “nd, or expensive to compute, meaningful heuristic information which
helps to improve performance. Fortunately, if no such obvious heuristic information
exists, our computational results suggest that using an ACO algorithm incorporating
local search may be enough to achieve good results.

Lamarckian versus Darwinian Pheromone Updates
Let us reconsider the choice of the tour that is used to deposit pheromones after a
local search: Each ant produces a tour, says1, which is then transformed into an-
other tour, say s2, by the local search. Then the pheromones are updated. As our
goal is to maximize the quality of the “nal tour s2, pheromone updates must be pro-
portional to the quality of s2, not s1. Once this is accepted, there are still two ways of
updating the pheromones:

9 We reinforce the pheromones corresponding to the “nal tours2, or
9 we reinforce the pheromones corresponding to the intermediate tours1.

0

1

2

3

4

5

1 10 100 1000

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

heuristic
no heuristic

0

1

2

3

4

5

1 10 100 1000

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

heuristic
no heuristic

Figure 3.12
The role of heuristic information when using local search: The plots give the average percentage deviation
from the optimal tour as a function of the CPU time in seconds forMM AS (left) and ACS (right) with
local search on the symmetric TSPLIB instancepcb1173 , with and without the use of heuristic informa-
tion during tour construction.

98 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

By analogy with similar procedures in the area of genetic algorithms (Whitley,
Gordon, & Mathias, 1994), we call the “rst alternative the Lamarckian approach,
and the second the Darwinian approach.

The main argument supporting the Lamarckian approach is that it is reasonable to
think that, if the search of the ACO algorithm can be biased by the better tours2,
then it would be stupid to use the worse tours1. In fact, in published ACO imple-
mentations, only the Lamarckian alternative has been used. On the other hand, the
main argument in favor of the Darwinian approach is the view that what ACO
algorithms with local search really do is to learn a way to generate good initial solu-
tions for the local search, where ••good•• means that the initial solutions allow local
search to reach good local optima.

In “gure 3.13, we report some results we obtained withMM AS and ACS on one
of our test instances. As can be observed, for the TSP case, the Lamarckian approach
outperforms by far the Darwinian approach. Analogous tests on other TSP instances
and other problems, like the quadratic assignment problem, con“rmed this obser-
vation and we conjecture that for most combinatorial optimization problems the
Lamarckian approach is preferable.

3.8 Implementing ACO Algorithms

This section describes in detail the steps that have to be taken to implement an
ACO algorithm for the TSP. Because the basic considerations for the implementa-
tion of di¤erent ACO algorithm variants are very similar, we mainly focus on AS

0

1

2

3

4

5

1 10 100 1000

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

Lamarckian
Darwinian

0

1

2

3

4

5

1 10 100 1000

%
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

CPU time [sec]

Lamarckian
Darwinian

Figure 3.13
Lamarckian versus Darwinian pheromone updates: The plots give the average percentage deviation from
the optimal tour as a function of the CPU time in seconds forMM AS (left) and ACS (right) using
Lamarckian and Darwinian pheromone updates on the symmetric TSPLIB instancepcb1173 .

3.8 Implementing ACO Algorithms 99

and indicate, where appropriate, the necessary changes for implementing other ACO
algorithms.

A “rst implementation of an ACO algorithm can be quite straightforward. In fact,
if a greedy construction procedure like a nearest-neighbor heuristic is available, one
can use as a construction graph the same graph used by the construction procedure,
and then it is only necessary to (1) add pheromone trail variables to the construction
graph and (2) de“ne the set of arti“cial ants to be used for constructing solutions in
such a way that they implement, according to equation (3.2), a randomized version
of the construction procedure. It must be noted, however, that in order to have an
e‹ cient implementation, often additional data structures are required, like arrays to
store information which, although redundant, make the processing much faster. In
the following, we describe the steps to be taken to obtain an e‹cient implementa-
tion of AS. We will give a pseudo-codedescription of a possible implementation in a
C-like notation. This description is general enough to allow a reader with some pre-
vious experience in procedural or object-oriented programming (a university-level
“rst-year programming course should su‹ce) to implement an e‹cient version of
any of the ACO algorithms presented in this chapter. Additionally, aC code of sev-
eral ACO algorithms is available online at www.aco-metaheuristic.org/aco-code/.

3.8.1 Data Structures

As a “rst step, the basic data structures have to be de“ned. These must allow storing
the data about the TSP instance and the pheromone trails, and representing arti“cial
ants.

Figure 3.14 gives a general outline of the main data structures that are used for the
implementation of an ACO algorithm, which includes the data for the problem rep-
resentation and the data for the representation of the ants, as explained below.

Problem Representation

Intercity Distances. Often a symmetric TSP instance is given as the coordinates of a
number of n points. In this case, one possibility would be to store thex and y coor-
dinates of the cities in two arrays and then compute on the ”y the distance between
the cities as needed. However, this leads to a signi“cant computational overhead:
obviously, it is more reasonable to precompute all intercity distances and to store
them in a symmetricdistance matrixwith n2 entries. In fact, although for symmetric
TSPs we only need to storenðn � 1Þ=2 distinct distances, it is more e‹cient to use an
n2 matrix to avoid performing additional operations to check whether, when access-
ing a generic distancedði; jÞ, entry ði; jÞor entry ðj; iÞof the matrix should be used.

100 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

Note that for very large instances it may be necessary to compute distances on the
”y, if it is not possible (or too expensive) to keep the full distance matrix in the main
memory. Fortunately, in these cases there exist some intermediate possibilities, such
as storing the distances between a city and the cities of its nearest-neighbor list, that
greatly reduce the necessary amount of computation. It is also important to know
that, for historical reasons, in almost all the TSP literature, the distances are stored
as integers. In fact, in old computers integer operations used to be much faster than
operations on real numbers, so that by setting distances to be integers, much more
e‹cient code could be obtained.

Nearest-Neighbor Lists. In addition to the distance matrix, it is convenient to store
for each city a list of its nearest neighbors. Letdi be the list of the distances from a
city i to all cities j, with j ¼ 1; . . . n and i 0 j (we assume here that the valuedii is
assigned a value larger thandmax, wheredmax is the maximum distance between any
two cities). The nearest-neighbor list of a cityi is obtained by sorting the listdi

according to nondecreasing distances, obtaining a sorted listd0
i ; ties can be broken

randomly. The position r of a city j in city i•s nearest-neighbor listnn_list½i� is the
index of the distancedij in the sorted list d0

i , that is, nn_list½i�½r� gives the identi“er
(index) of the r-th nearest city to city i (i.e., nn_list½i�½r� ¼ j). Nearest-neighbor lists

% Representation of problem data

integerdist[n][n] % distance matrix
integernn_list[n][nn] % matrix with nearest neighbor lists of depthnn
real pheromone[n][n] % pheromone matrix
real choice_info[n][n] % combined pheromone and heuristic information

% Representation of ants

structuresingle_ant
begin

integertour_length% the ant•s tour length
integertour[n þ 1] % ant•s memory storing (partial) tours
integervisited[n] % visited cities

end

single_antant[m] % structure of type single_ant

Figure 3.14
Main data structures for the implementation of an ACO algorithm for the TSP.

3.8 Implementing ACO Algorithms 101

for all cities can be constructed inOðn2 log nÞ(in fact, you have to repeat a sorting
algorithm over n � 1 cities for each city).

An enormous speedup is obtained for the solution construction in ACO algo-
rithms, if the nearest-neighbor list is cut o¤ after a constant numbernn of nearest
neighbors, where typicallynn is a small value ranging between 15 and 40. In this
case, an ant located in cityi chooses the next city among thenn nearest neighbors of
i; in case the ant has already visited all the nearest neighbors, then it makes its se-
lection among the remaining cities. This reduces the complexity of making the choice
of the next city to Oð1Þ, unless the ant has already visited all the cities innn_list½i�.
However, it should be noted that the use of truncated nearest-neighbor lists can
make it impossible to “nd the optimal solution.

Pheromone Trails. In addition to the instance-related information, we also have to
store for each connectionði; jÞa number t ij corresponding to the pheromone trail
associated with that connection. In fact, for symmetric TSPs this requires storing
nðn � 1Þ=2 distinct pheromone values, because we assume thatt ij ¼ t ji , Eði; jÞ.
Again, as was the case for the distance matrix, it is more convenient to use some re-
dundancy and to store the pheromones in a symmetricn2 matrix.

Combining Pheromone and Heuristic Information.When constructing a tour, an ant
located on city i chooses the next cityj with a probability which is proportional to
the value of½t ij �

a½hij �
b. Because these very same values need to be computed by each

of the m ants, computation times may be signi“cantly reduced by using an additional
matrix choice_info, where each entrychoice_info½i�½j� stores the value½t ij �

a½hij �
b.

Again, in the case of a symmetric TSP instance, onlynðn � 1Þ=2 values have to be
computed, but it is convenient to store these values in a redundant way as in the case
of the pheromone and the distance matrices. Additionally, one may store thehb

ij

values in a further matrixheuristic(not implemented in the code associated with the
book) to avoid recomputing these values after each iteration, because the heuristic
information stays the same throughout the whole run of the algorithm (some tests
have shown that the speedup obtained when no local search is used is approximately
10%, while no signi“cant di¤erences are observed when local search is used). Finally,
if some distances are zero, which is in fact the case for some of the benchmark
instances in the TSPLIB, then one may set them to a very small positive value to
avoid division by zero.

Speeding Up the Pheromone Update.Further optimization can be introduced by
restricting the computation of the numbers in thechoice_infomatrix to the connec-
tions between a city and the cities of its nearest-neighbor list. In fact, this technique,

102 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

which is exploited in the implementation of the various ACO algorithms in the ac-
companying code, strongly reduces the computation time when ACO algorithms are
applied to large TSP instances with several hundreds or thousands of cities.

Representing Ants
An ant is a simple computational agent which constructs a solution to the problem at
hand, and may deposit an amount of pheromoneDt on the arcs it has traversed. To
do so, an ant must be able to (1) store the partial solution it has constructed so far,
(2) determine the feasible neighborhood at each city, and (3) compute and store the
objective function value of the solutions it generates.

The “rst requirement can easily be satis“ed by storing the partial tour in a su‹-
ciently large array. For the TSP we represent tours by arrays of lengthn þ 1, where
at position n þ 1 the “rst city is repeated. This choice makes easier some of the other
procedures like the computation of the tour length.

The knowledge of the partial tour at each step is su‹cient to allow the ant to
determine whether a cityj is in its feasible neighborhood: it is enough to scan the
partial tour for the occurrence of city j . I f city j has not been visited yet, then it is
member of the feasible neighborhood; otherwise it is not. Unfortunately, this simple
way of determining the feasible neighborhood involves an operation of worst-case
complexity OðnÞ for each city i, resulting in a high computational overhead. The
simplest way around this problem is to associate with each ant an additional array
visitedwhose values are set tovisited½j� ¼ 1 if city i has already been visited by the
ant, and to visited½j� ¼ 0 otherwise. This array is updated by the ant while it builds a
solution.

Finally, the computation of the tour length, stored by the ant in thetour_length
variable, can easily be done by summing the length of then arcs in the ant•s tour.

Hence, an ant may be represented by a structure that comprises one variable
tour_lengthto store the ant•s objective function value, oneðn þ 1Þ-dimensional array
tour to store the ant•s tour, and onen-dimensional arrayvisited to store the visited
cities (note that in “gure 3.14, the arrayvisited, part of the data structuresingle_ant,
is declared of typeinteger; however, to save memory, it could be declared of type
Boolean).

Overall Memory Requirement
For representing all the necessary data for the problem we need four matrices of
dimension n � n for representing the distance matrix, the pheromone matrix, the
heuristic information matrix, and thechoice_infomatrix, and a matrix of sizen � nn
for the nearest-neighbor lists. Additionally, for each of the ants we need two arrays
of sizeðn þ 1Þand n to store, respectively, the tour and the visited cities, as well as an

3.8 Implementing ACO Algorithms 103

integer for storing the tour•s length. Finally, we need a variable for representing each
of the m ants. Since the number of ants is typically either a small constant (this is the
case for ACS and Ant-Q or for most ACO algorithms with local search) or on the
order of n (this is the case for AS variants without use of local search), the overall
memory requirement isOðn2Þ. In addition to these main data structures, it is also
necessary to store intermediate results, such as the best solution found so far, and
statistical information about the algorithm performance; nevertheless, these addi-
tional data require only a very minor amount of memory when compared to the data
for representing the colony of ants and the problem.

To derive a more exact estimate of the memory requirements, we can assume that
representing an integer value on a computer takes 4 bytes and representing a ••real••
number takes 8 bytes. Additionally, we assume the number of ants to bem ¼ n, and
we do not consider the heuristic information matrix. The estimate is obtained as
follows (see “gure 3.14): 24n2 bytes are necessary for the problem data (4n2 for the
distance matrix, 4n2 for the matrix nn_list, 8n2 for the pheromone matrix, and 8n2

for the matrix choice_info), while 8n2 bytes are needed for the representation of the
ants (there arem ¼ n ants and each ant requires two integer arrays of lengthn). The
overall memory requirement can therefore be assumed to be roughly 32n2 bytes,
which is a slight underestimate of the real memory consumption. Memory require-
ments increase strongly with problem size, because the memory requirement is qua-
dratic in n. However, the memory requirements are reasonable when considering the
memory available in current computers (using the above 32n2 estimate, instances of
up to 4000 cities can be tackled by ACO algorithms with a computer with 512 MB of
RAM), and the fact that the problem instances of most combinatorial optimization
problems to which ACO has been applied (see chapter 5 for an overview) are typi-
cally much smaller than those of the TSP, so that memory consumption is rarely an
issue.

3.8.2 The Algorithm

The main tasks to be considered in an ACO algorithm are the solution construction,
the management of the pheromone trails, and the additional techniques such as local
search. In addition, the data structures and parameters need to be initialized and
some statistics about the run need to be maintained. In “gure 3.15 we give a high-
level view of the algorithm, while in the following we give some details on how to
implement the di¤erent procedures of AS in an e‹cient way.

Data Initialization
In the data initialization, (1) the instance has to be read; (2) the distance matrix has
to be computed; (3) the nearest-neighbor lists for all cities have to be computed; (4)

104 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

the pheromone matrix and thechoice_infomatrix have to be initialized; (5) the ants
have to be initialized; (6) the algorithm•s parameters must be initialized; and (7) some
variables that keep track of statistical information, such as the used CPU time, the
number of iterations, or the best solution found so far, have to be initialized. A pos-
sible organization of these tasks into several data initialization procedures is indi-
cated in “gure 3.16.

Termination Condition
The program stops if at least one termination condition applies. Possible termination
conditions are: (1) the algorithm has found a solution within a prede“ned distance
from a lower bound on the optimal solution quality; (2) a maximum number of tour
constructions or a maximum number of algorithm iterations has been reached; (3) a
maximum CPU time has been spent; or (4) the algorithm shows stagnation behavior.

procedureACOforTSP
InitializeData
while (not terminate) do

ConstructSolutions
LocalSearch

UpdateStatistics
UpdatePheromoneTrails

end-while
end-procedure

Figure 3.15
High-level view of an ACO algorithm for the TSP.

procedureInitializeData

ReadInstance
ComputeDistances
ComputeNearestNeighborLists

ComputeChoiceInformation
InitializeAnts

InitializeParameters
InitializeStatistics

end-procedure

Figure 3.16
Procedure to initialize the algorithm.

3.8 Implementing ACO Algorithms 105

Solution Construction
The tour construction is managed by the procedureConstructSolutions, shown in
“gure 3.17. The solution construction requires the following phases.

1. First, the ants• memory must be emptied. This is done in lines 1 to 5 of procedure
ConstructSolutions by marking all cities as unvisited, that is, by setting all the entries
of the array ants.visitedto falsefor all the ants.

2. Second, each ant has to be assigned an initial city. One possibility is to assign each
ant a random initial city. This is accomplished in lines 6 to 11 of the procedure. The
function random returns a random number chosen according to a uniform distribu-
tion over the setf 1; . . . ; ng.

procedureConstructSolutions
1 for k ¼ 1 to m do
2 for i ¼ 1 to n do
3 ant[k].visited[i] false
4 end-for
5 end-for
6 step 1
7 for k ¼ 1 to m do
8 r randomf 1; . . . ; ng
9 ant[k].tour[step] r
10 ant[k].visited[r] true
11 end-for
12 while (step< n) do
13 step stepþ 1
14 for k ¼ 1 to m do
15 ASDecisionRule(k, step)
16 end-for
17 end-while
18 for k ¼ 1 to m do
19 ant[k].tour[n þ 1] ant[k].tour[1]
20 ant[k].tour_length ComputeTourLength(k)
21 end-for

end-procedure

Figure 3.17
Pseudo-code of the solution construction procedure for AS and its variants.

106 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

3. Next, each ant constructs a complete tour. At each construction step (see the pro-
cedure in “gure 3.17) the ants apply the AS action choice rule [equation (3.2)]. The
procedureASDecisionRule implements the action choice rule and takes as parameters
the ant identi“er and the current construction step index; this is discussed below in
more detail.

4. Finally, in lines 18 to 21, the ants move back to the initial city and the tour length
of each ant•s tour is computed. Remember that, for the sake of simplicity, in the tour
representation we repeat the identi“er of the “rst city at positionn þ 1; this is done in
line 19.

As stated above, the solution construction of all of the ants is synchronized in such
a way that the ants build solutions in parallel. The same behavior can be obtained,
for all AS variants, by ants that construct solutions sequentially, because the ants do
not change the pheromone trails at construction time (this is not the case for ACS, in
which case the sequential and parallel implementations give di¤erent results).

While phases (1), (2), and (4) are very straightforward to code, the implementation
of the action choice rule requires some care to avoid large computation times. In the
action choice rule an ant located at cityi probabilistically chooses to move to an
unvisited city j based on the pheromone trailst a

ij and the heuristic information hb
ij

[see equation (3.2)].
Here we give pseudo-codes for the action choice rule with and without considera-

tion of candidate lists. The pseudo-code for the “rst variantASDecisionRule is given
in “gure 3.18. The procedure works as follows: “rst, the current cityc of ant k is de-
termined (line 1). The probabilistic choice of the next city then works analogously
to the roulette wheelselection procedure of evolutionary computation (Goldberg,
1989): each valuechoice_info½c�½j� of a city j that ant k has not visited yet determines
a slice on a circular roulette wheel, the size of the slice being proportional to the
weight of the associated choice (lines 2…10). Next, the wheel is spun and the city to
which the marker points is chosen as the next city for antk (lines 11…17). This is
implemented by

1. summing the weight of the various choices in the variablesum_probabilities,

2. drawing a uniformly distributed random number r from the interval ½0; sum_
probabilities�,

3. going through the feasible choices until the sum is greater or equal tor.

Finally, the ant is moved to the chosen city, which is marked as visited (lines 18
and 19).

3.8 Implementing ACO Algorithms 107

These construction steps are repeated until the ants have completed a tour. Since
each ant has to visit exactlyn cities, all the ants complete the solution construction
after the same number of construction steps.

When exploiting candidate lists, the procedureASDecisionRule needs to be
adapted, resulting in the procedureNeighborListASDecisionRule, given in “gure 3.19.
A “rst change is that when choosing the next city, one needs to identify the appro-
priate city index from the candidate list of the current cityc. This results in changes
of lines 3 to 10 of “gure 3.18: the maximum value of indexj is changed fromn to nn
in line 3 and the test performed in line 4 is applied to thej-th nearest neighbor given
by nn_list½c�½j�. A second change is necessary to deal with the situation in which all
the cities in the candidate list have already been visited by antk. In this case, the
variable sum_probabilitieskeeps its initial value 0.0 and one city out of those not in

procedureASDecisionRule(k; i)
input k % ant identi“er
input i % counter for construction step

1 c ant[k].tour[i � 1]
2 sum_probabilities¼ 0.0
3 for j ¼ 1 to n do
4 if ant[k].visited[j] then
5 selection_probability[j] 0.0
6 else
7 selection_probability[j] choice_info[c][j]
8 sum_probabilities sum_probabilitiesþ selection_probability[j]
9 end-if
10 end-for
11 r random[0, sum_probabilities]
12 j 1
13 p selection_probability[j]
14 while (p < r) do
15 j j þ 1
16 p p þ selection_probability[j]
17 end-while
18 ant[k].tour[i] j
19 ant[k].visited[j] true

end-procedure

Figure 3.18
AS without candidate lists: pseudo-code for the action choice rule.

108 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

procedureNeighborListASDecisionRule(k; i)
input k % ant identi“er
input i % counter for construction step

1 c ant[k].tour[i � 1]
2 sum_probabilities 0.0
3 for j ¼ 1 to nn do
4 if ant[k].visited[nn_list[c][j]] then
5 selection_probability[j] 0.0
6 else
7 selection_probability[j] choice_info[c][nn_list[c][j]]
8 sum_probabilities sum_probabilitiesþ selection_probability[j]
9 end-if
10 end-for
11 if (sum_probabilities¼ 0.0) then
12 ChooseBestNext(k; i)
13 else
14 r random[0, sum_probabilities]
15 j 1
16 p selection_probability[j]
17 while (p < r) do
18 j j þ 1
19 p p þ selection_probability[j]
20 end-while
21 ant[k].tour[i] nn_list[c][j]
22 ant[k].visited[nn_list[c][j]] true
23 end-if

end-procedure

Figure 3.19
AS with candidate lists: pseudo-code for the action choice rule.

3.8 Implementing ACO Algorithms 109

the candidate list is chosen: the procedureChooseBestNext (see pseudo-code in “gure
3.20) is used to identify the city with maximum value of½t ij �

a½hij �
b as the next to

move to.
It is clear that by using candidate lists the computation time necessary for the ants

to construct solutions can be signi“cantly reduced, because the ants choose from
among a much smaller set of cities. Yet, the computation time is reduced only if
the procedureChooseBestNext does not need to be applied too often. Fortunately,
as also suggested by the computational results presented in Gambardella & Dorigo
(1996), this seems not to be the case.

Local Search
Once the solutions are constructed, they may be improved by a local search proce-
dure. While a simple2-opt local search can be implemented in a few lines, the imple-
mentation of an e‹cient variant is somewhat more involved. This is already true to
some extent for the implementation of the3-opt local search, and even more for the
Lin-Kernighan heuristic. Since the details of the local search are not important for
understanding how ACO algorithms can be coded e‹ciently, we refer to the accom-
panying code (available at www.aco-metaheuristic.org/aco-code/) for more informa-
tion on the local search implementation.

procedureChooseBestNext(k; i)
input k % ant identi“er
input i % counter for construction step
v 0.0
c ant[k].tour[i � 1]
for j ¼ 1 to n do

if not ant[k].visited[j] then
if choice_info[c][j] > v then

nc j % city with maximal t ahb

v choice_info[c][j]
end-if

end-if
end-for
ant[k].tour[i] nc
ant[k].visited[nc] true

end-procedure

Figure 3.20
AS: pseudo-code for the procedureChooseBestNext.

110 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

Pheromone Update
The last step in an iteration of AS is the pheromone update. This is implemented by
the procedureASPheromoneUpdate (“gure 3.21), which comprises two pheromone
update procedures: pheromone evaporation and pheromone deposit. The “rst one,
Evaporate (“gure 3.22), decreases the value of the pheromone trails on all the arcs
ði; jÞby a constant factor r . The second one,DepositPheromone (“gure 3.23), adds
pheromone to the arcs belonging to the tours constructed by the ants. Additionally,
the procedureComputeChoiceInformation computes the matrixchoice_infoto be used
in the next algorithm iteration. Note that in both procedures care is taken to guar-
antee that the pheromone trail matrix is kept symmetric, because of the symmetric
TSP instances.

When attacking large TSP instances, pro“ling the code showed that the phero-
mone evaporation and the computation of thechoice_infomatrix can require a con-
siderable amount of computation time. On the other hand, when using candidate lists
in the solution construction, only a small part of the entries of the pheromone

procedureASPheromoneUpdate
Evaporate
for k ¼ 1 to m do

DepositPheromone(k)
end-for
ComputeChoiceInformation

end-procedure

Figure 3.21
AS: management of the pheromone updates.

procedureEvaporate

for i ¼ 1 to n do
for j ¼ i to n do

pheromone[i][j] ð 1 � r Þ �pheromone[i][j]
pheromone[j][i] pheromone[i][j] % pheromones are symmetric

end-for
end-for

end-procedure

Figure 3.22
AS: implementation of the pheromone evaporation procedure.

3.8 Implementing ACO Algorithms 111

matrix are ever required. Therefore, the exploitation of candidate lists speeds up also
the pheromone update. In fact, the use of candidate lists with a constant number of
nearest neighbors reduces the complexity of these two procedures toOðnÞ, although
with a large constant hidden in theOð�Þnotation.

Concerning pheromone depositing, we note that, di¤erently from AS, the best-
performing ACO algorithms typically allow only one or, at most, very few ants to
deposit pheromone. In this case, the complexity of the pheromone deposit is of order
OðnÞ. Therefore, only for AS and EAS is the complexity of the pheromone trail de-
posit procedureOðn2Þif the number of antsm is set to be proportional ton, assug-
gested in the original papers (Dorigo et al., 1991a,b, 1996; Bauer et al., 2000).

Note that this type of speedup technique for the pheromone trail update is not
necessary for ACS, because in ACS only the pheromone trails of arcs that are
crossed by some ant have to be changed and the number of ants in each iteration is a
low constant.

Statistical Information about ACO Algorithm Behavior
The last step in the implementation of AS is to store statistical data on algorithm
behavior (examples are the best-found solution since the start of the algorithm run,
or the iteration number at which the best solution was found). Details about these
procedures are available at www.aco-metaheuristic.org/aco-code/.

3.8.3 Changes for Implementing Other ACO Algorithms

When implementing AS variants, most of the above-described procedures remain
unchanged. Some of the necessary adaptations are described in the following:

procedureDepositPheromone(k)
input k % ant identi“er
Dt 1/ant[k].tour_length
for i ¼ 1 to n do

j ant[k].tour[i]
l ant[k].tour[i þ 1]
pheromone[j][l] pheromone[j][l] þ Dt
pheromone[l][j] pheromone[j][l]

end-for
end-procedure

Figure 3.23
AS: implementation of the pheromone deposit procedure.

112 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

9 When depositing pheromone, the solution may be given some weight, as is the case
in EAS and ASrank. This can be accomplished by simply adding a weight factor as an
additional argument of the procedureDepositPheromone.
9 MM AS has to keep track of the pheromone trail limits. The best way to do so is
to integrate this into the procedureASPheromoneUpdate.
9 Finally, the search control of some of the AS variants may need minor changes.
Examples are occasional pheromone trail reinitializations or the schedule for the
frequency of the best-so-far update according to equation (3.20) inMM AS.

Unlike AS variants, the implementation of ACS requires more signi“cant changes,
as listed in the following:

9 The implementation of the pseudorandom proportional action choice rule [see
equation (3.10)] requires the generation of a random numberq uniformly distributed
in the interval ½0; 1� and the application of the procedureChooseBestNext if q < q0, or
of the procedureASDecisionRule otherwise.
9 The local pheromone update [equation (3.12)] can be managed by the procedure
ACSLocalPheromoneUpdate (see “gure 3.24) that is always invoked immediately after
an ant moves to a new city.
9 The implementation of the global pheromone trail update [equation (3.11)] is sim-
ilar to the procedure for the local pheromone update except that pheromone trails
are modi“ed only on arcs belonging to the best-so-far tour.
9 Note that the integration of the computation of new values for the matrixchoice_
info into the local and the global pheromone trail update procedures avoids having
to modify this matrix in any other part of the algorithm except for the initialization.

procedureACSLocalPheromoneUpdate(k; i)
input k % ant identi“er
input i % counter for construction step
h ant[k].tour[i � 1]
j ant[k].tour[i]
pheromone[h][j] ð 1 � xÞpheromone[h][j] þ xt 0

pheromone[j][h] pheromone[h][j]
choice_info[h][j] pheromone[h][j] � exp(1/dist[h][j]; b)
choice_info[j][h] choice_info[h][j]

end-procedure

Figure 3.24
Implementation of the local pheromone update in ACS.

3.8 Implementing ACO Algorithms 113

3.9 Bibliographical Remarks

The Traveling Salesman Problem
The TSP is one of the oldest and most studied combinatorial optimization problems.
The “rst references to the TSP and closely related problems date back to the 19th
century (see the overview paper on the history of combinatorial optimization by
Schrjiver [2002] and the webpage Solving TSPs accessible at www.math.princeton.
edu/tsp/ for more details). The TSP has been studied intensively in both operations
research and computer science since the •50s. Therefore, it is not surprising that a
large number of di¤erent algorithmic techniques were either applied to the TSP or
developed because of the challenge posed by this problem. Up to the early •80s
these approaches comprised mainly construction heuristics (Clarke & Wright, 1964;
Christo“des, 1976; Golden & Stewart, 1985; Bentley, 1992), iterative improvement
algorithms (Flood, 1956; Croes, 1958; Lin, 1965; Lin & Kernighan, 1973), and exact
methods like branch & bound or branch & cut (Dantzig, Fulkerson, & Johnson,
1954; Grötschel, 1981; Padberg & Gro¨tschel, 1985; Gro¨tschel & Holland, 1991;
Applegate et al., 1995). An in-depth overview of these early approaches is given in
Lawler et al. (1985). Extensive experimental evaluations of construction heuristics
and iterative improvement algorithms may be found in Bentley (1992), Reinelt
(1994), and Johnson & McGeoch (1997, 2002).

Since the beginning of the •80s, more and more metaheuristics have been tested
on the TSP. In fact, the TSP was the “rst problem to which simulated annealing, one
of the “rst metaheuristic approaches, was applied (Cerny´, 1985; Kirkpatrick, Gelatt,
& V ecchi, 1983). Following SA, virtually any metaheuristic used the TSP as a test
problem. These include tabu search (Knox, 1994; Zachariasen & Dam, 1996), guided
local search (Voudouris & Tsang, 1999), evolutionary algorithm (Merz & Freisle-
ben, 1997; Walters, 1998), ACO algorithms (see this chapter and Stu¨tzle & Dorigo,
1999b), and iterated local search (ILS) (Baum, 1986; Martin et al., 1991; Johnson &
McGeoch, 1997; Applegate et al., 2003).

The state of the art (until 1997) for solving symmetric TSPs with heuristics is sum-
marized in the overview article by Johnson & McGeoch (1997). This article contains
a discussion of the relative performance of di¤erent metaheuristic approaches to the
TSP and concludes that ILS algorithms using “ne-tuned implementations of the Lin-
Kernighan heuristic (Lin & Kernighan, 1973) are the most successful. The most re-
cent e¤ort in collecting the state of the art for TSP solving by heuristic methods was
undertaken by the ••8th DIMACS Implementation Challenge on the TSP••; details of
this benchmark challenge can be found at www.research.att.com/~dsj/chtsp/ and the

114 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

results as of February 2002, including construction heuristics, iterative improvement
algorithms, metaheuristics, and more TSP-speci“c approaches, are summarized in a
paper by Johnson & McGeoch (2002). The conclusion of this recent undertaking is
that, when running time is not much of a concern, the best-performing algorithms
appear to be the tour-merging approach (a TSP-speci“c heuristic) of Applegate et al.
(1999) and the iterated version of Helsgaun•s Lin-Kernighan variant (Helsgaun,
2000). In this context, it is interesting to note that the iterated version of Helsgaun•s
implementation of the Lin-Kernighan heuristic uses a constructive approach (as does
ant colony optimization) to generate the initial tours for the local searches, where the
best-so-far solution strongly biases the tour construction.

Finally, let us note that the results obtained with exact algorithms for the TSP are
quite impressive. As of spring 2002, the largest instance provably solved to opti-
mality comprises 15112 cities. Solving such a large instance required a network of
110 processors and took a total time estimated to be equivalent to 22.6 CPU-years
on a 500 MHz, EV6 Alpha processor (more details on optimization algorithms for
the TSP, the most recent results, and the source code of these algorithms are avail-
able at www.math.princeton.edu/tsp/). Although these results show the enormous
progress that has been made by exact methods, they also divert attention from the
fact that these results on the TSP are not really representative of the performance of
exact algorithms on many other combinatorial optimization problems. There are in
fact a large number of problems that become intractable for exact algorithms, even
for rather small instances.

ACO Algorithms
The currently available results obtained by ACO algorithms applied to the TSP are
not competitive with the above-mentioned approaches. By adding more sophisticated
local search algorithms like the implementation of the Lin-Kernighan heuristic avail-
able at www.math.princeton.edu/tsp/ or Helsgaun•s variant of the Lin-Kernighan
heuristic, ACO•s computational results on the TSP can certainly be strongly im-
proved, but it is an open question whether the results of the best algorithms available
can be reached. Nevertheless, as already stated in the introduction, the main impor-
tance of the TSP for the ACO research “eld is that it is a problem on which the be-
havior of ACO algorithms can be studied without obscuring the algorithm behavior
by many technicalities. In fact, the best-performing variants of ACO algorithms on
the TSP often reach world-class performance on many other problems (see chapter 5
for several such applications).

In addition to the ACO algorithms discussed in this chapter, recently a new
variant called best-worst Ant System (BWAS) was proposed (Cordo´n et al., 2000;

3.9 Bibliographical Remarks 115

Cordón, de Viana, & Herrera, 2002). It introduces three main variations with
respect to AS. First, while using, in a way similar toMM AS and ACS, an aggres-
sive update rule in which only the best-so-far ant is allowed to deposit pheromone, it
also exploits the worst ant of the current iteration to subtract pheromone on the arcs
it does not have in common with the best-so-far solution. Second, BWAS relies
strongly on search diversi“cation through the frequent reinitialization of the phero-
mone trails. Third, as an additional means for diversifying the search, it introduces
pheromone mutation, a concept borrowed from evolutionary computation. The in-
”uence of these three features was systematically analyzed in Cordo´n et al. (2002).
The currently available results, however, are not fully conclusive, so that it is not
possible to judge BWAS•s performance with respect to the currently best-performing
ACO algorithms for the TSP:MM AS and ACS.

ACO algorithms have also been tested on the asymmetric TSP (Dorigo & Gam-
bardella, 1997b; Stu¨tzle & Hoos, 2000; Stu¨tzle & Dorigo, 1999b), where the distance
between a pair of nodesi; j is dependent on the direction of traversing the arc. ACO
algorithms for the symmetric TSP can be extended very easily to the asymmetric
case, by taking into account that in generalt ij 0 t ji , because the direction in which
the arcs are traversed has to be taken into account. Experimental results suggest
that ACO algorithms can “nd optimal solutions to ATSP instances with up to a few
hundred nodes. In the ATSP case, at the time the research was done, results com-
petitive with those obtained by other metaheuristics were obtained. However, recent
results on algorithmic approaches to the ATSP (see Johnson, Gutin, McGeoch, Yeo,
Zhang, & Zverovitch, 2002) suggest that current ACO algorithms do not reach state-
of-the-art performance for the ATSP.

It is also worth mentioning that there are at least two ant algorithms not “tting
into the ACO metaheuristic framework that have been applied to combinatorial
optimization problems. These areHybrid Ant System(HAS) by Gambardella, Tail-
lard, & Dorigo (1999b) and Fast Ant System(FANT) by Taillard (1998). HAS does
not use pheromone trails to construct solutions but to guide a solution modi“ca-
tion process similar to perturbation moves as used in ILS. FANT di¤ers from ACO
algorithms mainly in the pheromone management process and in the avoidance of
explicit evaporation of pheromones, which are decreased by occasional reinitializa-
tions. Both HAS and FANT were applied to the quadratic assignment problem and
were found to yield good performance. However, adaptations of both to the TSP
resulted in signi“cantly worse performance than, for example,MM AS (Stützle &
Linke, 2002).

The combination of ACO algorithms with local search was considered for the “rst
time by Maniezzo et al. (1994) for the application of AS to the quadratic assignment

116 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

problem. When applied to the TSP, local search was combined for the “rst time with
ACS by Dorigo & Gambardella (1997b) and with MM AS by Stützle & Hoos
(1996). For a detailed experimental investigation of the in”uence of parameter set-
tings on the “nal performance of ACO algorithms for the TSP, see those papers.

3.10 Things to Remember

9 The TSP was the “rst combinatorial optimization problem to be attacked by ACO.
The “rst ACO algorithm, called Ant System, achieved good performance on small
TSP instances but showed poor scaling behavior to large instances. The main role of
AS was that of a ••proof-of-concept•• that stimulated research on better-performing
ACO algorithms as well as applications to di¤erent types of problems.
9 Nowadays, a large number of di¤erent ACO algorithms are available. All of these
algorithms include a strong exploitation of the best solutions found during the search
and the most successful ones add explicit features to avoid premature stagnation of
the search. The main di¤erences between the various AS extensions consist of the
techniques used to control the search process. Experimental results show that for the
TSP, but also for other problems, these variants achieve a much better performance
than AS.
9 When applying ACO algorithms to the TSP, the best performance is obtained
when the ACO algorithm uses a local optimizer to improve the solutions constructed
by the ants. As we will see in chapter 5, this is typical for the application of ACO to
N P -hard optimization problems.
9 When using local search, it is typically su‹cient to apply a small constant number
of ants to achieve high performance, and experimental results suggest that in this
case the role played by the heuristic information becomes much less important.
9 The implementation of ACO algorithms is often rather straightforward, as shown
in this chapter via the example of the implementation of AS for the TSP. Neverthe-
less, care should be taken to make the code as e‹cient as possible.
9 The implementation code for most of the ACO algorithms presented in this chap-
ter is available at www.aco-metaheuristic.org/aco-code/.

3.11 Computer Exercises

Exercise 3.1 In all ACO algorithms for the TSP the amount of pheromone depos-
ited by an ant is proportional to the ant•s tour length. Modify the code in such a way

3.11 Computer Exercises 117

that the amount of pheromone deposited is a constant and run tests with the various
ACO algorithms.

For which ACO algorithms would you expect that this change does not in”uence
the performance very strongly? Why?

Exercise 3.2 Use a pro“ler to identify how much computation time is taken by the
di¤erent procedures (solution construction, pheromone evaporation, local search,
etc.) of the ACO algorithms. Identify the computationally most expensive parts.

Exercise 3.3 There exist some ACO algorithms that were proposed in the literature
but that have never been applied to the symmetric TSP. These ACO algorithms in-
clude the ANTS algorithm (Maniezzo, 1999) and the hyper-cube framework for
ACO (Blum et al., 2001; Blum & Dorigo, 2004). Extend the implementation of the
ACO algorithms that is available at www.aco-metaheuristic.org/aco-code/ to include
these two ACO algorithms.

Hint : For ANTS care has to be taken that the computation of the lower bounds is
ase‹cient as possible, because this is done at each construction step of each ant.

Exercise 3.4 ACO algorithms have mainly been tested on Euclidean TSP instances
available from TSPLIB. Many TSP algorithms are experimentally tested on random
distance matrix instances, where each entry in the distance matrix is a random num-
ber sampled from some interval. Download a set of such instances from the webpage
of the 8th DIMACS Implementation Challenge on the TSP (www.research.att.com/
~dsj/chtsp/) and test the ACO algorithms on these types of instances.

Exercise 3.5 The implementations described in this chapter were designed for at-
tacking symmetric TSP problems. Adapt the available code to solve ATSP instances.

Exercise 3.6 Compare the results obtained with the ACO algorithms to those ob-
tained with the approaches described in the review paper on heuristics for the asym-
metric TSP by Johnson et al. (2002).

Exercise 3.7 The solution construction procedure used in all ACO algorithms is a
randomized form of the nearest-neighbor heuristic, in which at each step the closest,
still unvisited, city to the current city is chosen and becomes the current city. How-
ever, a large number of other solution construction procedures exist (e.g., see Bent-
ley, 1992; Reinelt, 1994; Johnson & McGeoch, 2002). Promising results have been
reported among others for thesavings heuristic, the greedy heuristic, and theinsertion
heuristic.

Adapt the ACO algorithms• code so that these construction heuristics can be used
in place of the nearest-neighbor heuristic.

118 Chapter 3 Ant Colony Optimization Algorithms for the Traveling Salesman Problem

Exercise 3.8 Combine the available ACO algorithms with implementations of the
Lin-Kernighan heuristic. You may adapt the publicly availableLin-Kernighan codes
of the Concorde distribution (available at www.math.princeton.edu/tsp/concorde.
html) or Keld Helsgaun•s Lin-Kernighan variant (available at www.dat.ruc.dk/
~keld/research/LKH/) and use these to improve the solutions generated by the
ants (do not forget to ask the authors of the original code for permission to modify/
adapt it).

Exercise 3.9 Extend the available code for the TSP to the sequential ordering
problem (see chapter 2, section 2.3.2, for a de“nition of the problem). For a descrip-
tion of an ACO approach to the SOP, see chapter 5, section 5.1.1.

3.11 Computer Exercises 119

4Ant Colony Optimization Theory

In theory, there is no di¤erence between theory and practice. But in practice, there is a di¤erence!
„A uthor unknown

The brief history of the ant colony optimization metaheuristic is mainly a history of
experimental research. Trial and error guided all early researchers and still guides
most of the ongoing research e¤orts. This is the typical situation for virtually all
existing metaheuristics: it is only after experimental work has shown the practical
interest of a novel metaheuristic that researchers try to deepen their understanding of
the metaheuristic•s functioning not only through more and more sophisticated ex-
periments but also by means of an e¤ort to build a theory. Typically, the “rst theo-
retical problem considered is the one concerning convergence: will the metaheuristic
“nd the optimal solution if given enough resources? Other questions that are often
investigated are the speed of convergence, principled ways of setting the metaheur-
istic•s parameters, relations to existing approaches, identi“cation of problem charac-
teristics that make the metaheuristic more likely to be successful, understanding the
importance of the di¤erent metaheuristic components, and so on. In this chapter we
address those problems for which we have an answer at the time of writing. In par-
ticular, we discuss the convergence of some types of ACO algorithms to the optimal
solution and the relationship between ACO and other well-known techniques such as
stochastic gradient ascent.

4.1 Theoretical Considerations on ACO

When trying to prove theoretical properties for the ACO metaheuristic, the re-
searcher faces a “rst major problem: ACO•s very general de“nition. Although gen-
erality is a desirable property„it allows putting in the same framework ant-based
algorithms applied to discrete optimization problems that range from static problems
such as the traveling salesman problem to time-varying problems such as routing
in telecommunications networks„it makes theoretical analysis much more compli-
cated, if not impossible. A rapid look at the ACO metaheuristic description in “gure
2.1 of chapter 2, should convince the reader that ACO as such is not amenable to a
theoretical analysis of the type necessary to prove, for example, convergence. Even
the simpli“ed version of ACO shown in “gure 3.3 of chapter 3, which can be applied
only to static combinatorial optimization problems, is too loosely de“ned to allow
for theoretical work. It is for this reason that the convergence proofs presented in the
forthcoming sections do not apply to the metaheuristic itself, but to particular ACO
algorithms, such as theMAX …MIN Ant System or the Ant Colony System (see
sections 3.3.4 and 3.4.1 of chapter 3).

The “rst theoretical aspect of ACO that we consider in this chapter is theconver-
gence problem: Does the algorithm considered eventually “nd the optimal solution?
This is an interesting question, because ACO algorithms are stochastic search proce-
dures in which the bias due to the pheromone trails could prevent them from ever
reaching the optimum. It is important to note that, when considering a stochastic
optimization algorithm, there are at least two possible types of convergence:conver-
gence in valueand convergence in solution. Informally, and making the hypothesis
that in case of problems with more than one optimal solution we are interested in
convergence toward any of them, when studying convergence in value we are inter-
ested in evaluating the probability that the algorithm will generate an optimal solu-
tion at least once. On the contrary, when studying convergence in solution we are
interested in evaluating the probability that the algorithm reaches a state which keeps
generating the same optimal solution. In the following, we discuss both types of
convergence for some subsets of ACO algorithms. Note, however, that although in
general convergence in solution is a stronger and more desirable result to prove than
convergence in value, in optimization we are interested in “nding the optimal solu-
tion once (after it has been found the problem is solved and the algorithm can be
stopped), so that convergence in value is all that we need.

In the following, we de“ne two ACO algorithms called ACObs; t min and
ACObs; t minðyÞ, and we prove convergence results for both of them: convergence in
value for ACO algorithms in ACObs; t min and convergence in solution for ACO algo-
rithms in ACObs; t minðyÞ. Here, y is the iteration counter of the ACO algorithm and
t minðyÞindicates that thet min parameter may change during a run of the algorithm.
We then show that these proofs continue to hold when typical elements of ACO,
such as local search and heuristic information, are introduced. Finally, we discuss the
meaning of these results and we show that the proof of convergence in value applies
directly to two of the experimentally most successful ACO algorithms:MM AS
and ACS.

Unfortunately, no results are currently available on thespeed of convergenceof
any ACO algorithm. Therefore, although we can prove convergence, we currently
have no other way to measure algorithmic performance than to run extensive exper-
imental tests.

Another theoretical aspect that is investigated in this chapter is the formal rela-
tionship between ACO and other approaches. In particular, following Dorigo et al.
(2002c) and Zlochin, Birattari, Meuleau, & Dorigo (2001), we put ACO in the more
general framework of model-based search, so that it is possible to better understand
the relations between ACO, stochastic gradient ascent, and the more recent cross-
entropy method (De Bonet, Isbell, & Viola, 1997; Rubinstein, 2001).

122 Chapter 4 Ant Colony Optimization Theory

4.2 The Problem and the Algorithm

In this section we brie”y summarize the problem description and the algorithms that
we have encountered in chapters 2 and 3. As in chapter 2, we consider an instance of
a minimization problem ðS; f ; WÞ, whereS is theset of (candidate) solutions, f is the
objective function, which assigns an objective function (cost) valuef ðsÞto each can-
didate solution s AS, and W is a set of constraints, which de“nes the set offeasible
candidate solutions. The goal is to “nd an optimal solutions� , that is, a feasible
candidate solution of minimum cost.

An important di¤erence with chapter 2, however, is that here we consider only
static problems for which topology and costs remain “xed in time; in fact, the con-
vergence proofs we present in the following are meaningless in the case of time-
varying problems where an algorithm must be able to follow the dynamics inherent
to the problem.

The instanceðS; f ; WÞis mapped on a problem that can be characterized by the
following list of items:

9 A “nite set C ¼ f c1; c2; . . . ; cNC g of components.
9 A “nite set X of statesof the problem, de“ned in terms of all possible sequences
x ¼ hci ; cj ; . . . ; ch; . . .i over the elements ofC. The length of a sequencex, that is, the
number of components in the sequence, is expressed byjxj. The maximum possible
length of a sequence is bounded by a positive constantn < þ y .
9 The set of (candidate) solutionsS is a subset ofX (i.e., S J X). (In other words,
candidate solutions are identi“ed with speci“c states.)
9 A set of feasible states~XX , with ~XX J X , de“ned via a problem-dependent test that
veri“es that it is not impossible to complete a sequencex A ~XX into a solution satisfy-
ing the constraintsW.
9 A non-empty setS� of optimal solutions, with S� J ~XX and S� J S.

Additionally, as was discussed in chapter 2, section 2.2.1, a costgðsÞis associated
with each candidate solutions AS. In the following, we setgðsÞ1 f ðsÞEs A ~SS, where
~SS J S is the set of feasible candidate solutions de“ned via the constraintsW. Note
that in the current de“nitions the timet does not appear, because in this chapter we
consider only static (i.e., not time-varying) problems.

As we have seen in previous chapters, given the above formulation, arti“cial ants
build candidate solutions by performing randomized walks on theconstruction graph,
that is, the completely connected graphGC ¼ ðC; LÞ, where the nodes are the com-
ponentsC, and the setL fully connects these components. The random walk of the

4.2 The Problem and the Algorithm 123

arti“cial ants is biased bypheromone trailst , gathered in a vectorT . As in previous
chapters, we restrict our attention to the case in which pheromone trails are asso-
ciated with connections, so thatt ij is the pheromone associated with the connection
between componentsi and j. I t is straightforward to extend algorithms and proofs to
the other cases.

The algorithm is initialized by setting the pheromone trails to an initial value
t 0 > 0 (remember that t 0 is a parameter of the algorithm). At each iteration of
the algorithm, ants are positioned on nodes chosen according to some problem-
dependent criterion. While moving from one node to another of the graphGC, con-
straints W are used to prevent ants from building infeasible solutions. The solution
construction behavior of a generic antk, called AntSolutionConstruction, is described
in “gure 4.1.

In this procedure, the function SelectNextNodeðxh; T Þ returns the next node j
chosen according to the following probability:

PT ðchþ 1 ¼ j j xhÞ ¼

Fij ðt ij ÞP
ði; lÞAN k

i
Fil ðt il Þ

; if ði; jÞAN k
i ;

0; otherwise;

8
><

>:
ð4:1Þ

where ði; jÞbelongs toN k
i i¤ the sequencexhþ 1 ¼ hc1; c2; . . . ; ch; j i built by ant k

satis“es the constraintsW (i.e., xhþ 1 A ~XX) and Fij ðzÞ is some nondecreasing, mono-

procedureAntSolutionConstruction
Select a start node c1 according to some problem dependent criterion
h 1
xh hc1i
while (xh BS and N k

i 0 q) do
j SelectNextNode(xh; T)
xh xh n j

end-while
if xh AS then

return xh

else abort
end-if

end-procedure

Figure 4.1
High-level pseudo-code for the procedureAntSolutionConstruction applied by antk. The operatorn denotes
the addition of a component j to the partial solution xh. The procedure either returns a full solutions, or is
aborted. TheSelectNextNodeðxh; T Þis given by equation (4.1).

124 Chapter 4 Ant Colony Optimization Theory

tonic function. Note that by writing Fij ðzÞinstead ofFðzÞwe indicate that the func-
tion FðzÞmay be di¤erent on each arc. In practice, in all ACO implementations we
are aware of, the dependence on the arc is due to the fact that pheromone values are
composed with some function of an arc-speci“c informationhij called ••heuristic vis-
ibility.•• As we have seen in chapter 3, most commonlyFij ðzÞ ¼zahb

ij , wherea; b > 0
are parameters [a notable exception is equation (3.13), used in Maniezzo•s ANTS].

If it happens during solution construction thatxh BS and N k
i ¼ q , that is, the

construction process has reached a dead end, theAntSolutionConstruction procedure is
aborted and the current statexh is discarded. (This situation may be prevented by
allowing arti“cial ants to build infeasible solutions as well. In such a case a penalty
term re”ecting the degree of infeasibility is usually added to the cost function.)

For certain problems, it can be useful to use a more general scheme, whereF
depends on the pheromone values of several ••related•• connections, rather than just a
single one. Moreover, instead of therandom proportional ruleabove, di¤erent selec-
tion schemes, such as thepseudorandom proportional rule[see equation (3.10)], may
be considered.

Once all the ants have terminated theirAntSolutionConstruction procedure, a pher-
omone update phase is started in which pheromone trails are modi“ed. Letsbs be the
best-so-far solution (i.e., the best feasible solution found since the “rst iteration of the
algorithm) and sy be the iteration-best solution (i.e., the best feasible solution ob-
tained in the current iteration y); f ðsbsÞand f ðsyÞare the corresponding objective
function values. The pheromone update procedure decreases the value of the pher-
omone trails onall connections inL by a small factor r , called the evaporation rate,
and then increases the value of the pheromone trails on the connections belonging to
sbs (in the literature, adding pheromone only to those arcs that belong to the best-so-
far solution is known as theglobal-best pheromone update(Dorigo & Gambardella,
1997b), but is more appropriately referred to asbest-so-far updatein the following).

All the di¤erent schemes for pheromone update discussed in chapter 3, section 3.3
(i.e., AS•s and its extensions• pheromone update rules) can be described using the
GenericPheromoneUpdate procedure shown in “gure 4.2. Herey is the index of the
current iteration, Si is the set of solutions generated in thei-th iteration, r is the
evaporation rateð0 < r a 1Þ, and qf ðsj S1; . . . ; SyÞis some ••quality function,•• which
is typically required to be nonincreasing with respect tof (i.e., f ðs1Þ> f ðs2Þ)
qf ðs1Þa qf ðs2Þ), and is de“ned over the ••reference set••̂SSy, as discussed in the
following.

Di¤erent ACO algorithms may use di¤erent quality functions and reference sets.
For example, in AS the quality function is simply 1=f ðsÞ and the reference set
ŜSy ¼ Sy. In many of the extensions of AS, either theiteration-best updateor the

4.2 The Problem and the Algorithm 125

best-so-far updateis used: in the “rst case the reference set is a singleton containing
the best solution withinSy (if there are several iteration-best solutions, one of them
is chosen randomly). In the best-so-far update, the reference set contains the best
among all the iteration-best solutions (and if there is more than one, the earliest one
is chosen). In some cases a combination of the two update methods is used.

In case a good lower bound on the optimal solution cost is available, one may use
the following quality function, as done in ANTS (Maniezzo, 1999) [see also equation
(3.15)]:

qf ðsj S1; . . . ; SyÞ ¼t 0 1 �
f ðsÞ � LB
favg � LB

� �
¼ t 0

favg � f ðsÞ
favg � LB

; ð4:2Þ

where favg is the average of the costs of the lastk solutions andLB is a lower bound
on the optimal solution cost. With this quality function, the solutions are evaluated
by comparing their cost to the average cost of the other recent solutions, rather than
by using the absolute cost values. In addition, the quality function is automatically
scaled based on the proximity of the average cost to the lower bound, and no explicit
pheromone evaporation is performed.

As we have seen (see chapter 3, section 3.4.1), the pheromone update used in ACS
di¤ers slightly from the generic update described above. In ACS there is no general
pheromone evaporation applied to all connections as in AS and its extensions. On
the contrary, the only pheromones that evaporate are those associated with the arcs
of the best-so-far solution: the best-so-far update computes a weighted sum between

procedureGenericPheromoneUpdate
foreach(i; j) AL do

t ij ð 1 � r Þt ij

end-foreach
foreachs AŜSy do

foreachði; jÞAs do
t ij t ij þ qf ðsj S1; . . . ; SyÞ

end-foreach
end-foreach

end-procedure

Figure 4.2
High-level pseudo-code for the procedureGenericPheromoneUpdate. y is the index of the current iteration,
Si is the sample (i.e., the set of generated solutions) in thei-th iteration, r , 0 < r a 1, is the evaporation
rate, andqf ðsj S1; . . . ; SyÞis some ••quality function,•• which is typically required to be nonincreasing with
respect to f and is de“ned over the ••reference set••ŜSy, as discussed in the text.

126 Chapter 4 Ant Colony Optimization Theory

the old pheromone trail and the amount deposited, where the evaporation rater de-
termines the weights of the two values [see equation (3.11)]. Additionally, the phero-
mones are decreased by the ants during solution construction by means of the local
pheromone update rule [see equation (3.12)].

Two additional modi“cations of the generic update are found inMAX …MIN
Ant System and in the hyper-cube framework for ACO (see chapter 3, sections 3.3.4
and 3.4.3, respectively).MM AS puts limits on the minimum value of pheromone
trails. With this modi“cation, the probability of generating any particular solution is
kept above some positive threshold, which helps prevent search stagnation and pre-
mature convergence to suboptimal solutions. In the hyper-cube framework for ACO,
an automatic scaling of the pheromone values is implemented.

4.3 Convergence Proofs

In this section, we study the convergence properties of some important subsets of
ACO algorithms. First, we de“ne the ACObs; t min algorithm and we prove its conver-
gence in value with probability 1. Then, we de“ne the ACObs; t minðyÞ algorithm and we
prove its convergence in solution. After showing that both proofs continue to hold
when local search and heuristic information are added, we discuss the meaning of the
proofs and show that the convergence in value proof applies to the experimentally
most successful ACO algorithms.

Using the notation of the previous section, ACObs; t min is de“ned as follows. First,
in the ant solution construction procedure the initial location of each ant is chosen in
a problem-speci“c way (often this is done using a uniform random distribution), and
Fij ðt ij Þ1 Fðt ij Þ[i.e., we remove the dependence of the functionF on the arcði; jÞto
which it is applied; for the algorithms presented in chapter 3, this corresponds to
removing the dependence on the heuristich; this dependence is reintroduced in sec-
tion 4.3.3]. Additionally, to ease the following derivations, we assumeFðt ij Þto be of
the form used in almost all ACO algorithms:Fðt ij Þ ¼t a

ij , where 0< a < þ y is a
parameter. The probabilistic construction rule of equation (4.1) applied by the ants
to build solutions becomes

PT ðchþ 1 ¼ j j xhÞ ¼

t a
ijP

ði; lÞAN k
i

t a
il

; if ði; jÞAN k
i ;

0; otherwise.

8
><

>:
ð4:3Þ

Second, the pheromone update procedure is implemented by choosingŜSy ¼ sbs

(i.e., the reference set contains only the best-so-far solution) and, additionally, a

4.3 Convergence Proofs 127

lower limit t min > 0 is put on the value of pheromone trails. In practice, theGeneric-

PheromoneUpdate procedure of “gure 4.2 becomes theACObs; t minPheromoneUpdate
procedure shown in “gure 4.3.

The value t min is a parameter of ACObs; t min; in the following we assume that
t min < qf ðs� Þ. This can be achieved by setting, for example,t 0 ¼ qf ðs0Þ=2, wheres0 is
a solution used to initialize ACObs; t min.

The choice of the name ACObs; t min for this algorithm is due to the fact that the
best-so-far solution is used to update pheromones and that a lower limitt min on the
range of feasible pheromone trails is introduced. (Note that in the original paper in
which ACObs; t min was introduced [Stu¨tzle & Dorigo, 2002], the algorithm was called
ACOgb; t min.)

4.3.1 Convergence in Value

In this subsection we prove that ACObs; t min is guaranteed to “nd an optimal solution
with a probability that can be made arbitrarily close to1 if given enough time (con-
vergence in value). However, as we indicate in section 4.3.2, we cannot prove con-
vergence in solution for ACObs; t min.

Before proving the “rst theorem, it is convenient to show that, due to phero-
mone evaporation, the maximum possible pheromone levelt max is asymptotically
bounded.

procedureACObs; t min PheromoneUpdate
foreach(i; j) AL do

t ij ð 1 � r Þt ij

end-foreach
if f ðsyÞ< f ðsbsÞthen

sbs sy

end-if
foreachði; jÞAsbs do

t ij t ij þ qf ðsbsÞ
end-foreach
foreach(i; j) do

t ij maxf t min; t ij g
end-foreach

end-procedure

Figure 4.3
High-level pseudo-code for theACObs; t minPheromoneUpdate procedure.sy and sbs are the iteration-best and
best-so-far solutions respectively, whilet min is a parameter.

128 Chapter 4 Ant Colony Optimization Theory

Proposition 4.1 For any t ij it holds:

lim
y! y

t ij ðyÞa t max ¼
qf ðs� Þ

r
: ð4:4Þ

Proof The maximum possible amount of pheromone added to any arcði; jÞafter
any iteration is qf ðs� Þ. Clearly, at iteration 1 the maximum possible pheromone trail
is ð1 � r Þt 0 þ qf ðs� Þ, at iteration 2 it is ð1 � r Þ2t 0 þ ð1 � r Þqf ðs� Þ þ qf ðs� Þ, and so
on. Hence, due to pheromone evaporation, the pheromone trail at iterationy is
bounded by

t max
ij ðyÞ ¼ ð1 � r Þyt 0 þ

Xy

i ¼1

ð1 � r Þy� iqf ðs� Þ:

As 0 < r a 1, this sum converges asymptotically to

t max ¼
qf ðs� Þ

r
: r

Proposition 4.2 Once an optimal solution s� has been found, it holds that

Eði; jÞAs� : lim
y! y

t �
ij ðyÞ ¼t max ¼

qf ðs� Þ
r

;

wheret �
ij is the pheromone trail value on connectionsði; jÞAs� .

Proof Once an optimal solution has been found, remembering thatEy b 1, t �
ij ðyÞb

t min and that the best-so-far update rule is used, we have thatt �
ij ðyÞmonotonically

increases. The proof of proposition 4.2 is basically a repetition of the proof of prop-
osition 4.1, restricted to the connections of the optimal solution (t 0 is replaced by
t �

ij ðy
� Þ in the proof of proposition 4.1, wherey� is the iteration in which the “rst

optimal solution was found). r

Proposition 4.1 implies that, for the following proof of theorem 4.1, the only es-
sential point is that t min > 0, becauset max will anyway be bounded by pheromone
evaporation. Proposition 4.2 additionally states that, once an optimal solution has
been found, the value of the pheromone trails on all connections ofs� converges to
t max ¼ qf ðs� Þ=r .

We can now prove the following theorem.

Theorem 4.1 Let P � ðyÞbe the probability that the algorithm “nds an optimal solution
at least once within the “rsty iterations. Then, for an arbitrarily smalle> 0 and for a
su‹ciently large y it holds that

4.3 Convergence Proofs 129

P� ðyÞb 1 � e;

and, by de“nition,limy! y P� ðyÞ ¼1.

Proof Due to the pheromone trail limits t min and t max we can guarantee that any
feasible choice in equation (4.3) for any partial solutionxh is made with a probability
pmin > 0. A trivial lower bound for pmin is given by

pmin b p̂pmin ¼
t a

min

ðNC � 1Þt a
max þ t a

min
; ð4:5Þ

where NC is the cardinality of the setC of components. (For the derivation of this
bound we consider the following ••worst-case•• situation: the pheromone trail asso-
ciated with the desired decision ist min, while all the other feasible choices„there are
at most NC � 1„ have an associated pheromone trail oft max.) Then, any generic
solution s0, including any optimal solution s� AS� , can be generated with a proba-
bility p̂pb p̂pn

min > 0, wheren < þ y is the maximum length of a sequence. Because
it is su‹cient that one ant “nds an optimal solution, a lower bound for P� ðyÞ is
given by

P̂P� ðyÞ ¼1 � ð 1 � p̂pÞy:

By choosing a su‹ciently largey, this probability can be made larger than any value
1 � e. Hence, we have that limy! y P̂P� ðyÞ ¼1. r

4.3.2 Convergence in Solution

In this subsection we prove convergence in solution for ACObs; t minðyÞ, which di¤ers
from ACO bs; t min by allowing a change in value fort min while solving a problem. That
is, we prove that, in the limit, any arbitrary ant of the colony will construct the
optimal solution with probability 1. This cannot be proved if we impose, as done in
ACObs; t min, a small, positive lower bound on the lower pheromone trail limits because
in this case at any iterationy each ant can construct any solution with a nonzero
probability. The key of the proof is therefore to allow the lower pheromone trail
limits to decrease over time toward zero, but making this decrement slow enough to
guarantee that the optimal solution is eventually found. We call ACObs; t minðyÞ the
modi“cation of ACO bs; t min obtained in this way, wheret minðyÞindicates the depen-
dence of the lower pheromone trail limits on the iteration counter.

The proof of convergence in solution is organized in two theorems. First, in theo-
rem 4.2 (in a way analogous to what was done in the proof of theorem 4.1) we prove
that it can still be guaranteed that an optimal solution is found with a probability

130 Chapter 4 Ant Colony Optimization Theory

converging to 1 when lower pheromone trail limits of the ACObs; t minðyÞ algorithm de-
crease toward 0 at not more than logarithmic speed (in other words, we prove that
ACObs; t minðyÞ converges in value). Next, in theorem 4.3 we prove, under the same
conditions, convergence in solution of ACObs; t minðyÞ.

Theorem 4.2 Let the lower pheromone trail limits in ACObs; t minðyÞ be

Ey b 1; t minðyÞ ¼
d

lnðy þ 1Þ
;

with d being a constant, and let P� ðyÞbe the probability that the algorithm “nds an
optimal solution at least once within the “rsty iterations. Then it holds that

lim
y! y

P� ðyÞ ¼1:

Proof Di¤erently from what was done in the proof of theorem 4.1, here we prove
that an upper bound on the probability ofnot constructing the optimal solution is 0
in the limit (i.e., the optimal solution is found in the limit with probability 1). Let the
eventEy denote that iterationy is the iteration in which an optimal solution is found
for the “rst time. The event5 y

y¼1 s Ey that no optimal solution is ever found, implies
that also one arbitrary, but “xed, optimal solution s� is never found. Therefore, an
upper bound to the probability Pð5 y

y¼1 s EyÞ is given by Pðs� is never traversedÞ,
that is:

P 5
y

y¼1
s Ey

 !

a Pðs� is never traversedÞ: ð4:6Þ

Now, in a way similar to what was done for theorem 4.1, we can guarantee that at a
generic iterationy any feasible choice according to equation (4.3) can be made with a
probability pmin bounded as follows:

pmin b p̂pminðyÞ ¼
t a

minðyÞ
ðNC � 1Þt a

max þ t a
minðyÞ

b
t a

minðyÞ
NCt a

max
¼ p̂p0

minðyÞ:

Then, a lower bound on the probability that a “xed antk is constructing the optimal
solution s� is given by p̂pðyÞb ðp̂p0

minðyÞÞn, wheren < þ y is the maximum length of a
sequence. This bound is independent of what happened before iterationy. Therefore,
we can give the following upper bound on the right side of equation (4.6):

4.3 Convergence Proofs 131

Pðs� is never traversedÞa
Yy

y¼1

ð1 � ð p̂p0
minðyÞÞnÞ

¼
Yy

y¼1

1 �
t a

minðyÞ
NCt a

max

� � n� �
: ð4:7Þ

We now must prove that this product is equal to 0. To do so, we consider its
logarithm

Xy

y¼1

ln 1 �
t a

minðyÞ
NCt a

max

� � n� �
;

and we show that the resulting series, starting from some “nite numberl , grows
quicker than the harmonic series, so that it diverges to� y , which implies that the
original product is equal to 0. First, remember thatt minðyÞ ¼d=lnðy þ 1Þ. Then

Xy

y¼1

ln 1 �
t a

minðyÞ
NCt a

max

� � n� �
¼

Xy

y¼1

ln 1 �

d
lnðy þ 1Þ

� � a

NCt a
max

0

B
@

1

C
A

n
2

6
6
4

3

7
7
5

¼
Xy

y¼1

ln 1 �
d1

ðlnðy þ 1ÞÞa

� � n� �

a � dn
1

Xy

y¼1

1
lnðy þ 1Þ

� � an

¼ � y ;

whered1 ¼ da=NCt a
max.

The inequality holds because for anyx < 1, lnð1 � xÞa � x. The equality holds
because

P
xðln xÞ� i is a diverging series. To see the latter, note that for each positive

constant d > 0 and for su‹ciently large x, ðln xÞi a d� x, and therefored=ðln xÞi b
1=x. It then su‹ces to remember that

P
x 1=x is the harmonic series, which is known

to diverge to y .
These derivations say that an upper bound for the logarithm of the product

given in equation (4.7) and, hence, the logarithm on the right side of equation (4.6),
is � y ; therefore, the product given in equation (4.7) and the right side of equation
(4.6) have to be 0, that is, the probability of never “nding the optimal solution
ðPð5 y

y¼1 s EyÞÞis 0. This proves that an optimal solution will be found with proba-
bility 1. r

132 Chapter 4 Ant Colony Optimization Theory

In the limiting case, once the optimal solution has been found, we can estimate an
ant•s probability of constructing an optimal solution when following the stochastic
policy of the algorithm. In fact, it can be proved that any ant will in the limit con-
struct the optimal solution with probability 1„that is, we can prove convergence in
solution. Before the proof of this assertion, it is convenient to show that the phero-
mone trails of connections that do not belong to the optimal solution asymptotically
converge to 0.

Proposition 4.3 Once an optimal solution has been found and for anyt ij ðyÞsuch that
ði; jÞBs� it holds that

lim
y! y

t ij ðyÞ ¼0:

Proof After the optimal solution has been found, connections not belonging to the
optimal solution do not receive pheromone anymore. Thus, their value can only
decrease. In particular, after one iterationt ij ðy

� þ 1Þ ¼maxf t minðyÞ; ð1 � r Þt ij ðy
� Þg,

after two iterations t ij ðy
� þ 2Þ ¼maxf t minðyÞ; ð1 � r Þ2t ij ðy

� Þg, and so on (y� is the
iteration in which s� was “rst found). Additionally, we have that limy! y d=lnðy� þ
y þ 1Þ ¼0 and limy! y ð1 � r Þyt ij ðy

� þ yÞ ¼0. Therefore, limy! y t ij ðy
� þ yÞ ¼0.

r

Theorem 4.3 Let y� be the iteration in which the “rst optimal solution has been found
and Pðs� ; y; kÞbe the probability that an arbitrary ant k constructs s� in the y-th iter-
ation, with y > y� . Then it holds that

lim
y! y

Pðs� ; y; kÞ ¼1:

Proof Let ant k be located on componenti and ði; jÞbe a connection ofs� . A lower
bound p̂p�

ij ðyÞfor the probability p�
ij ðyÞthat ant k makes the ••correct choice••ði; jÞis

given by the term

p̂p�
ij ðyÞ ¼

ðt �
ij ðyÞÞa

ðt �
ij ðyÞÞa þ

P
ði;hÞBs� ðt ihðyÞÞa

:

Because of propositions 4.2 and 4.3 we have

p̂p�
ij ¼ lim

y! y
p̂p�

ij ðyÞ ¼
lim y! y ðt �

ij ðyÞÞa

lim y! y ðt �
ij ðyÞÞa þ

P
ði;hÞBs� lim y! y ðt ihðyÞÞa

¼
t a

max

t a
max þ

P
ði;hÞBs� 0a ¼ 1:

4.3 Convergence Proofs 133

Hence, in the limit any “xed ant will construct the optimal solution with proba-
bility 1, because at each construction step it takes the correct decision with prob-
ability 1. r

4.3.3 Additional Features of ACO Algorithms

As we have seen in chapter 3, many ACO algorithms include some features that are
present neither in ACObs; t min nor in ACO bs; t minðyÞ. The most important are the use of
local search algorithms to improve the solutions constructed by the ants and the use
of heuristic information in the choice of the next component. Therefore, a natural
question is how these features a¤ect the convergence proof for ACObs; t min. Note that
here and in the following, although the remarks made about ACObs; t min in general
also apply to ACObs; t minðyÞ, for simplicity we often refer only to ACObs; t min.

Let us “rst consider the use of local search. Local search tries to improve an ant•s
solution s by iteratively applying small, local changes to it. Typically, the best solu-
tion s0 found by the local search is returned and used to update the pheromone
trails. It is rather easy to see that the use of local search neither a¤ects the conver-
gence properties of ACObs; t min, nor those of ACObs; t minðyÞ. In fact, the validity of both
convergence proofs depends only on the way solutions are constructed and not on
the fact that the solutions are taken or not to their local optima by a local search
routine.

A priori available information on the problem can be used to derive heuristic
information that biases the probabilistic decisions taken by the ants. When incor-
porating such heuristic information into ACObs; t min, the most common choice is
Fij ðt ij Þ ¼ ½t ij �

a½hij �
b, as explained in section 4.2. In this case equation (4.3), becomes

PT ðchþ 1 ¼ j j xhÞ ¼

½t ij �
a½hij �

b

P
ði; lÞAN k

i
½t il �

a½hil �
b ; if ði; jÞAN k

i ;

0; otherwise;

8
>><

>>:
ð4:8Þ

where hij measures the heuristic desirability of adding solution componentj . In
fact, neither theorem 4.1 nor theorems 4.2 and 4.3 are a¤ected by the heuristic
information, if we have 0< hij < þ y for each ði; jÞAL and b < y . In fact, with
these assumptionsh is limited to some (instance-speci“c) interval½hmin; hmax�, with
hmin > 0 and hmax < þ y . Then, the heuristic information has only the e¤ect of
changing the lower bounds on the probabilitypmin of making a speci“c decision
[see, e.g., equation (4.5), or the analogous estimates in the proofs of theorems 4.2 and
4.3].

134 Chapter 4 Ant Colony Optimization Theory

4.3.4 What Does the Proof Really Say?

It is instructive to understand what theorems 4.1 to 4.3 really tell us. First, theorem
4.1 says that, when using a “xed positive lower bound on the pheromone trails,
ACObs; t min is guaranteed to “nd the optimal solution. Theorem 4.2 extends this result
by saying that we essentially can keep this property for ACObs; t minðyÞ algorithms, if we
decrease the boundt min to 0 slowly enough. (Unfortunately, theorem 4.2 cannot be
proved for the exponentially fast decrement of the pheromone trails obtained by a
constant pheromone evaporation rate, which most ACO algorithms use.) However,
the proofs do not say anything about the time required to “nd an optimal solution,
which can be astronomically large. A similar limitation applies to other well-known
convergence proofs, such as those formulated for simulated annealing by Hajek
(1988) and by Romeo & Sangiovanni-Vincentelli (1991). Finally, theorem 4.3 shows
that a su‹ciently slow decrement of the lower pheromone trail limits leads to the
e¤ect that the algorithm converges to a state in which all the ants construct the opti-
mal solution over and over again. In fact, for this latter result it is essential that in
the limit the pheromone trails go to 0. If, as is done in ACObs; t min, a “xed lower
bound t min is set, it can only be proved that the probability of constructing an opti-
mal solutions is larger than 1� êeðt min; t maxÞ, where êe is a function of t min and t max

(Stützle & Dorigo, 2002).
Because in practice we are more interested in “nding an optimal solution at least

once than in generating it over and over again, let us have a closer look at the role
played by t min and t max in the proof of theorem 4.1: the smaller the ratiot max=t min,
the larger the lower boundp̂pmin given in the proof. This is important, because the
larger the p̂pmin, the smaller the worst-case estimate of the number of iterationsy
needed to assure that an optimal solution is found with a probability larger than
1 � e. In fact, the tightest bound is obtained if all pheromone trails are the same, that
is, for the case of uniformly random solution construction; in this case we would
have p̂pmin ¼ 1=NC (note that this fact is independent of the tightness of the lower
bounds used in theorem 4.1). This somewhat counterintuitive result is due to the fact
that our proof is based on a worst-case analysis: we need to consider the worst-case
situation in which the bias in the solution construction introduced by the pheromone
trails is counterproductive and leads to suboptimal solutions; that is, we have to
assume that the pheromone trail level associated with the connection an ant needs
to pass for constructing an optimal solution ist min, while on the other connections
it is much higher„in the worst case corresponding tot max. In practice, however, as
shown by the results of many published experimental works (see Dorigo & Di Caro,
1999b; Dorigo et al., 1999; Dorigo & Stützle, 2002, as well as chapter 5 of this book,

4.3 Convergence Proofs 135

for an overview), this does not happen, and the bias introduced by the pheromone
trails does indeed help to speed up convergence to an optimal solution.

4.3.5 Convergence of Some ACO Algorithms

As mentioned, from the point of view of the researcher interested in applications of
the algorithm, the interesting part of the discussed convergence proofs is theorem 4.1,
which guarantees that ACObs; t min will “nd an optimal solution if run long enough.

It is therefore interesting that this theorem also applies to ACO algorithms that
di¤er from ACO bs; t min in the way the pheromone update procedure is implemented.
In general, theorem 4.1 applies to any ACO algorithm for which the probabilityPðsÞ
of constructing a solutions AS always remains greater than a small constante> 0.
In ACO bs; t min this is a direct consequence of the fact that 0< t min < t max < þ y ,
which was obtained by (1) explicitly setting a minimum valuet min for pheromone
trails, (2) limiting the amount of pheromone that the ants may deposit after each it-
eration, that is, Es, gðsÞ< z < þ y , (3) letting pheromone evaporate over time, that
is, by settingr > 0, and (4) by the particular form of the functionFðt ij Þchosen. We
call the subset of ACO algorithms that satisfy these conditions ACOt min. ACObs; t min

di¤ers from ACOt min in that it additionally imposes the use of the best-so-far update
rule. Therefore, ACObs; t min can be seen as a particular case of ACOt min. By de“nition,
theorem 4.1 holds for any algorithm in ACOt min. In the following, we show that
MM AS and ACS, two of the experimentally most successful ACO algorithms, be-
long to ACOt min.

MAX …MIN Ant System
It is easy to show thatMM AS, described in detail in chapter 3, section 3.3.4, be-
longs to ACOt min. In fact, there are only two minor di¤erences betweenMM AS and
ACObs; t min. First, MM AS uses an explicit value fort max instead of an implicit one as
ACObs; t min does. In fact, this is a very minor di¤erence, becauseMM AS uses the
upper pheromone trail limit de“ned by proposition 4.1 as an estimate oft max.
Second, MM AS uses a somewhat more general pheromone update rule than
ACObs; t min. Lik e ACObs; t min, MM AS uses only one solution to select the connections
on which to add pheromone, but it allows a choice between the iteration-best solu-
tion sy and the best-so-far solutionsbs. During the run the best-so-far solution is
chosen more and more often, until reaching a situation in which pheromone is added
only to connections belonging tosbs. I t is therefore clear that theorem 4.1 holds for
MM AS.

Ant Colony System
Ant Colony System also belongs to ACOt min, although this is more di‹cult to see.
ACS di¤ers in three main points from ACObs; t min. First, it uses thepseudorandom

136 Chapter 4 Ant Colony Optimization Theory

proportional rule[see equation (3.10), section 3.4.1]: at each construction step an ant
either chooses, with probabilityq0, the connection with the largest pheromone trail
value, or it performs, with probability ð1 � q0Þ, a biased exploration according to
equation (4.3). Second, ACS does not apply pheromone evaporation to all connec-
tions, but only to those belonging to the best-so-far solution. The update rule used in
ACS is given by theACSGlobalPheromoneUpdate procedure shown in “gure 4.4.

Third, during the construction of the solution each ant in ACS uses a local pher-
omone trail update rule that it applies immediately after having crossed a connection
ði; jÞ. Consider the situation in which an ant has built a partial solutionxh ¼
hc1; c2; . . . ; ch� 1; i i and it adds a component j so that the new partial solution is
xhþ 1 ¼ hc1; c2; . . . ; i; j i . Then, the pheromone trail on connectionði; jÞ is updated
according to the rule:

t ij ð 1 � xÞt ij þ xt 0: ð4:9Þ

That is, a fraction x of the trail is evaporated and a small amountt 0 is added. In
practice, the e¤ect of the local updating rule is to decrease the pheromone trail on the
visited connection, making in this way the connection less desirable for the following
ants.

It is convenient to remark that the two pheromone update rules used in ACS are of
the form ahþ 1 ¼ ð1 � c Þah þ c b for hb 1, whereahþ 1 and ah are t ij ðy þ 1Þand t ij ðyÞ,
and, respectively,b ¼ qf ðsbsÞ; t 0, and c ¼ r ; x. Thus we have

ah ¼ ð1 � c Þha0 þ b½1 � ð 1 � c Þh�; ð4:10Þ

which is b in the limit as h ! y . The sequence decreases fora0 > b (with maximum
a0) and increases fora0 < b (with maximum b).

Now the question is: How does the convergence in value result of ACObs; t min

transfer to ACS? First, we observe that in ACS the maximum amount of pheromone

procedureACSGlobalPheromoneUpdate
if f ðsyÞ< f ðsbsÞthen

sbs sy

end-if
foreachði; jÞAsbs do

t ij ð 1 � r Þt ij þ r qf ðsbsÞ
end-foreach

end-procedure

Figure 4.4
High-level pseudo-code for theACSGlobalPheromoneUpdate procedure.r is the pheromone evaporation.

4.3 Convergence Proofs 137

is limited by t max ¼ t ACS
max ¼ qf ðs� Þ(this bound is obtained without considering the

local pheromone update). Second, becauset 0 is chosen to be smaller thanqf ðsbsÞ, no
pheromone trail value can fall belowt 0 and thereforet 0 gives a lower bound on the
pheromone trail of any solution componentði; jÞ.

The next step is to show that any feasible solution can be constructed with a non-
zero probability. The easiest way to see this is to rewrite the probability of making
some “xed choiceði; jÞin ACS. Let us assume that connectionði; jÞdoes not have
the largest pheromone trail associated. Then the probability of choosing connection
ði; jÞcan be calculated as the product of the probability of making a randomized
choice, which is 1� q0, and the probability of choosing connectionði; jÞ in this
randomized choice. A bound for the latter is given bŷppmin in equation (4.5). There-
fore, a lower bound for the probability of making any speci“c choice at any con-
struction step isð1 � q0Þ �p̂pmin and theorem 4.1 directly applies to ACS.

It is interesting, however, to note that AS, as well as some of its variants (e.g.,
EAS, section 3.3.2, and the rank-based AS, section 3.3.3) do not belong to ACOt min.
In fact, in these three algorithms there is no lower bound to the value of pheromone
trails and therefore the pheromones can become null much faster than imposed by
the bounds of theorem 4.2.

In any case, ACS andMM AS were shown to perform better than AS and its
variants on many standard benchmark problems such as the TSP and the QAP.
Therefore, we are in the fortunate case in which ACO algorithms for which conver-
gence can be proven theoretically show a better performance in practice.

4.4 ACO and Model-Based Search

Up to now we have taken the classic view in which the ACO metaheuristic is seen as
a class of stochastic search procedures working in the space of the solutions of a
combinatorial optimization problem. Under this interpretation, arti“cial ants are
stochastic constructive heuristics that build better and better solutions to a combina-
torial optimization problem by using and updating pheromone trails. In other words,
our attention has been directed to the stochastic constructive procedure used by the
ants and to how the ants use the solutions they build to bias the search of future ants
by changing pheromone values.

In this section we change perspective and interpret ACO algorithms as methods
for searching in the space of pheromone values with the goal of maximizing the prob-
ability of generating good solutions. In other terms, we interpret the construction
graph GC and the associated pheromonesT as a parametric probability distribution

138 Chapter 4 Ant Colony Optimization Theory

used by ACO to generate solutions to the considered problem. And we interpret the
set of solutions generated by the arti“cial ants as a sample used to update the pa-
rameters of the probability distribution, that is, the pheromone trails. Adopting this
view, it is natural to understand ACO as a member of model-based search algori-
thms, as explained in the following. This view of ACO allows drawing interesting
analogies with methods such as stochastic gradient ascent and cross-entropy.

4.4.1 Model-Based Search

In the “eld of metaheuristics for combinatorial optimization, following a classi“ca-
tion similar to the one found in machine learning (Quinlan, 1993b), two antithetic
approaches can be identi“ed: theinstance-basedand the model-basedapproach.

Most of the classic search methods may be considered instance-based, since they
generate new candidate solutions using solely the current solution or the current
••population•• of solutions. Typical representatives of this class are evolutionary com-
putation algorithms (Fogel et al., 1966; Holland, 1975; Rechenberg, 1973; Schwefel,
1981; Goldberg, 1989) or local search and its variants, such as, for example, simu-
lated annealing (Kirkpatrick et al., 1983; Cerny´, 1985; Hajek, 1988) and iterated
local search (Lourenc¸o et al., 2002) (an exception is tabu search (Glover, 1989),
which uses additional information in the form of tabu lists).

On the other hand, in the last decade several new methods, which are classi“ed as
model-based search(MBS) algorithms in Zlochin et al. (2001), have been proposed,
the best-known example beingestimation of distribution algorithms(Mühlenbein &
Paass, 1996; Pelikan, Goldberg, & Lobo, 1999; Larran� aga & Lozano, 2001). In
model-based search algorithms, candidate solutions are generated using a parame-
terized probabilistic model that is updated using the previously seen solutions in such
a way that the search will concentrate on the regions containing high-quality solu-
tions. The general approach is described schematically in “gure 4.5.

At a very general level, the MBS approach attempts to solve the minimization
problem de“ned in section 4.2 by repeating the following two steps:

9 Candidate solutions are constructed using some parameterized probabilistic model,
that is, a parameterized probability distribution over the solution space.
9 Candidate solutions are evaluated and then used to modify the probabilistic model
in a way that is deemed to bias future sampling toward low-cost solutions. Note that
the model•s structure may be “xed in advance, with solely the model•s parameters
being updated, or alternatively, the structure of the model may be allowed to change
as well.

4.4 ACO and Model-Based Search 139

For any algorithm belonging to this general scheme, two components, corre-
sponding to the two steps above, need to be instantiated:

9 A parameterized probabilistic model that allows an e‹cient generation of the can-
didate solutions.
9 An update rule for the model•s parameters or structure, or both.

It is important to note that the term ••model•• is used here to denote an adaptive
stochastic mechanism for generating candidate solutions, and not an approximate
description of the environment, as done, for example, in reinforcement learning
(Sutton & Barto, 1998). There is, however, a rather close connection between these
two usages of the term ••model,•• as the model adaptation in combinatorial opti-
mization may be considered an attempt to model (in the reinforcement learning
sense) the structure of the ••promising•• solutions. For a formal interpretation of
ACO in terms of the reinforcement learning literature, see Birattari, Di Caro, &
Dorigo (2002a).

It is easy to see that the ACO metaheuristic belongs to the MBS framework. First,
the probabilistic model used is the coupling of theconstruction graphwith the set
of stochastic procedures calledarti“cial ants, where the model parameters are the
pheromone trails associated with the construction graph. Second, the model update
rules are the rules used to update pheromone trails.

As discussed in chapter 3, the pheromone update rules proposed in the literature
are of a somewhat heuristic nature and lack a theoretical justi“cation. In the follow-
ing, we show how stochastic gradient ascent(SGA) (Robbins & Monroe, 1951;
M itchell, 1997) and thecross-entropy(CE) method (De Bonet et al., 1997; Rubin-
stein, 2001) can be used to derive mathematically well-founded model update rules.
We start with a discussion of the use of SGA and CE within the MBS framework,
without being restricted to a particular type of probabilistic model. Then, we cast
both SGA and the CE method into the ACO framework, and we show that some
existing ACO updates approximate SGA while others can be rederived as a particu-
lar implementation of the CE method.

Model Sample

Learning

Figure 4.5
Schematic description of the model-based search (MBS) approach.

140 Chapter 4 Ant Colony Optimization Theory

4.4.2 SGA and CE in the MBS Framework

In this section we discuss two systematic approaches to the update of the model•s
parameters in the MBS framework, namely SGA and the CE method. As in section
4.2, we consider a minimization problemðS; f ; WÞ, whereS is the set of (candidate)
solutions, f is the objective function, which assigns an objective function (cost) value
f ðsÞto each candidate solutions AS, and Wis a set of constraints, which de“nes the
set of feasible candidate solutions. The goal of the minimization problem is to “nd an
optimal solution s� , that is, a feasible candidate solution of minimum cost. The set of
all optimal solutions is denoted byS� .

Throughout the remainder of this section we assume that a spaceM of possible
probabilistic models is given and that it is expressive enough. More formally, this
means that we assume that for every possible solutions, the distribution dsð�Þ, de“ned
as dsðs0Þ ¼1, if s0 ¼ s, and dsðs0Þ ¼0 otherwise, belongs toM [note that this condi-
tion may be relaxed by assuming thatdsð�Þis in the closure ofM , that is, that there
exists a sequencePi AM for which lim i! y Pi ¼ dsð�Þ]. This ••expressiveness•• as-
sumption is needed in order to guarantee that the sampling can concentrate in the
proximity of any solution, the optimal solution in particular.

Additionally, we assume that the model structure is “xed, and that the model
spaceM is parameterized by a vectorT AF H Rw, whereF is a w-dimensional pa-
rameter space. In other words,M ¼ f PT ð�Þ j TAF g and for any s AS the function
PT ðsÞis continuously di¤erentiable with respect toT .

The original optimization problem may be replaced by the following equivalent
continuousmaximization problem:

T � ¼ argmax
T

EðT Þ; ð4:11Þ

where EðT Þ ¼ET ðqf ðsÞÞ, ET denotes expectation with respect toPT , and qf ðsÞis a
“xed quality function, which is strictly decreasing with respect tof , that is: qf ðs1Þ<
qf ðs2Þ , f ðs1Þ> f ðs2Þ.

It may be easily veri“ed that, under the ••expressiveness•• assumption we made
about the model space, the support ofPT � (i.e., the setf sj PT � ðsÞ> 0g) is necessarily
contained in S� . This implies that solving the problem given by equation (4.11) is
equivalent to solving the original combinatorial optimization problem.

Stochastic Gradient Ascent
A possible way of searching for a (possibly local) optimum of the problem given by
equation (4.11) is to use the gradient ascent method. In other words, gradient ascent
may be used as a heuristic to changeT with the goal of solving equation (4.11). The

4.4 ACO and Model-Based Search 141

gradient ascent procedure, shown in “gure 4.6, starts from some initialT (possibly
randomly generated). Then, at each iteration it calculates the gradient• EðT Þand
updates T to become T þ a• EðT Þ, where a is a step-size parameter (which, in a
more sophisticated implementation, could be made a function of the iteration
counter y: a ¼ ay).

The gradient can be calculated (bearing in mind that• ln f ¼ • f =f) as follows:

• EðT Þ ¼• ET ðqf ðsÞÞ ¼•
X

s

qf ðsÞPT ðsÞ ¼
X

s

qf ðsÞ• PT ðsÞ

¼
X

s

PT ðsÞqf ðsÞ
• PT ðsÞ
PT ðsÞ

¼
X

s

PT ðsÞqf ðsÞ• ln PT ðsÞ

¼ ET ðqf ðsÞÞ• ln PT ðsÞ: ð4:12Þ

However, the gradient ascent algorithm cannot be implemented in practice, be-
cause for its evaluation a summation over the whole search space is needed. A more
practical alternative is the use ofstochastic gradient ascent(Baird & Moore, 1999;
Bertsekas, 1995b; Williams, 1992), which replaces the expectation in equation (4.12)
by an empirical mean of a sample generated fromPT .

The update rule for the stochastic gradient then becomes

Tyþ 1 ¼ Ty þ a
X

sASy

qf ðsÞ• ln PTyðsÞ; ð4:13Þ

whereSy is the sample at iterationy.
In order to derive a practical algorithm from the SGA approach, we need a model

for which the derivatives of the lnPT ð�Þcan be calculated e‹ciently. In section 4.4.3

procedureGradientAscent
InitializeAlgorithmParameters
T InitializeModelParameters

while (termination condition not met) do
• EðT Þ CalculateGradient(T)
T T þ a• EðT Þ

end-while
end-procedure

Figure 4.6
High-level pseudo-code for theGradientAscent procedure. TheCalculateGradientðT Þprocedure is given by
equation (4.12).

142 Chapter 4 Ant Colony Optimization Theory

we show how this can be done in the context of the iterative construction scheme
used in the ACO metaheuristic.

Cross-Entropy Method
The basic ideas behind the CE method for combinatorial optimization were origi-
nally proposed in the mutual-information-maximizing input clustering(MIMIC)
algorithm of De Bonet et al. (1997). They were later further developed by Rubinstein
(1999, 2001), who was the “rst to use thecross-entropyname to denote this class of
algorithms. For the derivation of the CE method in this section we follow Dorigo
et al. (2002) and Zlochin et al. (2001).

Starting from some initial distribution P0 AM , the CE method inductively builds
a series of distributionsPy AM , in an attempt to increase the probability of gen-
erating low-cost solutions after each iteration. A tentative way to achieve this goal is
to setPyþ 1 equal to P̂P, whereP̂P is a value proportional toPy as follows:

P̂P z Pyqf ; ð4:14Þ

whereqf is, again, some quality function, depending on the cost value.
If this were possible, then, for time-independent quality functions, aftery iterations

we would obtain Py z P0ðqf Þy. Consequently, asy ! y , Py would converge to a
probability distribution restricted to S� . Unfortunately, even if the distribution Py

belongs to the familyM , the distribution P̂P as de“ned by equation (4.14) does not
necessarily remain inM , hence some sort of projection is needed (see exercise 4.2).

Accordingly, a natural candidate for the projectionPyþ 1 is the distribution P AM
that minimizes the Kullback-Leibler divergence(Kullback, 1959), which is a com-
monly used measure of the di¤erence between two distributions:

DðP̂PkPÞ ¼
X

s

P̂PðsÞln
P̂PðsÞ
PðsÞ

; ð4:15Þ

or equivalently thecross-entropy:

�
X

s

P̂PðsÞln PðsÞ: ð4:16Þ

SinceP̂P z Pyqf , the CE minimization is equivalent to the following maximization
problem:

Pyþ 1 ¼ argmax
P AM

X

s

PyðsÞqf ðsÞln PðsÞ: ð4:17Þ

4.4 ACO and Model-Based Search 143

It should be noted that, unlike SGA, in the CE method the quality function is only
required to be nonincreasing with respect to the cost and may also depend on the
iteration index, either deterministically or stochastically. For example, it might
depend on the points sampled so far. One common choice isqf ðsÞ ¼I ðf ðsÞ< fyÞ,
whereI ð�Þis an indicator function, and fy is, for example, some quantile (e.g., lower
10%) of the cost distribution during the last iteration. (We remind the reader that
the indicator function I ðf ðsÞ< fyÞis such thatI ðf ðsÞ< fyÞ ¼1 if f ðsÞ< fy and 0
otherwise.)

In a way similar to what happened with the gradient of equation (4.12), the max-
imization problem given by equation (4.17) cannot be solved in practice, because the
evaluation of the function

P
s PyðsÞqf ðsÞln PðsÞrequires summation over the whole

solution space. Once again, a “nite sample approximation can be used instead:

Pyþ 1 ¼ argmax
P AM

X

sASy

qf ðsÞln PðsÞ; ð4:18Þ

whereSy is a sample fromPy.
Note that if the quality function is of the form I ðf ðsÞ< constÞ, then equation

(4.18) de“nes amaximum-likelihoodmodel, with the sample used for estimation be-
ing restricted to the top-quality solutions. With other quality functions, equation
(4.18) may be interpreted as de“ning a weighted maximum-likelihood estimate.

In some relatively simple cases, some of which are discussed in section 4.4.3, the
problem [equation (4.18)] can be solved exactly. In general, however, the analytic
solution is unavailable. Still, even if the exact solution is not known, some iterative
methods for solving this optimization problem may be used.

A natural candidate for the iterative solution of the maximization problem given
by equation (4.18) is SGA, as shown in “gure 4.7.

It should be noted that, since the new vectorTyþ 1 is a random variable, depending
on a sample, there is no use in running the SGA process till full convergence. Instead,
in order to obtain some robustness against sampling noise, a “xed number of SGA
updates may be used. One particular choice, which is of special interest, is the use of
a single gradient ascent update, leading to the update rule

Tyþ 1 ¼ Ty þ a
X

sASy

qf ðsÞ• ln PTyðsÞ; ð4:19Þ

which is identical to the SGA update [equation (4.13)]. However, as already men-
tioned, the CE method imposes fewer restrictions on the quality function (e.g.,

144 Chapter 4 Ant Colony Optimization Theory

allowing it to change over time), hence the resulting algorithm may be seen as a
generalization of SGA.

As with SGA, in order to have an e‹cient algorithm, a model is needed, for which
the calculation of the derivatives can be carried out in reasonable time. In the next
section, we show that this is indeed possible for the models typically used in ACO.

4.4.3 ACO, SGA, and CE

So far we have limited our discussion to the generic approaches for updating the
model. However, this is only one of the components needed in any model-based
search algorithm. In the following, we show how ACO implements the other com-
ponent, that is, the probabilistic model.

As we said, the particular type of probabilistic model used by ACO algorithms is
the coupling of the structure called construction graph with a set of stochastic pro-
cedures called arti“cial ants. The arti“cial ants build solutions in an iterative manner
using local information stored in the construction graph. In this section we present
the pheromone updates derived from the SGA algorithm and the CE method.

The SGA Update in ACO
In section 4.4.2 an update rule for the stochastic gradient was derived:

Tyþ 1 ¼ Ty þ a
X

sASy

qf ðsÞ• ln PTyðsÞ; ð4:20Þ

whereSy is the sample at iterationy.
As was shown by Meuleau & Dorigo (2002), in case the distribution is implicitly

de“ned by an ACO-type construction process, parameterized by the vector of the
pheromone values,T , the gradient • ln PT ðsÞ can be e‹ciently calculated. The

procedureSGAforCrossEntropy
T 0 T y

while (termination condition not met) do
T 0 T 0þ a

P
sASy

qf ðsÞ• ln PT 0ðsÞ
end-while
return Tyþ 1 ¼ T 0

end-procedure

Figure 4.7
High-level pseudo-code for theSGAforCrossEntropy procedure. The procedure starts by settingT 0 ¼ Ty;
other starting points are possible, but this is the most natural one, since we may expectTyþ 1 to be close to
Ty. In case thewhile loop is iterated only once, the procedure coincides with equation (4.19).

4.4 ACO and Model-Based Search 145

following calculation (Zlochin et al., 2001) is a generalization of the one in Meuleau
& D origo (2002).

From the de“nition of AntSolutionConstruction, it follows that, for a solution s ¼
hc1; c2; . . . ; cjsj i built by ant k, we have

PT ðsÞ ¼
Yjsj� 1

h¼1

PT ðchþ 1 j prefhðsÞÞ; ð4:21Þ

where prefhðsÞis theh-pre“x of s (i.e., the sequence formed by the “rsth components
of s), and consequently

• ln PT ðsÞ ¼
Xjsj� 1

h¼1

• ln PT ðchþ 1 j prefhðsÞÞ: ð4:22Þ

Finally, given a pair of componentsði; jÞAC2, using equation (4.1), it can be
veri“ed that:

9 if i ¼ ch and j ¼ chþ 1, then

q
qt ij

f ln PT ðchþ 1 j prefhðsÞÞg ¼
q

qt ij
ln Fðt ij Þ

,
X

ði; yÞAN k
i

Fðt i; yÞ

0

@

1

A

8
<

:

9
=

;

¼
q

qt ij
ln Fðt ij Þ � ln

X

ði; yÞAN k
i

Fðt i; yÞ

8
<

:

9
=

;

¼ F 0ðt ij Þ=Fðt ij Þ � F 0ðt ij Þ

,
X

ði; yÞAN k
i

Fðt i; yÞ

¼ 1 � Fðt ij Þ

,
X

ði; yÞAN k
i

Fðt i; yÞ

8
<

:

9
=

;
F 0ðt ij Þ
Fðt ij Þ

¼ f 1 � PT ðj j prefhðsÞÞgDðt ij Þ;

where Dð�Þ ¼F 0ð�Þ=Fð�Þand the subscripts ofF were omitted for the clarity of
presentation;
9 if i ¼ ch and j 0 chþ 1, then (by a similar argument)

q lnðPT ðchþ 1 j prefhðsÞÞÞ
qt ij

¼ � PT ðj j prefhðsÞÞDðt ij Þ;

146 Chapter 4 Ant Colony Optimization Theory

9 if i 0 ch, then PT ðchþ 1 j prefhðsÞÞis independent oft ij and therefore

q lnðPT ðchþ 1 j prefhðsÞÞÞ
qt ij

¼ 0:

By combining these results, theSGAPheromoneUpdate procedure, shown in “gure
4.8, is derived. In practice, any connectionði; jÞusedin the construction of a solu-
tion is reinforced by an amountaqf ðsÞDðt ij Þ, and any connectionconsidereddur-
ing the construction, has its pheromone values evaporated by an amount given by
aqf ðsÞPT ðj j prefhðsÞÞDðt ij Þ. Here, with usedconnections we indicate those connec-
tions that belong to the built solution, whereas withconsideredconnections we indi-
cate those that contributed to the computation of the probabilities given by equation
(4.1), during solution construction.

Note that, if the solutions are allowed to contain loops, a connection may be
updated more than once for the same solution.

In order to guarantee stability of the resulting algorithm, it is desirable to have a
bounded gradient• ln PT ðsÞ. This means that a functionF, for which Dð�Þ ¼F 0ð�Þ=
Fð�Þis bounded, should be used. Meuleau & Dorigo (2002) suggest usingFð�Þ ¼
expð�Þ, which leads to Dð�Þ1 1. It should be further noted that if, in addition,

procedureSGAPheromoneUpdate
foreachs ASy do

foreachði; jÞAs do
t ij t ij þ aqf ðsÞDðt ij Þ

end-foreach
end-foreach
foreachs ¼ hc1; . . . ; ch; . . .i A Sy do

foreachði; jÞ: i ¼ ch, 1a h < jsj do
t ij t ij � aqf ðsÞPT ðj j prefhðsÞÞDðt ij Þ

end-foreach
end-foreach

end-procedure

Figure 4.8
High-level pseudo-code for theSGAPheromoneUpdate procedure. The “rst two nestedfor loops add pher-
omones to all the connectionsusedto build the solution (i.e., those connections that belong to the built
solution). The second two nestedfor loops decrease the pheromone on all the connectionsconsidereddur-
ing solution construction [i.e., those connections that contributed to the computation of the probabilities
given by equation (4.1) during solution construction]. Note that the internal loop is over allði; jÞbecause
those j which were not considered during solution construction are automatically excluded, since for them
it holds PT ðj j prefhðsÞÞ ¼0.

4.4 ACO and Model-Based Search 147

qf ¼ 1=f and a ¼ 1, the reinforcement part becomes 1=f as in the original AS (see
chapter 3, section 3.3.1).

The CE Update in ACO
As we have shown in section 4.4.2, the CE method requires solving the following in-
termediate problem:

Pyþ 1 ¼ argmax
P AM

X

sASy

qf ðsÞln PðsÞ: ð4:23Þ

Let us now consider this problem in more detail in case of an ACO-type proba-
bilistic model. Since at the maximum the gradient must be 0, we have

X

sASy

qf ðsÞ• ln PT ðsÞ ¼0: ð4:24Þ

In some relatively simple cases, for example, when the solutions is represented by
an unconstrained string of bits of lengthn, that is, s ¼ ðs1; . . . ; si ; . . . ; snÞ, and there is
a single parametert i for the i-th position in the string, such thatPT ðsÞ ¼

Q
i pt i ðsiÞ,

the equation system [equation (4.24)] reduces to a set of independent equations:

d ln pt i

dt i

X

sASy
si ¼1

qf ðsÞ ¼ �
d lnð1 � pt i Þ

dt i

X

sASy
si ¼0

qf ðsÞ; i ¼ 1; . . . ; n; ð4:25Þ

which often may be solved analytically. For example, forpt i ¼ t i it can be veri“ed
that the solution of equation (4.25) is simply

pt i ¼ t i ¼

P
sASy

qf ðsÞsi
P

sASy
qf ðsÞ

; ð4:26Þ

and, in fact, a similar solution also applies to a more general class of Markov chain
models (Rubinstein, 2001).

Now, since the pheromone trailst i in equation (4.26) are random variables, whose
values depend on the particular sample, we may wish to make our algorithm more
robust by introducing some conservatism into the update. For example, rather than
discarding the old pheromone values, the new values may be taken to be a convex
combination of the old values and the solution to equation (4.26):

t i ð 1 � r Þt i þ r

P
sASy

qf ðsÞsi
P

sASy
qf ðsÞ

: ð4:27Þ

148 Chapter 4 Ant Colony Optimization Theory

The resulting update is identical to the one used in the hyper-cube framework for
ACO (see chapter 3, section 3.4.3).

However, for many cases of interest, equation (4.24) is coupled and an analytic
solution is unavailable. Nevertheless, in the actual implementations of the CE
method the update was of the form given by equation (4.26), with some brief remarks
about using equation (4.27) (Rubinstein, 2001), which may be considered as an ap-
proximation to the exact solution of the CE minimization problem [equation (4.18)].

Since, in general, the exact solution is not available, an iterative scheme such as
gradient ascent could be employed. As we have shown in the previous section, the
gradient of the log-probability may be calculated as follows:

9 if i ¼ ch and j ¼ chþ 1, then

q lnðPT ðchþ 1 j prefhðsÞÞÞ
qt ij

¼ ð1 � PT ðj j prefhðsÞÞÞDðt ij Þ;

9 if i ¼ ch and j 0 chþ 1, then

q lnðPT ðchþ 1 j prefhðsÞÞÞ
qt ij

¼ � PT ðj j prefhðsÞÞDðt ij Þ;

9 if i 0 ch, then

q lnðPT ðchþ 1 j prefhðsÞÞÞ
qt ij

¼ 0;

and these values may be plugged into any general iterative solution scheme of the CE
minimization problem, for example, the one described by equation (4.19).

To conclude, we have shown that if we use equation (4.26) as a (possibly approxi-
mate) solution of equation (4.18), the same equations as used in the hyper-cube
framework for ACO algorithms are derived. If otherwise we use a single-step gradi-
ent ascent for solving equation (4.18), we obtain a generalization of the SGA update,
in which the quality function is permitted to change over time.

4.5 Bibliographical Remarks

The “rst convergence proof for an ACO algorithm, called Graph-based Ant System
(GBAS), was provided by Gutjahr (2000). GBAS is very similar to ACObs; t min except
that (1) t min ¼ 0 and (2) the pheromone update rule changes the pheromones only
when, in the current iteration, a solution at least as good as the best found so far is

4.5 Bibliographical Remarks 149

generated. For GBAS, Gutjahr proves convergence in solution by showing that a
“xed ant constructs the optimal solution to the given problem instance with a prob-
ability larger or equal to 1 � e. In particular, he proved that for eache> 0 it holds
that (1) for a “xed r and for a su‹ciently large number of arti“cial ants, the proba-
bility P that a “xed ant constructs the optimal solution at iterationy is P b 1 � e for
all y b y0, with y0 ¼ y0ðeÞ; (2) for a “xed number of ants and for an evaporation rate
r su‹ciently close to zero, the probability P that a “xed ant constructs the optimal
solution at iteration y is P b 1 � e for all y b y0, with y0 ¼ y0ðeÞ. Although the
theorem has the great merit to be the “rst theoretical work on ACO, its main limi-
tation is that the proof only applies to GBAS, an ACO algorithm which has never
been implemented and for which therefore no experimental results are available.

As a next step, Stu¨tzle & Dorigo (2002) proved the convergence in value result for
ACObs; t min, presented in theorem 4.1. They also proved some additional results re-
lated to convergence in solution: they provided bounds on the probability of con-
structing the optimal solution if “xed lower pheromone trail limits are used. As
stated in section 4.3.5, the main importance of this result is that it applies to two of
the experimentally most successful ACO algorithms,MM AS and ACS (see chapter
3, sections 3.3 and 3.4, respectively).

The “rst proof of convergence in solution, similar to the one given by theorems 4.2
and 4.3, was given by Gutjahr for variants of GBAS, which were called GBAS/tdlb
(for time-dependent lower pheromone bound) and GBAS/tdev (for time-dependent
evaporation rate). The “rst variant, GBAS/tdlb, uses a bound on the lower pher-
omone trail limits very similar to the one used in theorem 4.2. Di¤erently, in GBAS/
tdev it is the pheromone evaporation rate that is varied during the run of the algo-
rithm: for proving that GBAS/tdev converges in solution, pheromone evaporation is
decreased slowly, and in the limit it tends to zero.

The “rst work showing the relationship between AS and SGA was by Meuleau &
Dorigo (2002). In section 4.4.3 we presented an extension of that work by Zlochin
et al. (2001) and Dorigo et al. (2002). The CE method is an extension of the MIMIC
algorithm proposed by De Bonet et al. (1997) and developed by Rubinstein (1999,
2001). The relationship between ACO and CE was “rst formally described by Zlo-
chin et al. (2001).

4.6 Things to Remember

9 It is possible to prove asymptotic convergence for particular subsets of ACO algo-
rithms. In particular, asymptotic convergence in value was proved for ACS and

150 Chapter 4 Ant Colony Optimization Theory

MM AS, two of the experimentally best-performing ACO algorithms, while conver-
gence in solution was proved for GBAS and for ACObs; t minðyÞ. Proving convergence in
value intuitively means proving that the algorithm generates at least once the optimal
solution. Proving convergence in solution can be interpreted as proving that the al-
gorithm reaches a situation in which it generates over and over the same optimal
solution.
9 Convergence proofs tell us that the bias introduced in the stochastic algorithm does
not rule out the possibility of generating an optimal solution. They do not say any-
thing about the speed of convergence, that is, the computational time required to “nd
an optimal solution.
9 ACO algorithms belong to the class of MBS algorithms. In MBS algorithms can-
didate solutions are generated using a parameterized probabilistic model. This prob-
abilistic model is updated using the previously seen solutions in such a way that the
search will concentrate in the regions containing high-quality solutions. The con-
struction graph, together with the arti“cial ant procedures, de“nes the probabilistic
model, which is parameterized by the pheromone trails.
9 When interpreting ACO as an instance of MBS, it is possible to use methods such
as SGA and CE minimization to de“ne rules to update pheromone trails. In this
view, AS can be seen as an algorithm that performs an approximate SGA in the
space of pheromone trails.

4.7 Thought and Computer Exercises

Exercise 4.1 Prove that theorem 4.2 can be extended to the case in which the func-
tion Fðt ij Þ, de“ned in section 4.3, is a gradep polynomial of the form Fðt ij Þ ¼
a0t p

ij þ a1t p� 1
ij þ � � � þ aht p� h

ij þ � � � þ ap, with a0 > 0, ah b 0, 0 < h < p and ap ¼ 0.

Exercise 4.2 In section 4.4.2 we wrote that even if the distributionPy belongs to the
family M , the distribution P̂P as de“ned by equation (4.14), does not necessarily re-
main in M . Give an example showing that this is indeed the case.

Exercise 4.3 In section 4.4.3, an SGA update for ACO algorithms was derived. Try
to rederive the same equations in the more speci“c case of the TSP. A solution can be
found in Meuleau & Dorigo (2002).

Exercise 4.4 Convergence in solution can also be proved for ACOgb; r ðyÞ, an ACO
algorithm that di¤ers from ACObs; t minðyÞ in that its pheromone evaporation rate is
modi“ed at run time and its lower pheromone trail limits are set to 0. In particular,

4.7 Thought and Computer Exercises 151

assume that until some iterationy0 b 1, a “xed pheromone evaporationr is applied,
and that from y > y0 on we have

r y a 1 �
log y

logðy þ 1Þ
; Ey > y0;

and that

Xy

y¼1

r y ¼ þ y :

Prove convergence in solution for this algorithm along the lines of the convergence
proof given in section 4.3.2 for ACObs; t minðyÞ.
Hint : You may have a look at the paper by Gutjahr (2002).

152 Chapter 4 Ant Colony Optimization Theory

5Ant Colony Optimization for N P -Hard Problems

We shall refer to a problem as intractable if it is so hard that no polynomial time algorithm can
possibly solve it.
„ Computers and Intractability, M ichael R. Garey & David S. Johnson, 1979

This chapter gives an overview of selected applications of ACO to di¤erentN P -hard
optimization problems. The chapter is intended to serve as a guide to how ACO
algorithms can be adapted to solve a variety of well-known combinatorial optimiza-
tion problems rather than being an exhaustive enumeration of all possible ACO ap-
plications available in the literature. Our main focus is on presenting and discussing
interesting applications that either present a di¤erent perspective on how to apply
ACO algorithms or for which very good results have been obtained.

Most of the problems considered fall into one of the following categories: routing,
assignment, scheduling, and subset problems. For each of these categories a full sec-
tion is devoted to explain how ACO has been applied to the corresponding cate-
gory. We then review applications of ACO to a few additionalN P -hard problems
such as shortest common supersequence, bin packing, protein folding, and constraint
satisfaction„problems that do not easily “t in the above-mentioned categories„and
to problems typically found in machine learning, such as the learning of classi“cation
rules and of the structure of Bayesian networks.

For each problem we describe the construction graph, how constraints are han-
dled, the way pheromone trails and heuristic information are de“ned, how solutions
are constructed, the pheromone trail update procedure, and the computational re-
sults achieved. Additionally, when available in published papers, we give details
about the local search used with ACO.

We conclude the chapter with a discussion of some ••ACO application principles••
that can be used by practitioners as a guide when trying to apply ACO to anN P -
hard problem not yet considered in the literature.

5.1 Routing Problems

In this section we consider routing problems, that is, problems in which one or more
agents have to visit a prede“ned set of locations and whose objective function de-
pends on the ordering in which the locations are visited. The problems we discuss are
the sequential ordering problem and the vehicle routing problem.

5.1.1 Sequential Ordering

The sequential ordering problem consists in “nding a minimum weight Hamiltonian
path on a directed graph with weights on arcs and nodes subject to precedence

constraints. The SOP can be formulated as a generalization of the asymmetric TSP
asfollows:

9 A solution connects a starting node to a “nal node by a Hamiltonian path (in the
asymmetric TSP a solution is a Hamiltonian circuit).
9 Weights are assigned only to arcs. If given, node weights can be removed from the
original de“nition by rede“ning the weight cij of arc ði; jÞby adding the node weight
pj of node j to each arc incident toj, resulting in new arc weightsc0

ij ¼ cij þ pj .
9 Precedence constraints are de“ned among the nodes. If a nodej has to precede
node i in the path, this is represented by assigning to arcði; jÞthe weight c0

ij ¼ � 1;
hence, if c0

ij b 0, then the weight gives the cost of arcði; jÞ, while if c0
ij ¼ � 1, then

node j must precede, not necessarily immediately, nodei.

The application of ACO to the SOP is particularly interesting because a straight-
forward extension of one of the best-performing ACO algorithms for the TSP, ACS,
turns out to have world-class performance on a problem that, although closely con-
nected to the TSP, cannot be solved e‹ciently by the best available exact algorithms.
In fact, the main adaptations necessary to apply ACS to the SOP are minor mod-
i“cations in the solution construction procedure and the implementation of a new
and e‹cient local search for the SOP. The resulting algorithm, called HAS…SOP
(Hybrid AS…SOP) is currently the best available algorithm for the SOP (Gambar-
della & Dorigo, 2000).

Construction graph The set of components contains the set of all then nodes plus
the start node, node 0, and the “nal node, noden þ 1. As usual, the set of compo-
nents is fully connected. Solutions are Hamiltonian paths that start at node 0, end at
noden þ 1, and that comply with all the precedence constraints.

Constraints In the SOP the constraints require that all nodes of the graph be visited
once and only once and that all precedence constraints be satis“ed. The constraints
are taken into account in the de“nition of the ants• feasible neighborhood at con-
struction time, as explained below.

Pheromone trails A pheromone trail t ij indicates the desirability of choosing nodej
when an ant is at nodei. This is the same de“nition as in the TSP application (see
chapter 2, section 2.3.2).

Heuristic information The heuristic information is the same as for the TSP, that is,
hij ¼ 1=c0

ij when c0
ij 0 � 1, and hij ¼ 0 otherwise.

Solution construction All ants are initially put on node 0 and build a Hamiltonian
path that connects node 0 to noden þ 1. Ants build solutions by choosing probabil-

154 Chapter 5 Ant Colony Optimization for N P -Hard Problems

istically the next node from their feasible neighborhood. In practice, antk located on
node i chooses the nodej, j AN k

i , to move to with a probability given by ACS•s
pseudorandom proportional rule [equation (3.10)]. The feasible neighborhoodN k

i

contains all nodesj that ant k has not visited yet and that, if added to antk•s partial
solution, do not violate any precedence constraint.

A particularity of HAS…SOP is the value given to the parameterq0 in equation
(3.10), which is set toq0 ¼ 1 � s=n, where the parameters, 1a sa n, gives the
expected number of nodes to be chosen according to the probabilistic part of equa-
tion (3.10); the parameters allows de“ning q0 independently of the problem size.

Pheromone update HAS…SOP uses the same local and global pheromone update
procedures as ACS for the TSP (see chapter 3, section 3.4.1, for details).

Local search The local search is the most innovative part of HAS…SOP. It is a
speci“c 3-opt procedure, called SOP-3-exchange, which can handle e‹ciently multiple
precedence constraints during the local search without increasing computational
complexity. For a detailed description of the SOP-3-exchange procedure, see the
original paper by Gambardella & Dorigo (2000).

Results Computational results obtained with HAS…SOP are excellent. HAS…SOP
was compared to state-of-the-art algorithms for the SOP, the best-performing one
being a genetic algorithm called MPO/AI that was explicitly designed to solve
sequencing problems. Since MPO/AI was found to be signi“cantly inferior to HAS…
SOP, MPO/AI was extended with the same SOP-3-exchange local search used by
HAS…SOP. MPO/AI plus SOP-3-exchange and HAS…SOP were compared using as
benchmark all the SOP instances available in the TSPLIB (Reinelt, 1991), accessible
at www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/. Also, in this case HAS…
SOP outperformed MPO/AI plus SOP-3-exchange, and it was able to “nd new
upper bounds for twelve TSPLIB instances. The most recent information on HAS…
SOP can be found at www.idsia.ch/~luca/has-sop_start.htm, maintained by Luca M.
Gambardella.

5.1.2 Vehicle Routing

The vehicle routing problem (VRP) is a central problem in distribution management
(Toth & Vigo, 2001). In the capacitated VRP (CVRP)n customers have to be served
from one central depot, which is typically identi“ed by the index 0. Each customeri
has a non-negative demandbi of the same merchandise and for each pair of cus-
tomers ði; jÞa travel time dij between the two customers is given. The customers are
served by a ”eet of vehicles of equal capacityB. The goal in the CVRP is to “nd a set
of routes that minimizes the total travel time such that (1) each customer is served

5.1 Routing Problems 155

once by exactly one vehicle, (2) the route of each vehicle starts and ends at the depot,
and (3) the total demand covered by each vehicle does not exceed its capacityB.

The CVRP is anN P -hard problem because it contains the TSP as a subproblem.
In practice, it is much more di‹cult to solve than the TSP, the main reason being
that it consists of two nested problems. The “rst is a bin-packing problem where the
goal is to pack the customers into an a priori unknown number of routes (bins).
Then, for each of the routes a shortest tour visiting all the customers assigned to the
route has to be found, which involves solving a TSP.

The CVRP is the most basic form of a VRP. It is therefore not surprising that it
was also the “rst VRP to be tackled by an ACO approach. Bullnheimer et al. (1999b)
presented an adaptation of ASrank (ASrank-CVRP), which was later improved by
Reimann, Stummer, & Doerner (2002b) (ASrank-CVRPsav).

Several extensions of the basic CVRP exist, the most studied being the VRP with
time window constraints (VRPTW). In this version of the VRP, each customeri has
a time window ½ei; li � during which she must be served (a time window½e0; l0� is asso-
ciated with the depot); here,ei is the earliest possible service time for customeri and
li is the latest possible time.

The objective function in the VRPTW is di¤erent from the one in the CVRP. The
VRPTW has two objectives: (1) to minimize the number of vehicles used and (2) to
minimize the total travel time. The two objectives are ordered hierarchically, that is,
a solution with fewer vehicles is always preferred over a solution with more vehicles
but a smaller total travel time. Two solutions with a same number of vehicles are
rated according to their total tour duration. Currently, the most successful ACO
algorithm for the VRPTW is MACS-VRPTW (Gambardella, Taillard, & Agazzi,
1999a), where MACS stays for multiple ACS. MACS-VRPTW uses two parallel,
interacting ant colonies, one for each objective. The central idea is that one colony,
called ACS-VEI, is trying to minimize the number of vehicles (routes) to be used,
while the other colony, called ACS-TIME, is trying to minimize, for a given number
of vehicles, the traveling time. MACS-VRPTW uses ACS for these single-objective
problems (for a description of ACS, see chapter 3, section 3.4.1). The two algorithms
run in parallel, with ACS-TIME using vmin vehicles and ACS-VEI searching for a
feasible solution withvmin � 1 vehicles. Each time ACS-VEI “nds a feasible solution
with vmin � 1 vehicles, ACS-TIME and ACS-VEI are restarted with the new, reduced
number of vehicles.

In the following, we brie”y describe ASrank-CVRP, ASrank-CVRPsav, and MACS-
VRPTW.

Construction graph In ASrank-CVRP and ASrank-CVRPsav, the construction graph
comprises one component for each of the customers and one component for the

156 Chapter 5 Ant Colony Optimization for N P -Hard Problems

depot. MACS-VRPTW uses multiple copies of the depot; the number of copies
(including the original depot) is equal to the number of vehicles that are currently in
use. The distances between the copies of the depot are zero. As usual, the compo-
nents are fully connected.

Constraints The constraints in the CVRP require that each customer be visited ex-
actly once and that the vehicle capacities not be exceeded. In the VRPTW, addi-
tionally the time window constraints need to be satis“ed.

Pheromone trails In each algorithm, pheromone trailst ij are associated only with
connections. The pheromone trails refer to the desirability of visiting customerj
directly after i. ACS-VEI and ACS-TIME use two di¤erent sets of pheromones.

Heuristic information ASrank-CVRP and ASrank-CVRPsav base the heuristic infor-
mation on the savings heuristic (Clarke & Wright, 1964). To explain how this heu-
ristic information is de“ned, consider “rst the savings algorithm for the CVRP. It
starts from a solution with one separate tour per customer, that is, withn tours. For
each pair ði; jÞ of customers a savingsij ¼ di0 þ d0j � dij is computed, where the
index 0 denotes the depot (see “gure 5.1). The savings algorithm combines customers
into tours following the usual greedy strategy.

ASrank-CVRP uses as heuristic information a parameterized saving (Paessens,
1988) given by

hij ¼ di0 þ d0j � g � dij þ f � jdi0 � d0j j: ð5:1Þ

Good settings were reported to beg ¼ f ¼ 2. ASrank-CVRPsav uses the original
saving de“nition, that is, it setshij ¼ sij .

The heuristic information hij in MACS-VRPTW is de“ned as a function of the
travel time dij , of the time window ½ei; li �, and of the numbernsj of times a nodej was

i j

0

i j

0

Figure 5.1
The savings algorithm for a situation with two customersi and j and a depot 0. On the left, customersi
and j are connected to the depot with two separated tours of total lengthd0i þ di0 þ d0j þ dj0. On the right
the two customers are connected to the depot with a single tour of lengthd0i þ dij þ dj0. The saving
sij ¼ di0 þ d0j � dij is given by the di¤erence between the lengths of the two tours on the left and the tour
on the right.

5.1 Routing Problems 157

not included in an ant•s solution in previous iterations of the algorithm (in fact,
ACS-VEI may build candidate solutions that do not include all customers). For
details, see Gambardella et al. (1999a).

Solution construction In ASrank-CVRP, ants build solutions using the same proba-
bilistic rule as in AS [equation (3.2)]. During solution construction, ASrank-CVRP
ants choose the next customer among the feasible ones from a candidate list of length
n=4, wheren is the number of customers. (Candidate lists were de“ned in chapter 3,
section 3.4.1. They are discussed in more detail in section 5.7.7.) If no customer can
be added without making the tour infeasible, the tour is closed by returning to the
depot. A new tour is then started if there are unvisited customers left.

ASrank-CVRPsav follows the main steps of the savings algorithm in the solution
construction. It starts with n individual tours and then merges tours as long as fea-
sible. Then, instead of the deterministic choices based on thesij values as done in
the savings algorithm, the ants in ASrank-CVRPsav choose the next two tours to be
merged based on the random proportional action choice rule of AS [equation (3.2)].
At each construction step, ASrank-CVRPsav chooses customers from a candidate list
that consists of the pairsði; jÞcorresponding to then=4 largest savingssij .

In MACS-VRPTW, both colonies, ACS-TIME and ACS-VEI, use the same solu-
tion construction procedure which is similar to the one used by ACS. An ant starts
from a randomly chosen copy of the depot and at each step either adds a customer
that does not violate the time window constraints and the capacity constraints, or
returns to the depot (this means that ants are allowed to move to a still unvisited
copy of the depot even if they could still add unvisited customers to their partial so-
lution without violating any constraint). If no customer can be added, the ant returns
to one of the copies of the depot. If, after the construction of a solution is completed
(i.e., all the depot copies have been used), there remain some unscheduled customers,
M ACS-VRPTW tries to include them in the incomplete solution. To do so, it uses an
insertion procedure which considers customers in order of nonincreasing demand and
inserts them, if possible, at a position such that the travel time is minimized.

Pheromone update The pheromone update in ASrank-CVRP and ASrank-CVRPsav
follows the pheromone update rule used in ASrank [equation (3.8)].

ACS-TIME and ACS-VEI of MACS-VRPTW use the global and local phero-
mone update rules of ACS [equations (3.11) and (3.12)], with a caveat. In fact,
ACS-VEI typically generates infeasible solutions that visit fewer thann customers.
Accordingly, the objective function optimized by ACS-VEI is the maximization of
the number of customers visited. In fact, if a solution that visits alln customers
is found, this corresponds to a solution with one vehicle less than the previous best-
so-far solution. Therefore, the global pheromone update rule updates pheromones

158 Chapter 5 Ant Colony Optimization for N P -Hard Problems

belonging to the solution that visited the largest number of customers. However,
according to Gambardella et al. (1999a), it is possible to greatly enhance the algo-
rithm•s performance by letting the global pheromone update rule also update pher-
omones belonging to the best-so-far (feasible) solution provided by ACS-TIME.

Local search ASrank-CVRP applies a2-opt local search for the TSP to improve the
routes generated by the ants. ASrank-CVRPsav “rst applies a local search based on
an exchange move between tours, where each exchange move exchanges two cus-
tomers from two (di¤erent) routes; it then improves the resulting tours by applying
2-opt. MACS-VRPTW uses a more sophisticated local search that is based oncross-
exchange moves taken from Taillard, Badeau, Gendreau, Guertin, & Potvin (1997).

Results ASrank-CVRP and ASrank-CVRPsav were applied only to the CVRP. In
general, ASrank-CVRPsav was performing much better than ASrank-CVRP. ASrank-
CVRPsav was compared in Reimann et al. (2002b) and in a recent follow-up paper
(Reimann, Doerner, & Hartl, 2004) to several tabu search algorithms for this problem,
showing that it performs better than earlier tabu search algorithms.

MACS-VRPTW was, at the time of its publication, one of the best performing
metaheuristics for the VRPTW and it was able to improve the best-known solutions
for a number of well-known benchmark instances, both with and without time win-
dows. Only recently has the approach presented in Bra¨ysy (2003) achieved competi-
tive results.

Remarks ACO algorithms have also been applied to a number of other VRP var-
iants, including a pickup and delivery problem under time window constraints in a
hub network (Dawid, Doerner, Hartl, & Reimann, 2002) or the VRP with backhauls
and time window constraints (Reimann, Doerner, & Hartl, 2002a). The main di¤er-
ences in these applications to extensions of the basic VRPs we described consist in
(1) the way the heuristic information and the pheromone trails are computed or
used, and (2) the details of the solution construction procedure. Recently, Reimann,
Doerner, & Hartl (2003) proposed an algorithm called ••Uni“ed Ant System•• that
was applied to four VRP variants obtained by considering both, one, or none of the
two characteristics, ••time windows•• and ••backhauls.•• (The only di¤erences among
variants concern the use of di¤erent heuristic information.)

5.2 Assignment Problems

The task in assignment problems is to assign a set of items (objects, activities, etc.)
to a given number of resources (locations, agents, etc.) subject to some constraints.
Assignments can, in general, be represented as a mapping from a setI to a set J ,
and the objective function to minimize is a function of the assignments done.

5.2 Assignment Problems 159

To apply the ACO metaheuristic to assignment problems, a “rst step is to map the
problem on a construction graphGC ¼ ðC; LÞ, where C is the set of components
(usually the components consist of all the items and all the resources plus possibly
some additional dummy nodes) andL is the set of connections that fully connects the
graph. The construction procedure allows the ants to perform walks on the con-
struction graph that correspond to assigning items to resources.

For the practical application of the ACO metaheuristic to assignment problems
it is convenient to distinguish between two types of decision. The “rst refers to the
assignment order of the items, that is, the order in which the di¤erent items are
assigned to resources. The second decision refers to the actual assignment, that is, the
choice of the resource to which an item is assigned. Pheromone trails and heuristic
information may be associated with both decisions. In the “rst case, pheromone trails
and heuristic information can be used to decide on an appropriate assignment order.
In the second case, the pheromone trailt ij and the heuristic information hij asso-
ciated with the pair ði; jÞ, where i is an item and j a resource, determine the desir-
ability of assigning itemi to resource j.

All ACO algorithms for assignment problems have to take these two decisions into
account. In all the applications of ACO to assignment problems that we are aware
of, pheromone trails are used only for one of these two decisions. Typically, the
pheromone trails refer to the second one, the assignment step. For the “rst step,
deciding about the assignment order, most of the algorithms either use some heuris-
tically derived order or a random order.

5.2.1 Quadratic Assignment

The quadratic assignment problem is an important problem in theory and practice.
M any practical problems such as backboard wiring (Steinberg, 1961), campus and
hospital layout (Dickey & Hopkins, 1972; Elshafei, 1977), typewriter keyboard
design (Burkard & O¤ermann, 1977), and many others can be formulated as QAPs.
The QAP can best be described as the problem of assigning a set of facilities to a set
of locations with given distances between the locations and given ”ows between the
facilities. The goal is to place the facilities on locations in such a way that the sum of
the products between ”ows and distances is minimized.

More formally, given n facilities and n locations, two n � n matricesA ¼ ½aij � and
B ¼ ½brs�, where aij is the distance between locationsi and j and brs is the ”ow
between facilitiesr and s, and the objective function

f ðpÞ ¼
Xn

i ¼1

Xn

j ¼1

bij apipj ; ð5:2Þ

160 Chapter 5 Ant Colony Optimization for N P -Hard Problems

wherepi gives the location of facilityi in the current solutionp ASðnÞ, then the goal
in the QAP is to “nd an assignment of facilities to locations that minimizes the ob-
jective function. The termbij api pj describes the cost contribution of simultaneously
assigning facilityi to location pi and facility j to location pj .

The QAP is an N P -hard optimization problem (Sahni & Gonzalez, 1976). It is
considered one of the hardest combinatorial optimization problems in practice: the
largest nontrivial QAP instance in QAPLIB, a benchmark library for the QAP ac-
cessible at www.seas.upenn.edu/qaplib/, solved to optimality at the time of writing,
has dimensionn ¼ 36 (Brixius & Anstreicher, 2001; Nystro¨m, 1999). The relatively
poor performance of exact algorithms explains the interest in metaheuristic ap-
proaches when the practical solution of a QAP is required. Therefore, it is not sur-
prising that the QAP has attracted a large number of research e¤orts in ACO. ACO
algorithms for the QAP comprise AS (Maniezzo et al., 1994; Maniezzo & Colorni,
1999), MM AS (Stützle, 1997b; Stu¨tzle & Hoos, 2000), and ANTS (Maniezzo,
1999). Overall, these research e¤orts have led to high-performing ACO algorithms;
in fact, the most recent ACO algorithms are among the best-performing metaheu-
ristics for the QAP. In addition, other ant-based algorithms like Hybrid AS (HAS)
(Gambardella et al., 1999b) and FANT (Fast Ant System) (Taillard, 1998) were ap-
plied to the QAP. Note, however, that HAS and FANT, although inspired by early
research e¤orts on AS, are not ACO algorithms because they depart in essential as-
pects from the structure of the ACO metaheuristic.

In the following, we describe the application of AS (AS-QAP),MM AS (MM AS-
QAP), and ANTS (ANTS-QAP) to the QAP. Some of the main design choices, such
as the de“nition of the construction graph and of the pheromone trails, are the same
for the three algorithms. Therefore, only signi“cant di¤erences among the three algo-
rithms are indicated, where necessary. A more detailed description of applications of
ACO and, more in general, of ant algorithms to the QAP can be found in Stu¨tzle &
Dorigo (1999a).

Construction graph The set of componentsC comprises all facilities and locations.
The connectionsL fully connect the components. A feasible solution is an assign-
ment consisting ofn pairs ði; jÞbetween facilities and locations, with each facility and
each location being used exactly once. There are no explicit costs assigned to the
couplings.

Constraints The only constraint is that a feasible solution for the QAP assigns each
facility to exactly one location and vice versa. This constraint can be easily enforced
in the ants• walk by building only couplings between still unassigned facilities and
locations.

5.2 Assignment Problems 161

Pheromone trails The pheromone trails t ij refer to the desirability of assigning
facility i to location j (or the other way round, the two choices being equivalent).

Heuristic information MM AS-QAP does not use any heuristic information, where-
as AS-QAP and ANTS-QAP do.

In AS-QAP two vectors d and f are computed in which thei-th componentsdi

and fi represent respectively the sum of the distances from locationi to all other
locations and the sum of the ”ows from facilityi to all other facilities. The lowerdi ,
the distance potential of locationi, the more central is the location; the higherfi , the
”ow potential of facility i, the more important the facility. Flow potentials are used
to order facilities (see ••Solution construction•• below), while the inverse of distance
potentials hj ¼ 1=dj is used as a heuristic value to bias location choice. The motiva-
tion for using this type of heuristic information is that, intuitively, good solutions will
place facilities with high ”ow potential on locations with low distance potential.

ANTS-QAP uses lower bounds on the completion of a partial solution to derive
the heuristic desirabilityhij of adding a speci“c pairði; jÞ. The lower bound is com-
puted by tentatively adding the pair to the current partial solution and by estimating
the cost of a complete solution containing that coupling by means of the LBD lower
bound (Maniezzo, 1999). This lower bound has the advantage of having a computa-
tional complexity of OðnÞ. The lower bound estimate gives the heuristic information:
the lower the estimate, the more attractive is the addition of a speci“c coupling. For
details on the lower bound computation see Maniezzo (1999). Note that in an earlier
variant of the ANTS-QAP algorithm (Maniezzo & Colorni, 1999), the well-known
Gilmore-Lawler lower bound (GLB) (Gilmore, 1962; Lawler, 1963) was applied at
each step; however, the GLB requires a computation time of orderOðn3Þ.

Solution construction AS-QAP sorts the facilities in nonincreasing order of ”ow
potentials and at each construction step an antk assigns the next, still unassigned,
facility i to a free location j using the action choice rule of AS [equation (3.2)].

The only di¤erence betweenMM AS-QAP and AS-QAP concerning solution
construction is that MM AS-QAP sorts the facilities randomly and, as said before,
does not use any heuristic information.

In ANTS-QAP, the lower bound is computed once at the start of the algorithm.
Along with the lower bound computation one gets the values of the dual variables
corresponding to the constraints when formulating the QAP as an integer program-
ming problem (see Maniezzo [1999] for details). These values are used to de“ne the
order in which locations are assigned. The action choice rule is the same as that used
by the ANTS algorithm [equation (3.13)].

Pheromone update The pheromones for all three algorithms are updated following
the corresponding rules de“ned for each of these algorithms (see chapter 3 for details).

162 Chapter 5 Ant Colony Optimization for N P -Hard Problems

Local search All three ACO algorithms were combined with a2-opt local search
procedure for the QAP.MM AS-QAP was also tested with a local search procedure
based on short runs of a tabu search algorithm. It was found that whether the2-opt

or the tabu search should be preferred is a function of the particular instance class;
for more details, see box 5.1.

Results ACO algorithms were experimentally shown to be among the best avail-
able algorithms for structured real-life, and for large, randomly generated real-life-
like QAP instances. Their excellent performance is con“rmed in a variety of studies
(Gambardella, 1999b; Maniezzo, 1999; Stu¨tzle & Hoos, 2000; Stu¨tzle & Dorigo,
1999a). Interestingly, ANTS-QAP was also shown to outperform tabu search algo-
rithms (Taillard, 1991) for a class of hard, randomly generated instances. Although

Box 5.1
About Local Search in ACO

Very often the best ACO algorithms are those that combine two components: solution construction
by arti“cial ants and a local search procedure (remember that, within the general de“nition of
the ACO metaheuristic given in chapter 2, section 2.1, local search is a particular type of the so-
called daemon actions). In general, the choice of which local search procedure to use is not only
problem-speci“c, but may also depend on the problem instances considered. As an example, we
consider two well-known QAP instances,tai50a and tai50b , and we compare twoMM AS-
QAP algorithms using as local search two di¤erent procedures: a best-improvement2-opt and short
runs of a tabu search. The resulting two algorithms, which are compared in the “gure below, are
called MM AS-QAP2-opt and MM AS-QAPTS, respectively. The results are averaged over ten runs
for each algorithm.

0

1

2

3

4

5

0 50 100 150 200 250 300

%
 d

ev
ia

tio
n

fr
om

 b
es

t k
no

w
n

CPU time [sec]

MMAS-QAP-2opt
MMAS-QAP-TS

0

1

2

3

4

5

0 50 100 150 200 250 300

%
 d

ev
ia

tio
n

fr
om

 b
es

t k
no

w
n

CPU time [sec]

MMAS-QAP-2opt
MMAS-QAP-TS

As can be observed in the “gure, which local search performs better once coupled toMM AS-
QAP depends on the instance type: fortai50a , on the left, MM AS-QAPTS performs signi“cantly
better than MM AS-QAP2-opt, whereas, fortai50b , on the right, MM AS-QAP2-opt outperforms
MM AS-QAPTS.

5.2 Assignment Problems 163

the dimension of the considered random instances was limited ton ¼ 40, this is a
very noteworthy result, because tabu search algorithms typically perform much
better than other metaheuristics on these types of instances (Taillard, 1995).

Among ACO algorithms, ANTS-QAP and MM AS-QAP appear to perform sig-
ni“cantly better than AS-QAP (Stützle & Dorigo, 1999a), which con“rms the obser-
vation made for the TSP application that the more recent and more sophisticated
ACO algorithms strongly improve over AS performance.

5.2.2 Generalized Assignment

In the generalized assignment problem, a set of tasks has to be assigned to a set of
agents in such a way that a cost function is minimized. Each agentj has only a lim-
ited capacityaj and each taski consumes, when assigned to agentj, a quantity bij of
the agent•s capacity. Also, the costdij of assigning taski to agent j is given. The ob-
jective then is to “nd a feasible task assignment of minimum cost. The GAP was
described in chapter 2, section 2.3.3, where an outline was given of how, in principle,
ACO algorithms can be applied to it; we refer the reader to that description for more
details. The “rst ACO application to the GAP was presented by Lourenc¸o & Serra
(1998) and is based onMM AS (MM AS-GAP).

Construction graph The set of components is given byC ¼ I WJ and it is fully
connected; the construction graph is identical to that described in chapter 2, section
2.3.3.

Constraints The problem constraints may lead to a situation in which a partial as-
signment cannot be extended to a full assignment that satis“es all the agents• capac-
ity constraints. MM AS-GAP deals with this problem by allowing construction of
infeasible solutions.

Pheromone trails The pheromone trail t ij represents the desirability of assigning
task i to agent j .

Heuristic information MM AS-GAP uses heuristic information only for the phero-
mone initialization, but not while constructing solutions. InMM AS-GAP, phero-
mone trails are initialized using the heuristic information; their initial value is set to
t 0 ¼ 1=dij .

Solution construction Solutions are constructed by iteratively assigning tasks to
agents. At each construction step, “rst the next task to be assigned is chosen ran-
domly; then the chosen task is assigned to an agent applying the pseudorandom
proportional action choice rule of ACS [see equation (3.10)]. In the solution con-
struction, care is taken in assigning tasks only to agents that still have enough

164 Chapter 5 Ant Colony Optimization for N P -Hard Problems

spare capacity. Only if no agent has enough spare capacity to accept the task is the
task assigned randomly to any of the agents, generating in this way an infeasible
assignment.

Pheromone update After each iteration, the iteration-best solution deposits phero-
mone. The way pheromones are updated inMM AS-GAP shows a particularity:
the amount of pheromone deposited depends only on the feasibility status of a solu-
tion, and not on the solution quality. If a solution is feasible, a constant quantity of
0.05 units of pheromone is deposited, otherwise 0.01 units are deposited.

Local search Several local search algorithms, including a simple iterative improve-
ment algorithm, a tabu search, and an ejection chain approach (Glover, 1996; Glover
& Laguna, 1997), were tested.

Particularities MM AS-GAP does not use a colony of ants: in each iteration only
one ant constructs a solution and deposits pheromone. In fact, this corresponds to
the parameter settingm ¼ 1 in ACO. Such a parameter setting can result in a faster
convergence of the ACO algorithm to good solutions, but it may result in worse
solution quality for long computation times. For a discussion of how the number of
ants in”uences the performance of ACO algorithms, see section 5.7.6.

A further particularity of MM AS-GAP is that the amount of pheromone depos-
ited by an ant depends only on whether its solution is feasible or not (see ••Phero-
mone update•• above), that is, the amount of pheromone deposited does not depend
on how good a feasible solution is.

Results MM AS-GAP was shown to perform better than a GRASP algorithm that
used the same local search (Lourenc¸o & Serra, 1998). A comparison of the compu-
tational results obtained with MM AS-GAP with those obtained by other meta-
heuristics showed that, at the time the research was done,MM AS-GAP could reach
state-of-the-art performance. However, since that time, better algorithms for the
GAP have been proposed; the best algorithm currently available is that of Yagiura,
Ibaraki, & Glover (2004).

5.2.3 Frequency Assignment

In the frequency assignment problem (FAP) are given a set of links, a set of fre-
quencies, and channel separation constraints that for each pair of links give a mini-
mum distance to be maintained between the frequencies assigned to the links. There
exist a number of di¤erent variants of the FAP (for an overview, see Aardal, van
Hoesel, Koster, Mannino, & Sassano, 2001). Maniezzo & Carbonaro (2000) applied
the ANTS algorithm to a version of the FAP in which, given a maximum number of
frequencies, the objective is to minimize the sum of the costs of violating the channel

5.2 Assignment Problems 165

separation constraints plus the costs of modifying the frequencies of links that have a
preassigned frequency.

Construction graph The set of componentsC comprises the set of links and the set
of available frequencies; as usual, the construction graph is fully connected.

Constraints The only constraint for the solution construction is that a frequency
must be assigned to each link. Violations of the channel separation constraint are
penalized by the objective function.

Pheromone trails Pheromone trails are associated with components representing the
links. A pheromone trail t ij indicates the desirability of assigning a frequencyj to
link i.

Heuristic information At each construction step of an ant, a lower bound based
on an adaptation of the orientation model (Borndo¨rfer, Eisenblätter, Grötschel, &
M artin, 1998a) is computed and used as heuristic information.

Solution construction Solutions are constructed iteratively by assigning frequencies
to links, using the probabilistic decision policy of ANTS [equation (3.13)].

Pheromone update The pheromone update rule of ANTS is applied [equation
(3.15)].

Local search Each constructed solution is locally optimized using an iterative de-
scent algorithm that tries to improve the objective function by modifying at each step
the assignment of frequencies to links.

Results ANTS was compared to reimplementations of two simulated annealing
algorithms (Hurkens & Tiourine, 1995; Smith, Hurley, & Thiel, 1998), to a tabu
search, and to a constructive algorithm based on the DSATUR heuristic, originally
designed for the graph coloring problem (GCP) (Brelaz, 1979). Experimental results
were presented for a set of benchmark instances (CELAR, GRAPH, and PHILA-
DELPHIA problems), which were adapted to the FAP formulation used in
M aniezzo & Carbonaro (2000). ANTS performed particularly well on the CELAR
and GRAPH instances.

5.2.4 Other ACO Applications to Assignment Problems

Graph Coloring Problem
A number of other ACO applications to assignment-type problems have been pro-
posed. One of the “rst is an approach based on AS to the GCP by Costa & Hertz
(1997). Given an undirected graphG ¼ ðN; AÞ, the goal in the GCP is to “nd the
minimum number of colors to assign to nodes such that no pair of adjacent nodes is
assigned the same color. In their ACO algorithm, Costa and Hertz use pheromones

166 Chapter 5 Ant Colony Optimization for N P -Hard Problems

to indicate the desirability of assigning the same color to two nodes. For ants• solu-
tion construction, they adapted the heuristics used in two well-known constructive
algorithms, the DSATUR heuristic (Brelaz, 1979) and the Recursive Largest First
(RLF) heuristic (Leighton, 1979). They experimentally compared eight variants of
their ACO algorithm on a set of randomly generated GCP instances with up to 300
nodes. With good parameter settings, all the considered variants signi“cantly im-
proved over the underlying DSATUR and RLF heuristics, with those based on the
DSATUR heuristic yielding the overall best results. The performance of this last
ACO algorithm, in general, appears to be way behind good graph coloring algo-
rithms such as tabu search algorithms (Dorne & Hao, 1999) or several hybrid
approaches (Galinier & Hao, 1999; Paquete & Stu¨tzle, 2002). However, a more suc-
cessful ACO approach to the GCP could certainly be obtained by employing a local
search and by using ACO algorithms that are more advanced than AS.

University Course Timetabling Problem
In the university course timetabling problem (UCTP) one is given a set of time slots,
a set of events, a set of rooms, a set of features, a set of students, and two types of
constraints: hard and soft constraints. Hard constraints have to be satis“ed by any
feasible solution, while soft constraints do not concern the feasibility of a solution
but determine its quality. The goal is to assign the events to the time slots and to the
rooms so that all hard constraints are satis“ed and an objective function, whose
value depends on the number of violated soft constraints, is optimized. The only
UCTP attacked by ACO algorithms that we are aware of was proposed within the
research activities of the European project ••Metaheuristics Network•• (for details, see
www.metaheuristics.org). Two ACO algorithms were implemented, the most suc-
cessful of these being an adaptation ofMM AS to the UCTP (MM AS-UCTP)
(Socha et al., 2002, 2003). InMM AS-UCTP the pheromone trail t ij refers to the
desirability of assigning an eventi to a time slot j ; no heuristic information is used.
Solutions are constructed by “rst preordering the events and then assigning the
events to time slots using the probabilistic action choice rule of AS. Once the solution
construction is completed, the iteration-best solution is improved by a local search
procedure.MM AS-UCTP, when compared to the other metaheuristics tested in the
research done in the ••Metaheuristics Network,•• obtained good results and showed
particularly good performance on the largest instances (Socha et al., 2003).

5.3 Scheduling Problems

Scheduling, in the widest sense, is concerned with the allocation of scarce resources
to tasks over time. Scheduling problems are central to production and manufacturing

5.3 Scheduling Problems 167

industries, but also arise in a variety of other settings. In the following, we mainly
focus on shop scheduling problems, where jobs have to be processed on one or sev-
eral machines such that some objective function is optimized. In case jobs have to be
processed on more than one machine, the task to be performed on a machine for
completing a job is called an operation. For all the machine-scheduling models con-
sidered in the following it holds that (1) the processing times of all jobs and oper-
ations are “xed and known beforehand and (2) the processing of jobs and operations
cannot be interrupted (scheduling without preemption). For a general introduction to
scheduling, see Brucker (1998) or Pinedo (1995).

Scheduling problems play a central role in ACO research, and many di¤erent
types of scheduling problems have been attacked with ACO algorithms (see table
5.1). The performance, however, varies across problems. For some problems, such as
the single-machine total weighted tardiness problem (SMTWTP), the open shop
problem, and the resource constrained project scheduling problem, ACO is among
the best-performing approaches. For other, classic scheduling problems, however,
like the permutation ”ow shop problem and the job shop problem, the computa-
tional results obtained so far are far behind the state of the art.

The construction graph for scheduling problems is typically represented by the set
of jobs (for single-machine problems) or operations. However, often it is convenient
to add to the construction graph nodes that represent positions in a sequence that
jobs (operations) can take, and to view sequences as assignments of jobs (operations)
to these positions. This is important, because in many scheduling problems the ab-
solute position of a job in a sequence is important. However, there exists some com-

Table 5.1
Available ACO algorithms for scheduling problems discussed in the text

Problem Main references

JSP Colorni, Dorigo, Maniezzo, & Trubian (1994)
OSP Pfahringer (1996); Blum (2003b)
PFSP Stützle (1997a, 1998a)
SMTTP Bauer, Bullnheimer, Hartl, & Strauss (2000)
SMTWTP den Besten, Stu¨tzle, & Dorigo (2000); Merkle & Middendorf (2000)
RCPSP Merkle, Middendorf, & Schmeck (2000a, 2002)
GSP Blum (2002a, 2003a)
SMTTPSDST Gagné, Price, & Gravel (2002)

JSP is the job shop problem, OSP is the open-shop problem, PFSP is the permutation ”ow shop problem,
SMTTP is the single-machine total tardiness problem, SMTWTP is the single-machine total weighted tar-
diness problem, RCPSP is the resource-constrained project scheduling problem, GSP is the group shop
scheduling problem, and SMTTPSDST is the single-machine total tardiness problem with sequence de-
pendent setup times. Details on the ACO algorithms for these problems are given in the text.

168 Chapter 5 Ant Colony Optimization for N P -Hard Problems

putational evidence that for some problems the relative ordering of jobs in the se-
quence may be more important (Blum & Sampels, 2002a).

5.3.1 Single-Machine Total Weighted Tardiness Scheduling

In the single-machine total weighted tardiness problemn jobs have to be processed
sequentially on a single machine, without interruption. Each job has an associated
processing timepj , a weight wj , and a due datedj , and all jobs are available for
processing at time zero. The tardiness of jobj is de“ned asTj ¼ maxf 0; CTj � djg,
where CTj is its completion time in the current job sequence. The goal in the
SMTWTP is to “nd a job sequence, that is, a permutation of the job indices, that
minimizes the sum of the weighted tardiness, given by

P n
j ¼1 wiTi . The unweighted

case, in which all the jobs have the same weight, is called the single-machine total
tardiness problem (SMTTP). It is well known that the SMTWTP is harder to solve
than the SMTTP. This is true from a theoretical perspective, because the SMTTP
can be solved in pseudopolynomial time (Lawler, 1977), while the SMTWTP with
no restrictions on the weights isN P -hard in the strong sense (Lenstra, Rinnooy
Kan, & Brucker, 1977). But it is also true from the experimental perspective: while
SMTWTP instances with more than 50 jobs often cannot be solved to optimality
with state-of-the-art branch & bound algorithms (Abdul-Razaq, Potts, & Wassen-
hove, 1990; Crauwels, Potts, & Wassenhove, 1998), the best available branch &
bound algorithms solve SMTTP instances with up to 500 jobs (Szwarc, Grosso, &
Della Croce, 2001).

ACO algorithms have been developed for both the SMTTP and the SMTWTP.
First, Bauer et al. (2000) applied ACS to the SMTTP (ACS-SMTTP), then den
Besten et al. (2000) and Merkle & Middendorf (2003a) in parallel developed ACS
applications to the SMTWTP, referred to respectively as ACS-SMTWTP-BSD and
ACS-SMTWTP-MM in the rest of this section. These ACO algorithms are very
similar to each other and share many characteristics.

Construction graph The set of componentsC consists of then jobs and then posi-
tions to which the jobs are assigned. The setL of arcs fully connects the graph.

Constraints The only constraint that has to be enforced is that all jobs have to be
scheduled.

Pheromone trails The pheromone trailst ij refer to the desirability of scheduling a
job j as thei-th job, that is, the desirability of assigning jobj to position i.

Heuristic information In ACS-SMTTP two priority rules were tested to de“ne two
di¤erent types of heuristic information. The rules are (1) the earliest due date rule,

5.3 Scheduling Problems 169

which puts the jobs in nondecreasing order of the due datesdj , and (2) the modi“ed
due date rule (Bauer et al., 2000), which puts the jobs in nondecreasing order of the
modi“ed due dates given bymddj ¼ maxf p̂p þ pj ; djg, where p̂p is the sum of the pro-
cessing times of the already sequenced jobs.

ACS-SMTWTP-BSD also considered, in addition to the earliest due date and to
the modi“ed due date rules, the apparent urgency priority rule, which puts the jobs in
nondecreasing order of apparent urgency (Morton, Rachamadugu, & Vepsalainen,
1984), de“ned as

auj ¼ ðwj=pjÞ �expð�ð maxf dj � CTj ; 0gÞ=kpÞ;

where p is the average processing time of the remaining jobs, andk is a parameter set
as proposed in Potts & Wassenhove (1991). In each case, the heuristic information
was de“ned ashij ¼ 1=hj , wherehj is eitherdj , mddj , or auj , depending on the priority
rule used.

ACS-SMTWTP-MM used a variation of Bauer and colleagues• modi“ed due date
rule. This new rule was de“ned asvmddj ¼ maxf p̂p þ pj ; djg � p̂p. The heuristic infor-
mation was set to behij ¼ wj=vmddj . This variation is based on the observation that,
as p̂p increases, the valuesmddj become large, and the di¤erences between the heuris-
tic values for the remaining jobs become small; hence, ants can no longer di¤erenti-
ate e¤ectively between the alternatives based on the heuristic values. This problem is
reduced by usingvmddj . Finally, in particular situations, it can be shown that a good
policy is to schedule the remaining jobs in a deterministic order. If such a situation
occurs, ants in ACS-SMTWTP-MM follow this deterministic rule.

Solution construction and pheromone updateThe ants construct a sequence by “rst
choosing a job for the “rst position, then a job for the second position, and so on
until all jobs are scheduled. The action choice and the pheromone update rules are
those of ACS, except for two details in ACS-SMTWTP-BSD and ACS-SMTWTP-
MM : the “rst uses appropriately de“ned candidate lists, while the second uses the
pheromone summationrule (which is explained in depth in box 5.2).

Local search In ACS-SMTTP a best-improvement local search that considers all
possible exchanges between pairs of jobs was applied to the best ant after each
iteration. ACS-SMTWTP-MM applied a truncated “rst-improvement strategy that
checked exactly once for each pair of jobs whether an exchange of their positions led
to an improved solution. ACS-SMTWTP-BSD combined ACS with a powerful local
search based on variable neighborhood descent (Hansen & Mladenovic´, 1999).

Results Of the three approaches, ACS-SMTWTP-BSD obtained the best perfor-
mance results. This algorithm was able to obtain on all benchmark instances from

170 Chapter 5 Ant Colony Optimization for N P -Hard Problems

Box 5.2
The Pheromone Summation Rule

In permutation scheduling applications, pheromone trailst ij typically refer to the desirability of
assigning job j to position i. Now, assume that, because of the stochastic nature of the algorithm,
although job j has a high pheromone valuet ij , it happens that it is jobh, with a low t ih, which is
assigned to positioni of the schedule. Then, in many scheduling problems, as is the case, for ex-
ample, in the SMTWTP, it may be advantageous to assign jobj to a position close to positioni.
However, if for positions l > i the pheromone trailst lj happen to be low, it is probable that the job
gets sequenced toward the end of the schedule, far away from positioni, leading to highly sub-
optimal schedules. Unfortunately, the situation in which thet lj •s are low for positionsl > i may
easily occur. For example, this is the case if no solution which assigns jobj to a position l > i has
yet been found, or if such solutions were found many iterations before, so that the corresponding
pheromone values have decreased because of evaporation. An elegant solution to this problem has
been proposed by Merkle and Middendorf: the use of the so-calledsummation rule.

The summation rule consists of choosing the jobj to assign to positioni using the sum of all the
t hj•s, withha i. In this way, if it happens that, notwithstanding a high value of pheromonet ij , job j
is not allocated to positioni, the high valuet ij continues to in”uence the probability of allocating
job j to the position i þ 1. In this way, job j has a high probability of being assigned to a position
close toi.

In ACS-SMTWTP-MM (see section 5.3.1), when using the summation rule, an ant chooses with
probability q0 to assign to positioni a job that maximizes

Xi

k¼1

t kj

" # a

½hij �
b; ð5:3Þ

while with probability 1 � q0 the job j is chosen according to a probability given by

pij ¼
½
P i

k¼1 t kj �
a½hij �

b

P
hANi

ð½
P i

k¼1 t kh� a½hih� bÞ
; ð5:4Þ

whereNi is the set of still unscheduled jobs. As said, the summation rule was experimentally shown
to lead to improved computational results for the SMTWTP (as well as for the SMTTP). In further
experiments, Merkle and Middendorf used a weighted summation rule as well as combinations of
the standard way of using pheromones with the weighted summation rule.

In the weighted summation rule, equation (5.4) becomes

pij ¼
½
P i

k¼1 gi� k t kj �
a½hij �

b

P
hANi

ð½
P i

k¼1 gi� k t kh� a½hih� bÞ
; ð5:5Þ

where the parameterg, g > 0, determines the in”uence of pheromone trails corresponding to earlier
positions. Settingg ¼ 1 gives the (unweighted) summation rule, a valueg < 1 gives less in”uence to
pheromone trails corresponding to earlier decisions, while a valueg > 1 increases their in”uence.

Merkle and Middendorf have combined the standard way of using pheromones with the
weighted summation rule by computing pheromone trailst 0

ij as follows:

t 0
ij ¼ c � xi � t ij þ ð1 � cÞ �yi �

Xi

k¼1

gi� k t kj ; ð5:6Þ

5.3 Scheduling Problems 171

ORLIB (mscmga.ms.ic.ac.uk/jeb/orlib/wtinfo.html) the best-known solutions, which
are conjectured to be the optimal ones. ACS-SMTWTP-BSD is currently among the
best available algorithms for the SMTWTP; however, the iterated Dynasearch ap-
proaches of Congram et al. (2002) and Grosso, Della Croce, & Tadei (2004) appear
to be faster, reaching the same level of performance in a shorter computation time.

Good results were also reported for ACS-SMTWTP-MM, although it could not
reach the same solution quality of ACS-SMTWTP-BSD; the main reason is certainly
the less powerful local search algorithms used by Merkle and Middendorf. Experi-
ments with ACS-SMTWTP-MM applied to the SMTTP showed a signi“cantly
better performance when compared to ACS-SMTTP, the main reason being the use
of more sophisticated heuristic information and the use of the summation rule
(Merkle & Middendorf, 2003a).

5.3.2 Job Shop, Open Shop, and Group Shop Scheduling

In job shop, open shop, and group shop scheduling problems we are given a “nite set
O of operations that is partitioned into a set of subsetsM ¼ f M 1; . . . ; M mg, where
eachM i corresponds to the operations to be processed by machinei, and into a set of
subsetsJ ¼ f J1; . . . ; Jng, where each setJj corresponds to the operations belonging

Box 5.2
(continued)

wherexi ¼
P

hANi

P i
k¼1 gi� k t kh and yi ¼

P
hANi

t ih are factors to adjust for the di¤erent range of
values in the standard and in the summation rule and the parameterc adjusts the relative in”uence
of the local and the summation rule: forc ¼ 1 is obtained the standard rule, while forc ¼ 0 is
obtained the pure, weighted summation rule. Then, the probability of choosing a jobj for position i
is computed using the usual equation:

pij ¼
½t 0

ij �
a½hij �

b

P
hANi

ð½t 0
ih� a½hih� bÞ

: ð5:7Þ

An experimental study of ACO algorithms for the SMTWTP and the resource-constrained proj-
ect scheduling problem (RCPSP), a scheduling problem that is presented in section 5.3.3, showed
that by setting appropriate values for the parametersg and c it is possible to obtain much better
results in comparison to those obtained with either the standard rule or with a pure (unweighted)
summation rule (Merkle, Middendorf, & Schmeck, 2000b).

Finally, we would like to emphasize that the usefulness of the summation rule depends on the
property that in good schedules the positions of jobs are similar. If this is not the case, pheromone
evaluation based on the summation rule may fail. In fact, Merkle & Middendorf (2002a) de“ned
the single-machine total earliness problem with multiple due dates, for which such property does
not hold and where the summation rule fails. For that problem, they showed that good perfor-
mance can be achieved by arelative pheromone evaluation rulethat normalizes the pheromone value
t ij with the relative amount of the pheromones on the remaining positions for jobj.

172 Chapter 5 Ant Colony Optimization for N P -Hard Problems

to job j. Each operation is assigned a non-negative processing time and preemption
is not allowed.

The job shop, open shop, and group shop scheduling problems di¤er only in the
order that is imposed on the operations belonging to a job. In the job shop problem
(JSP), precedence constraints among all operations of a job exist and they induce
a total ordering of the operations of each job. On the contrary, in the open shop
problem (OSP), there are no precedence constraints, that is, any ordering of the
operations is allowed as long as only one operation of a job is processed at a time. In
the group shop scheduling problem (GSP), the operations of each job are addition-
ally partitioned into groups. The operations within one group can be processed in
any order, but the groups of a job are totally ordered; therefore, the order of the
groups within a job induces a partial order among the operations. The GSP is the
most general of these problems, as it contains the JSP and the OSP as special cases.
In the JSP each group contains only one operation and every OSP instance can be
seen as a GSP instance with only one group per job. An example of a simple GSP
instance is given in “gure 5.2.

So far, ACO algorithms have been applied to the above-mentioned scheduling
problems with the minimization of the completion time of the last operation, also
called makespan, as objective function. Colorni et al. (1994) were the “rst to attack
one of these problems: they applied AS to the JSP (AS-JSP-CDMT). This “rst ap-
proach was followed by an application of Ant-Q (Gambardella & Dorigo, 1995;
Dorigo & Gambardella, 1996) to the OSP (AntQ-OSP) by Pfahringer (1996), and by

1 2 3

4 5 6

7 8

Figure 5.2
Disjunctive graph representation (Roy & Sussmann, 1964) of a simple group shop scheduling problem
instance with eight operations. The nodes in the graph correspond to the operations, groups having more
than one node are indicated by boxes. We haveO ¼ f 1; . . . ; 8g, J ¼ f J1 ¼ f 1; 2; 3g; J2 ¼ f 4; 5; 6g; J3 ¼
f 7; 8gg, M ¼ f M 1 ¼ f 1; 4; 8g; M 2 ¼ f 2; 5; 7g; M 3 ¼ f 3; 6gg, and G ¼ fG1 ¼ f 1; 2g; G2 ¼ f 3g; G3 ¼ f 4g;
G4 ¼ f 5; 6g; G5 ¼ f 7; 8gg. There are directed arcs between the groups belonging to the same job, and
operations within one group are connected by an undirected arc. Additionally, there are undirected
(dashed) arcs between all pairs of operations to be processed on a same machine. A feasible solution can be
obtained by directing the undirected arcs so that there is no cycle in the resulting graph.

5.3 Scheduling Problems 173

MM AS-HC-GSP, an MM AS algorithm for the GSP proposed by Blum (2002a,
2003a). In all these approaches the solution construction is based on schedule gener-
ation methods. These are algorithms that generate at each construction step a set of
operations that can be added to the partial schedule maintaining feasibility. Then,
according to some heuristic, one of the operations is chosen and appended to the
schedule. More details about schedule generation methods are given in box 5.3. The
main di¤erence between the algorithms concerns the way pheromone trails are de-
“ned, the heuristic information chosen, the type of ACO algorithm used, and the use
of local search.

Construction graph The construction graph contains one node for every operation
plus two additional nodes that represent a source and a destination node. As usual, it
is fully connected.

Constraints The constraints in the problem require that the precedence constraints
between the operations are met and that all operations must be scheduled exactly
once.

Pheromone trails The available ACO algorithms use di¤erent ways of de“ning the
pheromone trails. AS-JSP-CDMT and AntQ-OSP use a pheromone representation
intended to learn a predecessor relationship. In this case, a pheromone trailt ij exists
between every pair of operations and between the source and all operations;t ij gives
the desirability of choosing operationj directly after operation i. MM AS-HC-GSP
applies a pheromone model where a pheromone trailt ij is assigned to related opera-
tions; operations are related either if they are in the same group or if they are pro-
cessed on the same machine. In this case,t ij refers to the desirability of scheduling
operation j after, but not necessarilyimmediatelyafter, operation i.

Heuristic information Several types of heuristic information are applied in the vari-
ous algorithms. AS-JSP-CDMT uses themost work remainingheuristic (Haupt,
1989) that computes for each jobj the total processing time of the operations still to
be scheduled (mwrj) and the heuristic information is then set tohj ¼ mwrj . AntQ-
OSP showed best performance using the earliest start heuristic, which favors opera-
tions with minimal valid starting time with respect to the partial schedule; in this case
we havehi ¼ 1=esti , whereesti is the earliest possible starting time of operationi. The
earliest start heuristic is also used inMM AS-HC-GSP, where the heuristic infor-
mation is computed based on the value of 1=esti , which is then normalized such that
for all eligible operations the heuristic information is in the interval½0; 1�.

Solution construction At the start all ants are put in the source node and the con-
struction phase terminates when all ants have reached the destination. Solutions are
constructed using a schedule generation method that restricts the set of eligible

174 Chapter 5 Ant Colony Optimization for N P -Hard Problems

Box 5.3
Schedule Generation Methods

Schedule generation methods are probably the most frequently applied constructive heuristics for
solving shop scheduling problems in practice. As a side e¤ect, schedule generation methods build a
sequences containing all the operations ofO exactly once. (Note that a sequences unambiguously
de“nes a solution to an instance of a shop scheduling problem.) For the problem instance given in
“gure 5.2, for example, the sequence (12 4 8 5 7 6 3)de“nes group order 1� 2 in group G1, 5 � 6
in group G4 and 8 � 7 in group G5. It also de“nes the order in which the operations are processed
on the machines.

From a high-level perspective, a schedule generation method works as depicted below. In the
algorithm we denote byo0 � pred o the fact that the problem constraints enforce that an operation
o0 has to be processed before operationo; s½i� denotes the operations assigned at positioni in se-
quences.

procedureScheduleGenerationMethod
Orem O
s []
for i ¼ 1 to |O| do

S f o AOrem jqo0 AOrem with o0 � pred og
S0 GenerateCandidateOperations(S)
o� ChooseOperation(S0)
s½i� o�

Orem Oremnf o� g
end-for

The main procedures de“ning a schedule generation method areGenerateCandidateOperations and
ChooseOperation.

There are two main ways of implementing theGenerateCandidateOperations procedure. The pro-
posal of Gi¿er & Thompson (1960) is to compute “rst the earliest completion times of all the
operations in the setS. Then, one of the machines with minimal completion timeectmin is chosen
and the setS0 is the set of all operations inS which need to be processed on the chosen machine
and whose earliest starting time is smaller thanectmin. A second typical approach is to compute “rst
the earliest possible starting timeestmin of all operations in S. Then, S0 consists of all operations in
S which can start atestmin.

Over the years quite a lot of research has been devoted to “nding rules to be used in theChoo-
seOperation procedure. These rules, which are commonly called priority rules or dispatching rules,
are most often applied in a deterministic way, although examples of probabilistic use can be found.
None of the rules proposed in the literature can be considered to be the ••best-performing•• priority
rule, as their relative performance depends strongly on the structure of the problem instance to be
solved. A survey of priority rules can be found in Haupt (1989). In all the current ACO applications
to GSP problems the choice of the next operation from the setS0 is biased by both heuristic infor-
mation and pheromone trails.

5.3 Scheduling Problems 175

operations to a setN ðskÞ, where sk is the k-th ant•s partial solution. Each eligible
operation i AN ðskÞis rated according to the pheromone trail and the heuristic in-
formation and added according to the rules applicable in the corresponding ACO
algorithm. Only MM AS-HC-GSP departs in some details from the standard action
choice rule, because of the di¤erent meaning of the pheromone trails: If an operation
does not have any related and unscheduled operation left, it is chosen deterministi-
cally. Otherwise an ant chooses the next operationi with a probability

pk
i ¼

minj ARuðiÞ t ij ½hi �
b

P
l AN ðskÞðminj ARuðlÞ t lj ½hi �

bÞ
; if i AN ðskÞ;

0; otherwise;

8
>><

>>:
ð5:8Þ

where RuðiÞ is the set of operations that are related toi but not yet in the partial
schedule constructed so far.

Pheromone update The pheromone update follows the basic rules of the various
ACO algorithms; note that MM AS-HC-GSP includes the ideas ofMM AS in the
hyper-cube framework for ACO and therefore only one ant is depositing pheromone
after each iteration. We refer the reader to the original sources for details on the
pheromone update.

Local search AS-JSP-CDMT and AntQ-OSP do not use local search. Concerning
MM AS-HC-GSP, several variants were tested, some of them including local search.
The best performance was reported for a variant that “rst improves all solutions
constructed by the ants, applying an iterative improvement algorithm, and then
applies to the best local optimum a tabu search algorithm which is terminated after
jOj=2 iterations. The local search algorithm adapts the JSP neighborhood introduced
by Nowicki & Smutnicki (1996a) to the GSP.

Particularities AS-JSP-CDMT and AntQ-OSP are rather straightforward applica-
tions of ACO algorithms. Only MM AS-HC-GSP includes some particular features,
apart from the local search, that try to enhance performance. In particular,MM AS-
HC-GSP maintains anelitist list of solutions comprising recent, very good solutions
and iterates through intensi“cation and diversi“cation phases of the search. Diversi-
“cation is achieved through the application of pheromone reinitialization. Intensi“-
cation is achieved by letting the restart-best solution or some ant of the elitist list
deposit pheromone. Which ants are allowed to deposit pheromone is a function of
the value assumed by a variable calledconvergence factorand of the state of the
search with respect to convergence. Solutions which are member of the elitist list are
occasionally removed from the list to free space for di¤erent high-quality solutions.
A further feature is that at each iteration an ant inMM AS-HC-GSP randomly

176 Chapter 5 Ant Colony Optimization for N P -Hard Problems

chooses, before starting solution construction, one of two di¤erent mechanisms for
generating the setN ðskÞof eligible operations.

Results The computational results obtained with AS-JSP-CDMT and AntQ-OSP
are not satisfactory. This is particularly true for AS-JSP-CDMT, which is far behind
the performance of the currently best algorithms for the JSP (Nowicki & Smutnicki,
1996a; Balas & Vazacopoulos, 1998; Grabowski & Wodecki, 2001). AntQ-OSP was
compared to an earlier evolutionary algorithm (Fang, Ross, & Corne, 1994) on
small-size OSP instances, reaching a similar level of performance. However, it ap-
pears to be quite far from current state-of-the-art approaches for the OSP (Liaw,
2000). Blum extensively testedMM AS-HC-GSP on a large number of GSP in-
stances, including JSP and OSP instances (Blum, 2002b).MM AS-HC-GSP resulted
in being the current best-performing ACO algorithm for these types of scheduling
problems, in particular for those instances that are neither pure JSP nor pure OSP
problems. However, even when applied to the ••pure•• versions,MM AS-HC-GSP
has a very good performance. In fact, for the OSP it has a performance similar to
that of the state-of-the-art algorithm, a hybrid genetic algorithm proposed by Liaw
(2000); and for the JSP it is only beaten by neighborhood search based methods
(Balas & Vazacopoulos, 1998; Nowicki & Smutnicki, 1996a; Grabowski & Wodecki,
2001). Blum also comparedMM AS-HC-GSP with a tabu search approach for the
GSP. The result was that the tabu search approach appears to be slightly better than
MM AS-HC-GSP for GSP instances close to JSP instances, whileMM AS-HC-GSP
outperforms the tabu search approach on instances that are closer to OSP instances.

Remarks Recently, Blum (2003b) has proposed a hybridization between an ACO
algorithm and Beam search. In this approach, called Beam-ACO, at each algorithm
iteration each ant builds more than one solution, adopting a procedure which is a
probabilistic version of Beam search. The results obtained are very promising: Beam-
ACO seems to outperform the best algorithms for the OSP.

5.3.3 Resource-Constrained Project Scheduling

The resource-constrained project scheduling problem (RCPSP) is a general schedul-
ing problem in which the set of activitiesA of a project must be scheduled mini-
mizing the makespan, subject to resource constraints and to precedence constraints
among the activities. More formally, in the RCPSP one is given a set of activities
A ¼ f a0; a1; . . . ; anþ 1g, with given precedence constraints among the activities, and a
set of resource typesR ¼ f r1; . . . ; rl g, each resourceri having an associated capacity
rci . Every activity ai has associated a processing timepi and resource requirements
ari1; . . . ; aril , where arij is the resource requirement for resourcej. The goal in the

5.3 Scheduling Problems 177

