9.1 A Chaotic Waterwheel

A neat mechanical model of the Lorenz equations was invented by Willem Malkus
and Lou Howard at MIT in the 1970s. The simplest version is a toy waterwheel
with leaky paper cups suspended from its rim (Figure 9.1.1).
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Figure 9.1.1

Water is poured in steadily from the top. If the flow rate is too slow, the top cups
never fill up enough to overcome friction, so the wheel remains motionless. For
faster inflow, the top cup gets heavy enough to start the wheel turning (Figure
9.1.1a). Eventually the wheel settles into a steady rotation in one direction or the
other (Figure 9.1.1b). By symmetry, rotation in either direction is equally possible;
the outcome depends on the initial conditions.

By increasing the flow rate still further, we can destabilize the steady rotation.
Then the motion becomes chaotic: the wheel rotates one way for a few turns, then
some of the cups get too full and the wheel doesn’t have enough inertia to carry
them over the top, so the wheel slows down and may even reverse its direction
(Figure 9.1.1c). Then it spins the other way for a while. The wheel keeps changing
direction erratically. Spectators have been known to place bets (small ones, of
course) on which way it will be turning after a minute.

Figure 9.1.2 shows Malkus’s more sophisticated set-up that we use nowadays at
MIT.
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Figure 9.1.2

The wheel sits on a table top. It rotates in a plane that is tilted slightly from the hor-
izontal (unlike an ordinary waterwheel, which rotates in a vertical plane). Water is
pumped up into an overhanging manifold and then sprayed out through dozens of
small nozzles. The nozzles direct the water into separate chambers around the rim
of the wheel. The chambers are transparent, and the water has food coloring in it,
so the distribution of water around the rim is easy to see. The water leaks out
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through a small hole at the bottom of each chamber, and then collects underneath
the wheel, where it is pumped back up through the nozzles. This system provides a
steady input of water.

The parameters can be changed in two ways. A brake on the wheel can be ad-
justed to add more or less friction. The tilt of the wheel can be varied by turning a
screw that props the wheel up; this alters the effective strength of gravity.

A sensor measures the wheel’s angular velocity @(¢), and sends the data to a
strip chart recorder which then plots @(¢) in real time. Figure 9.1.3 shows a record
of w(t) when the wheel is rotating chaotically. Notice once again the irregular se-
quence of reversals.
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We want to explain where this chaos comes from, and to understand the bifurca-
tions that cause the wheel to go from static equilibrium to steady rotation to irregu-
lar reversals.

Figure 9.1.3

Notation

Here are the coordinates, variables and parameters that describe the wheel’s
motion (Figure 9.1.4):

(top view)

Figure 9.1.4

6 = angle in the lab frame (not the frame attached to the wheel)
6 =0 <> 12:00 in the lab frame
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w(?)= angular velocity of the wheel (increases counterclockwise, as does 8 )
m(0,t) = mass distribution of water around the rim of the wheel, defined

)
such that the mass between 6, and 8, is M(z) =J 2m(6, Hdo
6,

((0) =inflow (rate at which water is pumped in by the nozzles above po-
sition 8)

r =radius of the wheel

K =leakage rate

v =rotational damping rate

I =moment of inertia of the wheel

The unknowns are m(8,¢)and @(z). Our first task is to derive equations govern-
ing their evolution.

Conservation of Mass

To find the equation for conservation of mass, we use a standard argument. You
may have encountered it if you’ve studied fluids, electrostatics, or chemical engi-
neering. Consider any sector [6, , 62] fixed in space (Figure 9.1.5).

oAt
-

Figure 9.1.5

8,
The mass in that sector is M () = I m(0,1)d6. After an infinitesimal time Az, what
6

is the change in mass AM? There are four contributions:

6
1. The mass pumped in by the nozzles is [ 2Qde] At .
6

6,
2. The mass that leaks out is [— 2Km de} At . Notice the factor of m in the
6

integral; it implies that leakage occurs at a rate proportional to the mass
of water in the chamber—more water implies a larger pressure head and
therefore faster leakage. Although this is plausible physically, the fluid
mechanics of leakage is complicated, and other rules are conceivable as
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well. The real justification for the rule above is that it agrees with direct
measurements on the waterwheel itself, to a good approximation. (For
experts on fluids: to achieve this linear relation between outflow and
pressure head, Malkus attached thin tubes to the holes at the bottom of
each chamber. Then the outflow is essentially Poiseuille flow in a pipe.)

3. As the wheel rotates, it carries a new block of water into our observa-
tion sector. That block has mass m(6,) wAt, because it has angular
width wAr (Figure 9.1.5), and m(0,) is its mass per unit angle.

4. Similarly, the mass carried out of the sector is —m(0,) WA .

Hence,
6, 0,
AMzAtU Qdo—| Km d@} + m(0,)wAt —m(0,) wAt. (1)
o, 6,

To convert (1) to a differential equation, we put the transport terms inside the inte-

gral, using m(8,)—m(6,)=— g_m d0. Then we divide by Ar and let Ar— 0.
0

The result is
6 5
=j (0- Km—-a22)d6.
6

But by definition of M,

)
dM 2 dm 40
dt o Ot
Hence
am am
-——d@ (Q Km—w%55)do.
o Ot

Since this holds for all 6, and 0,, we must have

8 om

m
= Km-w—. (2)
=e- d0
Equation (2) is often called the continuity equation. Notice that it is a partial dif-
ferential equation, unlike all the others considered so far in this book. We’ll worry
about how to analyze it later; we still need an equation that tells us how w(t) evolves.

Torque Balance

The rotation of the wheel is governed by Newton’s law F = ma, expressed as a
balance between the applied torques and the rate of change of angular momentum.
Let / denote the moment of inertia of the wheel. Note that in general I depends on
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t, because the distribution of water does. But this complication disappears if we
wait long enough: as t — o, one can show that /() — constant (Exercise 9.1.1).
Hence, after the transients decay, the equation of motion is

Iw = damping torque + gravitational torque.

There are two sources of damping: viscous damping due to the heavy oil in the
brake, and a more subtle “inertial” damping caused by a spin-up effect—the water
enters the wheel at zero angular velocity but is spun up to angular velocity @ before
it leaks out. Both of these effects produce torques proportional to @, so we have

damping torque = —-vo,

where v > 0. The negative sign means that the damping opposes the motion.
The gravitational torque is like that of an inverted pendulum, since water is
pumped in at the top of wheel (Figure 9.1.6).

(top view)

Figure 9.1.6

In an infinitesimal sector d6, the mass dM = md6. This mass element produces a
torque

dt = (dM)grsin6 = mgrsin6d6.
To check that the sign is correct, observe that when sinf > 0 the torque tends to in-
crease M, just as in an inverted pendulum. Here g is the effective gravitational con-

stant, given by g = g, sin @ where g, is the usual gravitational constant and « is the
tilt of the wheel from horizontal (Figure 9.1.7).

wheel

80 (side view)

Figure 9.1.7

Integration over all mass elements yields

2
gravitational torque = gr | m(6,1)sin6d6 .
0
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Putting it all together, we obtain the torque balance equation
. 2
[ =—-vw + gr | m(6,t)sin 0 d6. (3)
0

This is called an integro-differential equation because it involves both derivatives
and integrals.

Amplitude Equations

Equations (2) and (3) completely specify the evolution of the system. Given the
current values of m(0,t) and w(z), (2) tells us how to update m and (3) tells us
how to update @. So no further equations are needed.

If (2) and (3) truly describe the waterwheel’s behavior, there must be some
pretty complicated motions hidden in there. How can we extract them? The equa-
tions appear much more intimidating than anything we’ve studied so far.

A miracle occurs if we use Fourier analysis to rewrite the system. Watch!

Since m(@,1) is periodic in 8, we can write it as a Fourier series

oo

m(o,1) = 2 [ @,(t)sinn6 +b,(1)cosnd |- (4)

n=0

By substituting this expression into (2) and (3), we’ll obtain a set of amplitude
equations, ordinary differential equations for the amplitudes a,, b, of the dif-
ferent harmonics or modes. But first we must also write the inflow as a Fourier
series:

no

Q6) = 2 q, cosnb. (5)

n=0

There are no sinn@ terms in the series because water is added symmetrically at the
top of the wheel; the same inflow occurs at 6 and —0. (In this respect, the water-
wheel is unlike an ordinary, real-world waterwheel where asymmetry is used to
drive the wheel in the same direction at all times.)

Substituting the series for m and Q into (2), we get

%{2 a,(1)sinn@+ b, (t)cos n@} = —a)%{; a,(t)sinn@+ b, (t)cos n@}

n=0
+ 2 q, cosn@ '

n=0

—K{Z a,(t)sinn@+ b, (t)cos n@}.

n=0
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Now carry out the differentiations on both sides, and collect terms. By orthogonal-
ity of the functions sinn8, cosn@, we can equate the coefficients of each harmonic
separately. For instance, the coefficient of sinn@ on the left-hand side is g, , and on
the right it is nwb, — Ka, . Hence

">

a, =nwb, —Ka, . (6)
Similarly, matching coefficients of cosn6 yields
5” =-nwa,— Kb, +q,. (7)

Both (6) and (7) hold forall n =0, 1, .. ..

Next we rewrite (3) in terms of Fourier series. Get ready for the miracle.
When we substitute (4) into (3), only one term survives in the integral, by or-
thogonality:

n=()

27 | e
o =—vo+ grj {z a, (t)sinn@+b (t)ycosnb |sin6@do
0

2r
=—vo +grjal sin® 0d6
0

=-vo+rgra,. (8)

Hence, only a, enters the differential equation for @. But then (6) and (7) imply
that a,, b,, and @ form a closed system—these three variables are decoupled from

all the other a,, b, , n #1! The resulting equations are
a, =wb —Ka,
b, = —wa, — Kb, +q, (9)

o=(-vo+rgra)/l.

(If you’re curious about the higher modes a,, b,, n #1, see Exercise 9.1.2.)
We’ve simplified our problem tremendously: the original pair of integro-partial
differential equations (2), (3) has boiled down to the three-dimensional system (9).
It turns out that (9) is equivalent to the Lorenz equations! (See Exercise 9.1.3.)
Before we turn to that more famous system, let’s try to understand a little about (9).
No one has ever fully understood it—its behavior is fantastically complex—but we

can say something.

ne

Fixed Points

We begin by finding the fixed points of (9). For notational convenience, the
usual asterisks will be omitted in the intermediate steps.
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Setting all the derivatives equal to zero yields

a =wh /K v (10)
wa, =q,— Kb, (11)
a, =vo/nrgr. (12)

Now solve for b, by eliminating a, from (10) and (11):

= 5%7 : (13)
Equating (10) and (12) yields wb, /K = vw/ngr. Hence @ =0 or
b, = Kv/mgr. (14)
Thus, there are two kinds of fixed point to consider:
1.If =0, then g, =0 and b, = g,/K. This fixed point
(a,%b* w*)=(0, q,/K, 0) (15)

corresponds to a state of no rotation; the wheel is at rest, with inflow
balanced by leakage. We’re not saying that this state is stable, just that
it exists; stability calculations will come later.

. If @#0, then (13) and (14) imply b, = Kq,/(w* + K*)= Kv/ngr.

Since K # 0, we get g, /(@w* + K*) = v/mgr. Hence

(60*)2 _ ngrq,

-K*. (16)

If the right-hand side of (16) is positive, there are two solutions, + @ *,
corresponding to steady rotation in either direction. These solutions
exist if and only if

ﬂgrql > l

17
K*v (17)

The dimensionless group in (17) is called the Rayleigh number. It measures
how hard we’re driving the system, relative to the dissipation. More precisely, the
ratio in (17) expresses a competition between g and g, (gravity and inflow, which
tend to spin the wheel), and K and v (leakage and damping, which tend to stop
N the wheel).
\ number is large enough.

So it makes sense that steady rotation is possible only if the Rayleigh

The Rayleigh number appears in other parts of fluid mechanics, notably con-

vection, in

which a layer of fluid is heated from below. There it is proportional to

the difference in temperature from bottom to top. For small temperature gradients,
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heat is conducted vertically but the fluid remains motionless. When the Rayleigh
number increases past a critical value, an instability occurs—the hot fluid is less
dense and begins to rise, while the cold fluid on top begins to sink. This sets up a
pattern of convection rolls, completely analogous to the steady rotation of our wa-
terwheel. With further increases of the Rayleigh number, the rolls become wavy
and eventually chaotic.

The analogy to the waterwheel breaks down at still higher Rayleigh numbers,
when turbulence develops and the convective motion becomes complex in
space as well as time (Drazin and Reid 1981, Bergé et al. 1984, Manneville
1990). In contrast, the waterwheel settles into a pendulum-like pattern of rever-
sals, turning once to the left, then back to the right, and so on indefinitely (see
Example 9.5.2).

9.2 Simple Properties of the Lorenz Equations

In this section we’ll follow in Lorenz’s footsteps. He took the analysis as far as
possible using standard techniques, but at a certain stage he found himself con-
fronted with what seemed like a paradox. One by one he had eliminated all the
known possibilities for the long-term behavior of his system: he showed that in a
certain range of parameters, there could be no stable fixed points and no stable
limit cycles, yet he also proved that all trajectories remain confined to a bounded
region and are eventually attracted to a set of zero volume. What could that set be?
And how do the trajectories move on it? As we’ll see in the next section, that set is
the strange attractor, and the motion on it is chaotic.

But first we want to see how Lorenz ruled out the more traditional possibilities.
As Sherlock Holmes said in The Sign of Four, “When you have eliminated the im-
possible, whatever remains, however improbable, must be the truth.”

The Lorenz equations are

x=0(y—x)
y=rx—y—xz
z=xy—bz. (1)

Here o, r, b>0 are parameters. ¢ is the Prandtl number, r is the Rayleigh
number, and b has no name. (In the convection problem it is related to the aspect
ratio of the rolls.)

Nonlinearity

The system (1) has only two nonlinearities, the quadratic terms xy and xz . This
should remind you of the waterwheel equations (9.1.9), which had two nonlineari-
ties, wa, and wb,. See Exercise 9.1.3 for the change of variables that transforms
the waterwheel equations into the Lorenz equations.
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