{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "***\n", "\n", "\n", "**15-448: Machine Learning in a Nutshell**, *CMU-Qatar* Spring'20\n", "\n", "**Gianni A. Di Caro**, www.giannidicaro.com\n", "\n", "Disclaimer: This notebook was prepared for teaching purposes. It can include material from different web sources. I'll happy to explicitly acknowledge a source if required. \n", "\n", "***" ] }, { "cell_type": "markdown", "metadata": { "toc": true }, "source": [ "
\n",
" \n",
"1. $y = e^{ax} + b$
\n",
" - $\\log(y) = \\log(e^{ax} + b)$ $\\rightarrow$ Not linear\n",
"
\n",
" \n",
"1. $y = ae^{bx}$
\n",
" \n",
" - $\\log(y) = \\log(a) + bx$\n",
" - $y' = \\log(y)$\n",
" - $a' = \\log(a)$ \n",
" - $y' = a' + bx$ $\\rightarrow$ Linear\n",
"
\n",
"\n",
"1. $y = ax^2 + bx^3$
\n",
" \n",
" - $x' = x^2$\n",
" - $x'' = x^3$\n",
" - $y = ax' + bx''$ $\\rightarrow$ Linear\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**QUIZ:**\n",
"\n",
"Some of the features in the dataset are linearly dependent,\n",
"E.g. \n",
"$\\ a{\\bf x_1} + b{\\bf x_2} + c{\\bf x_3} = 0$ for some $a,b,c \\ne 0$\n",
"$\\quad \\rightarrow\\ {\\bf x_1} = -\\frac{b}{a}{\\bf x_2} + \\frac{c}{a}{\\bf x_3}$\n",
"\n",
"When we try to solve the OLS equation ${\\bf w}^* = ({\\bf X}^T {\\bf X})^{-1}{\\bf X}^T{\\bf Y}$\n",
"for finding the weight vector ${\\bf w}^*$:\n",
"\n",
"1. I can still find a unique solution
\n",
"\n",
"1. There are no admissible solutions
\n",
"\n",
"1. There are infinite solutions $\\rightarrow$ Yes!\n",
"
\n",
"\n",
"1. can't say anything
\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Linear regression with non-linear feature transformations"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have already discussed and practiced with the use of **non-linear transformations** of the original features, in particular using **polynomial features,** to generate richer features capturing *interactions* among features (e.g., $x_1x_2x_4$) and *statistical moments* of feature values (e.g., $x_1^2$)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cost of increasing the number of features\n",
"\n",
"We saw that, typically, non-linear feature transformation comes at the **cost of increasing the number of features,** making the learning problem potentially more complex since a large number of parameters must be learned, and requiring, accordingly, an increasing number of training data to guarantee a statistically reliable learning. \n",
"\n",
"For instance, if we consider an original two-dimensional feature space, $\\{x_1, x_2\\}$, and a polynomial transformation of order 4: \n",
"\n",
"$$\n",
"\\begin{aligned}\n",
"\\hat{y} =\\ & c_1x_1^4 + c_2x_2^4 + c_3x_1^3x_2 + c_4x_1x_2^3 + c_5x_1^2x_2^2 +\\\\\n",
"& c_6x_1^3 + c_7x_2^3 + c_{8}x_1x_2^2 + c_{9}x_1^2x_2 +\\\\\n",
"& c_{10}x_1^2 + c_{11}x_2^2 + c_{12}x_1x_2 + \\\\\n",
"& c_{13}x_1 + c_{14}x_2 + \\\\\n",
"& c_{15}\n",
"\\end{aligned}\n",
"$$\n",
"\n",
"Now we have 15 parameters to learn!\n",
"\n",
"In general, for a transformation of an original feature space of dimension $n$ (i.e., originally we have $n$ features) to **polynomial features of degree $d$,** the number of polynomial terms (monomials, including the 0th degree) becomes:\n",
"\n",
"$$\\# \\text{terms}(n, d)\\ = \\binom{d+n}{d} = \\frac{(d+n)!}{d!\\ n!}$$\n",
"\n",
"where for relatively large $n$ (not unusual in ML datasets) this number grows as $O(n^d)$\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**QUIZ:**\n",
"\n",
"I'm thinking to use $d=10$ poly feature transformation for my $n=50$ dimensional feature space\n",
"\n",
"1. I can do it!
\n",
"\n",
"1. It'll be computationally heavy but feasible
\n",
"\n",
"1. I shouldn't do it $\\rightarrow$ Billions of features!\n",
"
\n",
"\n",
"1. Let's try it!
\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"75394027566"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import scipy.special\n",
"\n",
"orig_features = 50\n",
"poly_degree = 10\n",
"int(scipy.special.binom(orig_features + poly_degree, poly_degree))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformation to highly dimensional spaces where the function becomes linear\n",
"\n",
"Transforming the original feature space into large-dimensional and highly non-linear feature spaces can also ease learning since **data distribution might naturally become more linear,** such that linear approaches (that are usually more manageable and understandable than non-linear ones) become (more) suitable and effective. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example: use of linear features and linear regression for a cubic function"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"matplotlib.rcParams['figure.dpi']= 180 # set the resolution to x dpi"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's see an example: data is generated based on a cubic function to which some Gaussian noise is applied."
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABOMAAAOeCAYAAABBA9RMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAbrgAAG64BjF1z+AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdf5wU1Z3v/3f1jCAMDDHAZGaIiYjAGBgRIe4GE7MBbtQRMbmauzG6hLurbDaJkexjdZPcZK/fzXezu7o3ksWYG8wP4po12VWDgOOPAInXlesaFMcB5YeARukZYUBlGBCc6XP/mOmhuruquqq7uru6+/V8PHjAVFd1V1dV13De/TnnWMYYAQAAAAAAACi8WKl3AAAAAAAAAKgWhHEAAAAAAABAkRDGAQAAAAAAAEVCGAcAAAAAAAAUCWEcAAAAAAAAUCSEcQAAAAAAAECREMYBAAAAAAAARUIYBwAAAAAAABQJYRwAAAAAAABQJIRxAAAAAAAAQJEQxgEAAAAAAABFQhgHAAAAAAAAFAlhHAAAAAAAAFAkhHEAAAAAAABAkRDGAQAAAAAAAEVSW+odQLgsyzKl3gcAAAAAAIBKZIyx8n0OKuMAAAAAAACAIqEyrkIZQ4EcAAAAAABAGCwr74K4YVTGAQAAAAAAAEVCGAcAAAAAAAAUCWEcAAAAAAAAUCSEcQAAAAAAAECREMYBAAAAAAAARUIYBwAAAAAAABQJYRwAAAAAAABQJIRxAAAAAAAAQJEQxgEAAAAAAABFQhgHAAAAAAAAFAlhHAAAAAAAAFAkhHEAAAAAAABAkRDGAQAAAAAAAEVCGAcAAAAAAAAUCWEcAAAAAAAAUCSEcQAAAAAAAECREMYBAAAAAAAARUIYBwAAAAAAABQJYRwAAAAAAABQJIRxAAAAAAAAQJEQxgEAAAAAAABFQhgHAAAAAAAAFAlhHAAAAAAAAFAkhHEAAAAAAABAkVR0GGdZ1mjLsi6zLOublmU9aFnWq5ZlmaE/t+b4nP/b9hyv+Fj/fZZl/S/LsnZalnXcsqzDlmU9aVnW9ZZlWbnsAwAAAAAAAMpTbal3oMAulNQe1pNZlvVHkpYFWH+OpMckjR9adFTSWEkfHfrzGcuyFhtjToS1jwAAAAAAAIiuiq6MG/KmpI2Sbpd0jaTuXJ7EsqzRkn4kqV/SFh/rj5O0XoNB3A5JHzbGjJVUJ+nLkt6V9ElJd+SyPwAAAAAAACg/lV4Z96Qx5r32BZZl/UOOz/V3kqYM/f1+SXOzrP9XkholHZfUZozZJ0nGmJOSvm9ZVr2k70haZlnWCmPMrhz3CwAAAAAAAGWioivjjDEDYTyPZVl/KOkrknZJ+v99brZk6O9fJIO4NCs12G21RtK1ee8kAAAAAAAAIq+iw7gwWJY1UtJPJFmS/twY846PbaZL+sDQj484rWOMOSrpyaEfPxnCrgIAAAAAACDiCOOy+xtJ50r6sTHmtz63mWn79zaP9ZKPfSiH/QIAAAAAAECZqfQx4/JiWdZsSbdIemPob7+abf/e77Fe8rF6y7LGDFXLZdsnE2A/AAAAAAAAECGEcS4sy6rVYPfUWklfMca8GWDzsbZ/H/NYz/7YWA2OIQcAAAAAAFCWBhJG7Z1d2nPwqKZMHKO21ibVxKxS71akEMa5+5qk8yWtN8b8W6l3JskY43kFUzkHAAAAAABKYSBhdMM9W7Rpx4HhZWu27teqJXMJ5GwYM86BZVkfkvQtDVaqfTGHp+i1/Xu0x3r2x3pd1wIAAAAAAIi49s6ulCBOkjbuOKD2zq4S7VE0URnn7PuSRkj6n5LetCxrTNrjyeNm2R47YYx5d+jfcdu6kyQdcXmdSUN/H/EzXhwAAAAAAEBU7TnoHG24La9WVMY5mzz0999rsGIt/c+1Q49/wLbsS7bt7TOo2mdWTZd87MU89xcAAAAAAKCkpkxMr2XyXl6tCOMKwBizU9Lvh3681Gkdy7LqJH1s6MfHi7FfAAAAAAAAhdLW2qQFLQ0pyxa0NKittalEexRNdFN1YIw5y+txy7JWS/q8pFc91r1H0jclfdayrG8bY15Je/xLksZIGpD08zx2FwAAAAAAIC9hzIJaE7O0aslcrX8hrke3dUuSLp3RWIjdLWsVH8ZZlnWGpBrbomQ14GjLsibYlr8T8rht/yTpekmNkh62LGuJMeZZy7JGSPozSd8eWm+VMWZXiK8LAAAAAADgW9izoD70fHz4uR7Z1q21HXFmVLWphm6qWyUdtP05c2j5zWnL7wzzRY0xb0taJOmQpA9J2mJZ1hENztB6lwYniHhc0lfDfF0AAAAAAIAgwpwFlRlVs6uGMK5kjDHPSpoh6Q5JuyWdJqlP0n9IukHSZcaYE6XbQwAAAAAAUO3CnAWVGVWzq/huqtnGf8vxOZdKWupz3Tck/eXQHwAAAAAAgEgJcxZUZlTNjso4AAAAAACAKhbWLKgDCaOEMZo8oU6StDi2Wf9Qu0pff/82ZlS1sYwxpd4HhMiyLCNJnFcAAAAAAJBNchbVlw8c1dvH31X9qFpNbRgbeDbV9Ekgbq1draW1j59a4aofS61Xh737RWNZg8fCGJP3LBQV300VAAAAAAAAmZxmUV3Q0qCbFkwLPPOpfeKGjCBOkvb+tqzDuDARxgEAAAAAAFQhr5lPr5jVnLG+VxVdcoIGxyBOks7+owK8g/JEGAcAAAAAAFCFgsx86lRFl7Rm634tntXsHsRduIyqOBvCOAAAAAAAgCqUnGjBz3KnKrqkjTsO6H9YP9HZDkFc4sM3KNZ2e347WmEI4wAAAAAAAKqR29yPDsvdquikwa6pZ+9zCeIu/6ccd65yxUq9AwAAAAAAACi+fYf6fC+fMnGM47peXVMJ4pwRxgEAAAAAAFQht4DNaXlba5MWtDSkLPMcI46uqa4sY9xqElGOLMsyksR5BQAAAACgMiVnNd1z8KimTByjttYm1cSsnJ5n2T1btNE2FtyClgatWjLX8fnss6nO2/kP+oOeBzKftEKDOMsaPB7GmOAHOv25CG0qC2EcAAAAAACVy2lWU7cAzU9ol1Ow136z9MyqzOUVGsRJhHHwQBgHAAAAAEDlWtcR1433bc1YvvKa2bpiVvPwz0FCu0CqMIiTwg3jmE0VAAAAAACgTLjNapq+vL2zKyWIk6SNOw6ovbMrJbRz41gx9+gtnkFcWN1nKx1hHAAAAAAAQB6KGUL5nXTBb2jnxKmqbtSGr2lh70OZK9uCuPRt1mzdn38lXgUijAMAAAAAAMhRoUOo9KDvkhmNWtDSkDHpQltrU8p2QWZKTZdeVXdr7Wot7PWeNTXfSrxqQhgHAAAAAACQo0KGUG7jvv3gujl6bHu3ZyVeW2uT1mzdnzW0c2Kvnru1drWW1noHcenbuD0XBhHGAQAAAAAA5KiQIZRb0PfY9u6sQV9NzNKqJXNz6j6brJ7zG8TZt3F7LpxCGAcAAAAAAJCjQoZQ+QZ9NTErp+q8y62ndMGYv9Wk/t9nPugya2o+lXjVhjAOAAAAAAAgR4UModwCvcnj67SuI16YCSPab1bsmVWa5PSYSxAn5VeJV20sY0yp9wEhsizLSBLnFQAAAACA4ijUbKoDCaNl92xJCfrmT58oI+k3Ow8OL1vQ0hDOhBHtN0vPrHJ+zCOIqwaWNXhsjTF5n1jCuApDGAcAAAAAQOU42Z/Qd9pf0o7uI2pprNes94/TV/+tI2O9ldfM9t0l1TE8fPQWgjgPYYZxdFMFAAAAAACIoIGE0RfufXZ4Eoen9x7W5Al1juv6HUfOaYbWURu+poW9D2WuPHG6dPEtUuvVwXcergjjAAAAAAAAIshpNtV9PX2O6/qdMCL9OW+tXa2Fvf5mTEU4YqXeAQAAAAAAAGRyq3ZLr47zM2HEQMJoXUdcP//PV4eX3Vq7WktrCeKKjco4AAAAAACACHKrdlu+cKpiluV7woiBhNH1P/vd8KQPi2Ob9eXaBzUtFs9Yd+/ka7V2xA2a0hFnNtQCIYwDAAAAAACIoLbWJv1q6/6UbqXzWxq06LzmQCHZ+o74cBDnWg0nacPYK3X9S5dLL+2WJK3Zuj+cWVqRgm6qAAAAAAAALpLdO1ds2KV1HXENJExRX98Yk74g8HM8ur1bkncQt3fytbr+4B+nLNu444DaO7sCvx68URkHAAAAAADgwGnm0WJWi7V3dg1XtCVt2nlQ7Z1dumJWc9btBxJG7Z1d2n3gqGcQpwuXae2IG4Yr4uz8ztIK/6iMAwAAAAAAcOA0m2kxq8V2H+h1XO4nIEsGiTfet1XXHb7TMYg7MmaKdNWPpbbbXcen8ztLK/yjMg4AAAAAAMAmWVFmn3nUrhjVYgMJo40vHXB8zE9A1t7ZpTG71ujxEc4TNWwYe6U+8dWfSUMVfm2tTVqzdb822sJHP7O0IjjCOAAAAAAAgCFOXVPTFaNabH1HXNvjRzKWz2ga6ysgO/Ppv9E/j/h3x8f2Tr5Wn/iT76d0ta2JWVq1ZK7aO7t8z9KK3BDGAQAAAAAADHHqmmpXjGqxgYTRio27HB879m5iuHLPNTRrv1nnd7kHcWd//i7Hx2pilq+x6JAfwjgAAAAAAIAhbl1Q//Ds9+raP/hgUarF2ju7tK/nmONj+3r69Om7nkqpmkuZVKL9ZumZVY7bbhh7pT7xJ98vyD7DP8I4AAAAAACAIW5dUK/9gw8WrWos25h06d1Xk5NKXLH/Dscg7tCoyXplxpf0ibbr6XYaAYRxAAAAAAAAQ6IwkUHQMekWxzZr3qP/Qzq+L/PBC5dpfNvtGq/B7q/rOuKMCVdiljGm1PuAEFmWZSSJ8woAAAAAKFdZx0Srgtdfds+WlEAwaWZzvbbZKuNurV2tpbWPOz/RhcukttuHnzN9YooFLQ2nurfCk2UNHiNjTN4HizCuwhDGAQAAAADKWTmHRmGGeMnnevnAUb19/F3Vj6rV1IaxumRGo/7i3me1cccB30GcJK3riOvG+7ZmrLbymtm6YlZzyQPIqAszjKObKgAAAAAAiAyn2UyHx0SL8EyfTiHid3+9S8sXTtWi85oDB1teM5vefcErOnro71Xfu8d546Egzh6w7ezudVx1z8GjjvueMikEQkUYBwAAAAAAIsNt8oJskxqUmlOIuK+nTzf94nmtfT4eXrDVfrNiz6xSvdNjE6dLF98itV7tGLA5mTJxTNkGoOUqVuodAAAAAAAASHKbvCDopAbF5hUWJoOtvLXf7DhbqqTBargvPSO1Xj24qkPAlm7yhDoljNHLB8ozAC1XVMYBAACgJBibBgDgJAqzmeYiW1iYc7DVeb+097fSkf3Snk3O66SND+f1epfOeJ92vtGrfT3Hhiv3ZjY71tlFPgAtV4RxAAAAKDrGpgEAuKmJWVq1ZG7GFzbS4CQEUf0SxylEtMsp2PKqhJNSuqX6fb3GcaP06PY3UpZtix/JmKW1HALQcsVsqhWG2VQBAEA5yDajGwAAduUyw+pAwmh9R1wrNu7Wvp6+4eU57Wu2IM6hGi59X5bdsyWjwnDmpHH63sbdGet/ZcE5mtowNrJhZ6kxmyoAAADKWrkOzg0AKI1ymWCgJmbpytmTtGhWc+5DMXTeLz1xm9Sz032dLEFccl+cKgzdxq6b2jA2UseykhHGAQAAoOjKdXBuAEBplMuXOOnjod44f2p41XBT5kv1k6Sz/8ixW6qTmpiVEbCV65h8lYQwDgAAAEVHQwAAEEQ5fImT93io2WZKzVIJ55dbxRxdUouHMeMqDGPGAQCAcsFsqgAAv9zGP4vSmHFu46F+74/P15WzJ7lvmK1b6lAQx+/N0gpzzDjCuApDGAcAAAAAqERhh1H5PJ/Ttis37daKDZkTI0yeUKcNf/lx5+f2qoYbmil1YMZVQ5NC7NK+nmPDD0ctjKx0TOAAAAAAAACqitP4Z7ny6lIqyTOkc9t2scu+7evpy5xoIkA1XPprJUVxAgv4QxgHAAAAlAhdjgCgNNxmZ13fEddDHXHPcd/ctl18frMmT6jTvp6+jNdLmWjCqxpOShkfzum1XJ8XZYMwDgAAACiBvAf6BgDkzC3EenR7t2PQZq9Ac9t2X0+fli+cqpt+8XzGY1MmjsleDTfULdU+U2q2sC1KE1jAv1ipdwAAAACoRm6VFe2dXSXaIwCoHkFDLHso5jWz66LzmrWgpSFl+YKWBl3++nelB/7Mu1vql55JCeKy7SezkJcvwjgAAACgBNyqHehyBACF19ba5BiaXTqz0XF9eyjmtm1yqIFVS+Zq5TWztXzhVD3w0bjuPvolxX53t+PzmgnTpat+PNwt1c9+Tp5Qp+999nwqqcsY3VQBAACAEvCqrAAAFFYyNEsft1OS1j4f10Zb5XJ6BZrbtslgbHiiifabpS3uY8Ot7v+kxn/se7qi1X0ChmyvhfJkGWNKvQ8IkWVZRpI4rwAAANE2kDBads+WjAYflQ4AUFp5T66TZWy4XYlJurP/01qbmKflC6dq+cJpIe05CsmyBq8BY0zev6QJ4yoMYRwAAED5YDZVAKgwWWZKXd3/Sd3av3T455XXzB6eGILfCdFGGAdXhHEAAAAAABRZlmo4M2G6Vukq/f3rM4eX2auhnWbYplo6WsIM4xgzDgAAAAAAVLyCVJ5lCeEkSRcuk9V2u65PGDW7vL7XDNvJyjlUDsI4AAAAZKCrDACg1ML8XeRUebZm6/78Ks+ydEnVxOnSxbdIrVdLsk3s4IAZtqsLYRwAAABSFKTBAgBAAGH/Lgq18sxnNZzabvf9lMywXV1ipd4BAAAARItXgwUAKtVAwmhdR1wrNuzSuo64BhKMw11KYf8uCq3yrP1m6YE/cw/iJk6XrvpxoCBOktpam7SgpSFl2YKWBrW1NgXbP5QFKuMAAACQolK6ytDVtnA4tqg0VARHS/Ie4yTXe0/elWfZquHSuqQGVROztGrJXO6tVYIwDgAAACkqoasMDevCKbdjS3AIP/Lpwsg1Fi6ne4zdI9u69ci2bknB7j1trU1as3W/NqbNVpq18qwAXVLdeI0ph8pCGAcAAIAUuTRYotYYLdasdFF738VQTjP+lVtwiNLJtSKYayx8TvcYN0HuPYErz/yEcHlWw6F6EcYBAAAgRdAGSxQbo8XoahvF910M5dSN2S04XN8RVyxmVVWICm+5VgSXUzhdLtzuJec0jNHLBzIfC3Lv8V15lm2WVCm0ajhUJ8I4AACACpVP1VaQrjJRbIwWuqvtQMLo2+tf9PW+K616rpy6Mbs10lds3KV9PceGf66GELWaOX0GpdSxxy6Z0agFLQ2BuzAWIpyutHtGUG73ko+eM8ExjAvj3pM85rUvPqCL4j9Vfe8e95WphkMICOMAAAAqUDGrtvLp3lWoBmfOYwP5kG08I/v7rsTquTCPbaFDh8nj6xyX24M4qfThMQrH6TP4q637ZYzRb3YeHF62oKVBP7hujh7b3h3oegw7nK7Ee0ZQbveYb7Sdq9cOHwv9vj6QMPrRXbfpEwdWa1os7r4iIRxCRBgHAABQgYpZreYWeHg1Rgvd4CzkrHTZxjOyv+8oVg3mK6xjW+hrYCBhtOb5/RnLJ48frX2HjmUsj2I3W+TP6TPo9PnduOOAHtveHfhzGXbwX4n3jKC87jGh39c771ff49/Rn/fukWIu6xDCoQAI4wAAACpQscb1cgs85k+f6NkYLUaDs1Cz0nkdw/RGeDmNrxZEGMe20NdAe2dXSuVT0sXTJ2rf5lczlkexmy3yF+SzlsvnMuyAqFLvGUG53WNCu6/bJmeo91qPceFQIIRxAAAAFahY43q5BR5Xzp7k2Rgt5wan2zFcOu8sfWvRh1LedynHV4v6uFOFvgbcnmfcqNNyGhsM5SnIZy3Xz2WYwX85jclYljrvV+KJ2xTzmiFV0q7EJPVe+FXNabsh75eM+r0YpUEYBwAAUIEKOWaanVvgsa+nz3O7cm5wuh3b9CDOa91CBz/lMO5Uoa8Bt+eZ2jBWNy2YRuO4Sjh9Bue3NEjGaFPamHFRCGRLdc+oeLZKOLfeqNJgCHdn/6fVN+1TWtU2N++XLea9mNCvvFjGmFLvA0JkWZaRJM4rAAAoxn/M13XEdeN9WzOWr7xmtmelyEDCaNk9WzIanFEKi7wEObalaCDlel6KqdDXQLlfYwiPn9lUoxRcEKoE53rMbCGclyNjpmh3y1/oydM/7uuY+z1HxboXO4V+3O/CZ1mDx9IYk/dBpTIOAACgQhVqzDR7I2Ty+DrNb2nIaAC4VXHYt108q1mLz2/Wvp6+smtwBjm2hToPXsqhG3AhJ9koxvOjfLh9BqMSTKcrxT2jnDkFUfEn/0U36AFf3VHv7P+0zj7/81q+cJrm5Ph6btVuxboXM/FH+SGMAwAAiJCoV0Q4NULmT5+o7332/KyhGt/cF0+5dAMudOhAqIGoi/o9vxzYg6jFsc36cu2DmtYT99wmGcKtTcyTJK0McG8MEnwV615cDl/AIBVhHAAAQESUwzhfTo2QTTsP6tMXvF/LF04LvG3Qb+5puPrjZ9wpjiVQWoW450fhc13sfdhz8OipEC4WLISTgo/JFyT4KtYYgOXyBQxOIYwDAACIiHLoZpLPt+/5fnNfDmGlm2I3TrN10SznYwlUirDv+VH4XBd9Hzrv1592fEf1I/Z4rnZkzBR98/BlKSGc5DwLdjZBgq9idZdn4o/yQxgHAAAQEeXQzSSfb9/z/ea+lGFlPmFaqRrIXl00yyH4lYoXYkahmgjVx+uen8s1GYXPdbH2IfHCv+vor/9e9b17VO+14sTp0sW3qG7GVeq7Z4vkMgt2kOMdNPgqRnd5xsgsP4RxAAAAEZEtrIpCYJDPt+/5fnNfqrAy3zAtCg3kdOUQ/BYrxIxCNVEliML9qdy43fMnj6/LuCZ/+MQezT+3QVMbxroe2zA/17mez4LfWzrvV+KJ2xTr2ekZwpkJ02V9/Bap9WpJUo3kGlYFvQdENfhijMzyQhgHAAAQEV5hVZQCg8XnN2tEbUySdOmMRi2a1exrH/JtwJRqTJx8w7QoBl/lML5QsULMKIal5Sas+1O1BXpu93xZyrgmt8WPaFv8iCT3YxvW5zqf81mwe0vn/dITt0k9OxXzWm+oEs4aCuHs3MKqXO4BBF/IF2EcAABARHiFVes64iUPDJwaaCf7E1oU4PXzacCUakycfMO0KAZf5TC+ULFCzCiGpeUmrMlZovKFQ7G43fNXbtrtuZ3bsQ3rc53P+Qzt3tJ5v7T3t9Jpo6S9T0g9Oz1X35WYpD3n/oUuu+bGYK8j7gEoDcI4AACACHELq6LQWPDTQCtkZUupugblG6aF1TgN89hGtZuVXbFCzCiGpeUmjPtTtVYo1sQstbU2DX8W2zu7NHlCXdbtnI5tWJ/rfM5n3vtgq4Dzwz476soPzfb3Gmm4B6AUCOMAAEBFqdRuTlFoLGRroBWjsiVbZV0hzn++YVoYDeRCHNuod7MqVPVe+jVyyYxGLWhpiHSVYDalvu+5jn3mI1RKyicAKvX7z8dAwuj6n/1Ov9l5cHjZJ6ZN0PyWhoxw0s7tmLt9roMco3x/3wS5tyT3q/bFB3RR/Keq7/WeFTXpFev9+u6JTw3PjprPZ7YcKoVReQjjAABAxajkbk5RaCxka6AFqWwpROO5UOc/jDAt3+CrGquGClG953SNLGhp0A+um6PHtneXbZhT6vteW2uTfrV1f8Y1+tDW/Vp0nr8xJXMNgJze/w+f2KMHv3jR8NiWUba+I54SxEnSb3b16I7PzNKnZ0/SyweOauNLbwyPFycFv/cHvUaK9fsm8cK/a9fDKzX3+O/VFHvT1zb7T/uA/rFv8XAIN3lCnZYvmOp77FIn5VApjMpDGAcAACpGJQcWUWgsZGug+a1sKVR4UMjzX+oqMrdj6/d6KNfKobCPu9s18tj27rK9R4Q1Xlu+YfOVs5oz9mPTzoO+u7HnGgA5vf9t8SP6r3c9pYe+/NHh2TKjev0/ur3bcfnjL72hH1w3R5L0lQVT89r/oNdIwX/fDHVFjfXs1LmSPGdkmDJf6j8pWZaenXClrvqP1P3d19OnWMzKe99KfY9H9SGMAwAAFSMK46oVUqkbC14NtIGE0VvH3nXcbvKEOq3riA9vkzCmIKFZJZ9/t+qgR7Z165Ftg415t0AzCpVTboodklTiNZJv9871L8S1YsNu7evpG16ey/Wx71Cf43K/3dhzDYDc3ue2+BG1d3aprbUpste/X+n3/oGESbmnZjtOuVwjof++6bxf2vJT6fAeqbcr+/pDs6LKNivqkxt2Scqc3KKQn98oB7kob4RxAACgYkRhXLVK5zTY+CUzGvWFe591HN9ofkuD1mzdn9INy20cqXwbVJV8/p2qhtK5BZpRrRgtRUjo9xoppwZ4mN07k3K5PsLoxp5LAOT1PpP3qChe/0mXzmwcDtTTlzvJ5XNTsntj0ABOgxMy9F74Vc1ZdEPGY8V+H1H+IgPljzAOAABUjCiMq+ZXOTX2T/Yn9J32l7Sj+4imN47Vqz19+u2unuHHZzbXp4xnlLR03lmafeZ7dNMvn09Zbq/Ascu3QVXo828/Z5Mn1ElmsBqoGOcvvWpoZ3evYwPeKdAMoxqsENdrKUKSS2Y0anzdCB3qOzm8bELdCF0y41TwUegGeNjHMszunXZBw3GncePm59CNPai21ib98Ik9jvegKRPHRL4actF5zXro+XjGcVt0nvNnIJfPTdF/NwacEbUrcYZeMU26b2C++qZ9Sqva5jquV+z34Xasv/yvz6mttSnSv7cRfYRxAACgYkRhXDU/yunb9pP9CX3k7zcOhxdP7z2csY5TI1iS3jP6NNeua5Mn1KWEcrk0qJxCjUKdf68qIqk4589eNbSuI+4Yxr117F0NJEzKfuRbTXKyP6FP3/WUttvO8w+f2KP55zZoasPYnI9xKUKSx7Z3pwRxktTTdzJlzLhChoSFmhU3zO6dSbmE48aY9AVZn89peZDAsiZm6cEvXqT/etdTjpMcrH8h7rhdkJleC6kmZunuAOfP63PjdtyK8rsxhyo4TZyuxMdu1hZzkfYcPKr/4uNcF/N3vNuxTg4PENXf2ygPhHEAAKCilHpcNSQjHg8AACAASURBVD+i3m3K7jvtL2WEF355Nea/8olz1LH/be3oPqKWxnp9o+3cQA0ar1DD6RjmW42UrYqo2OfPrdvq6s2v6LXDx1IaiPlUkwwkTEYQJw0GsMngI9cGaTG6nKWf95cPZA8ACxkSFuqzH3b3zlzC8fbOroxZQe0TOPi9DnMJLEfUxvTQlz/q/Bk3jpu4Ly+BIOfP7bxNHl+Xcdy+++tdKTONhn5/yiWAG9skjT9HmrNUar1aMUlXeKzudO8u1n02270oqr+3UR4qOoyzLGu0pI9LmiPpgqG/PzD08P9njLnVY9tJkq6U9AlJsyVNGnqoW9LTku42xmzysQ/vk3SLpEVDr31c0nZJP5P0Y5Px9REAAKh0Ue82Zbej27nqLV16V1V7Izu9AT5/+kStfSE+3HB/eu/hjAApmyChRhjVSH7OTTHPX7JC5NvrX9Tqza+kPOY0Dleu1STtnV0ZQVy6XBukXuFMLuFp+jZOYxmeecYox23tje5ChoRR+uw7Hf/JE+pSwpsgsr03v9dhroGlW9jkVp3rtjzq3D43spRx3Pb19OmmXz6vtR3x8Cq4Qgjg/Cp1FbmfsTqj+Hsb5aGiwzhJF0pqD7qRZVlnSnpVkv0Tfmzo57OG/nzWsqyfSFpmjBlweZ45kh6TNH5o0VFJYyV9dOjPZyzLWmyMORF0HwEAQPS5BQrlNNFAS2O9Y9dUuwUtDfrBdXP02PZux0Z2egM8YYxu+kXqOHJBA50goUYY1Uh+zk2xz19NzFL9KOf/zu8+0Juxbi7VG34bmrk0SN3CGUmuDXBJrrP5pm/jNJbha28e19iRteo90T+8LL06K6xxqZw+/1H67Ifd5c/Pe/NzHfr9bPsNbKN0zMOy+PxmjaiNSZIundGoRbOatXJT5iyjSXlXcOUSwEmOM6IGUeoqcvtnpL2zy3FogHK+jlBalR7GSdKbkp6z/blDkvPUNKfUaDB42yjpHkkbjDFxy7JiklokfUeDVXN/Kiku6VvpT2BZ1jhJ6zUYxO2Q9CfGmC2WZY2QdMPQfnxy6O8v5vkeAQBAhAwkjNa/ENeKDbtTxkVLBgrlNNHEN9rO1fqOuHpsXVXH143QN9vO1atvHktpBLs1jtIfW7Fhl+N6QQKdIA3sMKqRslVIhBXWBA1CjhzvD7Q8KL8NzVwbpE7XzbqOuGMDfP0L8YyB7pOfKadGu9tYhr0n+rV03ll6z+jTHI97GCGVW0XPD66bowUtDZH57IfZdTGs+5qfz3aQiqlyut9m4/S+T/YntGhWc9bPYODAPNcALscqOCdRqCRNfkbaWpu07J4tFXEdIRoqPYx70hjzXvsCy7L+wcd2b0qaY4x5zr7QGJOQ9KJlWZ/WYMXdpZKWW5b1d8aYd9Ke4680GPodl9RmjNk39BwnJX3fsqx6DYZ6yyzLWmGMcf5fKQAA8BS1WUm9Bvq3f6NfDhNNSINjMW3++oLh2VST47slqzJyEcZA7kEa2G6v5zTZgZv0gMZrNlU/16TTdfLdX+/S8oVTteg8/10Ex406LdDyoJyO89iRNeo9capjSK4NUrfj5NbQfnRbt2uVTNDG+XtGn6blC6cN78e6jnjGfuQTUrlV9Dy2vdv3Zz9q97Zswqq08/PZDlIxVS4T+/ix3iWovmTFE5o3ZYI+MX1ixrh9SVkD82T41ndQOnEkUABnxjbp0Mgz9bvxi9X/oatCO75RqmqspOsI0VDRYZxb91Ef272twSo6t8fNUBfVSyWNkXSupK1pqy0Z+vsXySAuzUpJ3xja/lpJ/zOXfQUAoJr5qY4oVIPW7XmzDfRvHz8pSoM+ex2nEbUx3bp4RmivFdZA7n4bRkEmO/Di55y57fOdn7tA//jojuFAc9akcc7jO/3iea193v/4Tuc0ODdK3ZYH5XScL5nR6Nol2S+vcxu0oZ3cDydnnjFKr715PGN5cv1CjUnlVdGTz3UUxZkbw77H+vlsB62Yitr9NhcDCaMVG53rN14+0KeXD/Rp/OjT9L8+M0t3/uZlf7NV51r9Jg1XwCUu+Lyuf+6swWv1dUkdW0O7VqNW1VgJ1xGio6LDuAKzV8LV2B+wLGu6Tk0U8YjTxsaYo5ZlPSnpMg12VyWMAwAgoGzVEYVq0Ho9b7YKnSiOL1Pshn9YA7nXbH9AVzw3VMmxQ9KTLq8n6UeSDo57R2+ld9/cK/XdcbrqR3r8t3hMg+8uV277/OG/26CjQ+OUPb33sEadVuO0ecZ7zCZoYzWX4MSpAZpvg9Tr3Lq9p0tnNLqO2eS2zZ2fu0Cf+d+bXScXKdSYVPlWY5Z6rCy/CnXvyBZ6hFExFeSzEIUqxfbOLu3rOea5zqFj72ptR1yPLb/YOTDPo/pNko6NbNDopukp98OHO+LatCO1LiWsa5VqNFQywrjc/dHQ3yclpX9FMdP2720ez7FNg2Hch8LbLQAAqke26ohCNWi9nterMRjV8WUK3vC3NwCH1Ei6IvmDS5A2r++kHh9xMmP5+EdHSBveCdSQtCQ1SGpw6l3bO/THTc9O6ZUnpce/KY2sd1zF1E3UvtgHdfb+Tj0+4pDDCpJGpC1L/1nSITNO9w3M156DUz126JQgjdVSV1vZA42d3c4HPFk55jaxw9qOuGPw6HUcHvryR12PT6HGpMq3GjMKY2X5UarQMN+KqSBV1S8fOKoNL72RMqvwr557XVfOnqR9PZnd1AvF77l/YtdB/cW9zw6+l+0PDN57n8wtfJOkrsQZesU06b6B+Tr7o58f7t6dbb/CulapRkOlIozLgWVZkyV9YejHXxpj0keHtd8t9ns8VfKxesuyxhhjst6xLMsy/vcUAIDKlq06IkgjIUjlg9fz3jh/akYjcfKEOn1l/jmKWZZWbtoduW/3AzWmksGaZUkN50pvvJgSsmXIsQEoDc6CNd4pPMvsdVgcvV2u78Xq2amz9R+DP+Q+nJ6k/fpIzYs69rt/k3ac4WuLlGDz9QYptnS4asV+Xb917F3niRE64rpy9qThZYWoAvIaS9Eu+dl1a4B7BY9u23g15gs1JlUyHPz2+he1evMrKY/5CasmT6gryH6FrVShYb4VU7lUVdtt2nlQm2xjsxUj1PZz7hfHNuuzNRs1Ye8RnbjtXY1+x/vz5mhsk45otLa/NVL3DczX2sS84YdWOuxDlMZ1A8oJYVxAlmWNkvTvkkZLOiTp6w6rjbX926uW2P7YWEnR+qoLAICIy1Yd4beRELRiyOt53cbY+sK9z0Z2/Kfk+xluyFmD3zM2dpwu7bD9dzE9WHvFpV8o8jb6xAHpRA4NaVsVnxlZr+63jmv6yQFNH3r4cw7VeH3rzlCiZrli533G87MgKdTwI52fyqawq2QumdGo8XUjdMg2W/CEuhG6ZEZj3s9dE7P0ntHOE2l4hVUDCaM1WzO/z59fgsra9GA2fbzAyeNLFxrmcy3kUlXtpVjVgN/99a6UseDs9+yxOqam2JunNkifXtBL2gyodQmjH/mcOTRq47oB5YIwLgDLsmol/aukOZLelfQ5Y4xX5VvojDGe/+Ohcg4AUE2yVUf4bSQE7WqV7XnTG4nrXGbAK/r4Tw7dRSVpkaSLRvfovYm07pXZum9GxdgmaWS9jKTeE/16tz+h02pjGjuyVun/cfKzToo8KvtKqrdLVm+XJknZK/US+6UHr5d+/S31abS+9vY7+po9tBsaV6/3+LuafnJAE4a60q7Z+infgbJb+HHZzEZNbxxbsmrRx7Z3pwRxktTTd1KPbOtSzLLyrg7MpWqovbPLcUbMK2f5n2U3DE7BbHpwOb+lQfOnT0ypEiuHICbXqmovP//PVyWpYNdxTczS7dN36eTbP3EO34IYume6jYcZpPKQcd2A3BDG+WRZVo2keyV9SlK/BoO4x11Wt/+3dbSk9G6s9sectgEAAD55VUf4bSTkMjNfkMZH0btyOYVuHqGSJem9hdmTVMkGYFhsDcnh4OD11IA0PSyyJAXeA5cQM+nIiX5tf2ukdpr3a5r12qnKwnGnJoZISOrpfUcn+hMaWRvThLGny5IUf+u4+k4OSFJ+jesw9HapXlK9y7h69dJQsDfYlbZr78/Vd8d73Se/GNMw3JX52qMntTd2YUqXN0m6dEZjShfZYnP7DK7YsDulAsmrktWrW28uVUNu+7TvUJ/j8kJx+pIiPbjctOOA7vhvs/SB8XXDMwV/o+1czyDG6XglX69YYU6uVdVent57WE/vPRzaJEHPt/9IDbvu0zjz1uCXBieOaG5vV9rUgf50Jc5Qr0brkBmn342/QpM/sTTrMQ5Seci4bkBwhHE+2IK4P5Y0IOk6Y8z9HpvEbf+eJPcwLvk/jyN+xosDAKASFXqWOj+NhFyqV4I0Pgo2pk7A0C1UE6crcdbF2vnCM6o53uO56iEzTi+871NqvOg67TtUmAHPCzqQfOvVnjOpunXpWrVkrjT0HmManEDCbl1HXDfelzoL4eLYZn2r+RlN1NuOr3XkRL+6387sf9Y47nTV61hRq/iaYm9KvW+6f6Wc7DIraaKkfx7xjL6e+Ll6bd9HN246XXoqrUkSYPbafLl9Bu1BnOR+LWXr4p5L1VAu94tC3Ef9flnwz5t2D8/y+fTew3rt8DH94Lo5jrN5Oh2vX23dL2NMSjVgPoGWn2ORS1X1zOZ6zT+3QVMmjNFDDtXOSYHvO/b7+JgGJSa2qHvrY5rT//tT6wQs2zBjm9TrMu6buiXdtzVSQyUA1YgwLouhIO7nSg3ifpllM/sMqjMlveSyXnLW1Rfz2kkAAMpUMWZ39NMwK/SYN6E8f3rwVsjQzauCzRaUPNwR141PbnVeL93rkn75/PCPYZ/nUs4+mWs3Lad9W5uYp7NbMmcsTPrJhl1asWF3xvLls6YObmO7ToxSK+8kqW7EYFlNqarxmmJvqkm213PqCu1j9tpheQZ3Tp/NyRPqMsI4yfl8+QmBg1YNBb1fFOo+6vfLgmQQl7RxxwF9+q6nUmYfTe6P0/FyCrVyDdKDHIt8qqoXzWpWe2eXfv6fr+rpvYcztvec/Mbry5OenYq98qQC14qmdTu1XMZ9swtyjAv9pRlQjQjjPLgEcb/Itp0xZqdlWb+X9AFJl2pwwof0566T9LGhH926uwIAEFlh/Od8fYHHUvPbMMt3zJtsxyLw8xc6eHML28Y0KHHB5/WwuSiv7rd+pJ/nfK+nUs/ol0s3rVz2Oes2tio+S1Kjjy6Bl1tPKfbs6uHrzWlcPWkw2Iud7C1eeOcxe+2wPIM7p89mImF0ky04TnI69oUIgYPeLwpVFeoUCk6oG6EeW1dVt+DSHsTZ9yfIccnlGIZ5LLKFdcnH0sO4xbHNunbHCmmHrbq1UPfwtK767Z1d2vPGUU1JxNXW2jR8HQUKDdMU40szoBoRxrkYCuL+VdJ/0+AYcX4q4uzukfRNSZ+1LOvbxphX0h7/kqQxGgz5fp7/HgMAUDxh/Od8IGG0YuMux8fCqmYK0jDLdcybIIGf4/MXMnhLD92yVBGdei+nqt1ymVX249Mm6oldzuOr2SXP88n+hGsljd/rqdQz+uUSJuayz0G3cbvuUpd9RjrvM8M/uY2rlwz2al98QHMPrdUEve09+UVyzLi9TwyGZoWUR3BXI+mK5A87BsPIuWOO6/cnxgx38XM7xkEC1SDXSJD7UaGqQt1mhrZ3P00Yo5t+kRlcuu1PkHA8aJCePL5urx0a2z17kaQLxjiM++jdcz+Q5HhvjeNOV/34Zsd7uNfvIbfQUPJ3jAs6BABQxSo+jLMs6wylDnOZHJJ2tGVZE2zL30mO2zYUxP2LTgVxnzPGZFS3ZfFPkq6X1CjpYcuylhhjnrUsa4SkP5P07aH1VhljnFsiAABEVBj/OW/v7Mro3pQUVjVT0EZqLoFK4GNhD9/CCt4Chm5uwppV9gfXzdFf3Pusa/eopCkTx2ggYTKCuGyv66SQM/pluy5yDadz2edCz1zo9V6HA6JZN0q6MdgTd96vxJaf6ujhLu+ZbIsx5mGW4M7S4MDOk2qkj9S8qH8Y+W8adfQMWXdlrnu5pFmjj+md/oSkU+MjtrW2paw3kDC6/me/SxkX7VfPva67P//hvM9dIatCnUJB+88DCaO1z8czxlbbFs8cMjt5PaXfM+a3NEjG5DUjq9NnMP21ffOasCXt+kxeK1lnLPZjbJM0/hwlJrZo5wvP6K1j76aEwfYxKNNlu3fn82VFLmEv3VqB7Co+jJO0VdIHHZbfPPQn6WeSlg79+yJJ1wz920haaVnWSo/XuCm9as4Y87ZlWYskPSbpQ5K2WJbVK+l0SacNrfa4pK/6fysAAERDGJUYbutOnlAXWjVT0KqVXAIVz2NRiKo3e/AW8kD3Yc4qa18+eUKdHtq637Gx3d7ZlRHEZXtdN4WY0c/PdZFPOJ3LPhdq5sKCdkdrvVqx1qv9zWSbZfbaYUWarGT0iQPSCeeQJ6bBcWlOhTH79ZGeF6U7fpoSkPe9069lb4/Ux2ttM+7uk/q+e7rqT7c1yXL4TIdVFZpLgOJWPZcexif3pyZm6QfXzdF32l8ann31ry9t0ePbuzXytMH6iUtnNmrRec2Brjmnz6D9tS+3npJ+ujoa11SWL09ikqZdNnguzj54VCt9nIts9+58QvygYS/dWgF/qiGMy4X9u43TJL0vy/qjnBYOVcLNkPTXkhZJOlNSnwYnePiZpJ8YYxL57y4AAMUVRiWG27rLF04N7T/sQRqpuQYq6e9jcWyzPluzUedvOSS9410Zlk2ye5IkDYyaoOmX36iYrTth2MKcVTZ9+aLzmh0bgl6BW7HGe/Pi57oo5eQRYYpMd7Qss9em6Lxfr/36Lh1/qzvjofF1IzS+bsTgD8WaZTgprfquXtJHaqSPpM/bdnToT1KQMfCG1Ej6kaTeibZx/o7WyrrHf7DnFKD88Ik9evCLF2lErXfZl9M9wC34GUgYfeHeZ4df5+m9h7WuI65DtnHoTvYntOg8H136beb1ndTjI05mLB8zskZNh96V9WARz31SHhXLQQN3P/fuXEP8oGFvZO4jQMRVfBhnjDkrh21+K3kPgRHgud6Q9JdDfwAAqAhhVGK4PYdjIyxHQaoBcg1ULree0jnjVqrmeE/qzJTvBNxZW8OtR+P0t/ELtTYx79TjJ6WVZvapsa0KoJDjrrk1BN0akTOb64s23psXP9dFqSePCEtZhoqtV+v5xDzdeF/mrL4rr5qdes35rbiTih/epfMzBp5Nxjh/vQoU7PWd6NfX3n5HXxthW9gjdX8npjPfOzpww8g+Dp/ZIfVu6NfJ/oROvDugr50c0NdGDHbp3Wner2knX9OEEbbq2L1S3x2nq36krama5XyMlzTeKTN8d+hPAZixTbJcJsIJs2LZj0Lfu4NU1ZXlfQQogYoP4wAAgLewuiYFHRMm1+cIur9+qwF8ByppY77Fert0rhR8zCCP2fB+/p+v6ulEbjPf5cPrnBRqDCCnRuTM5no9+MWL8n7+MPbZz3WRrSFcLuMnFTNUDPOY+A4iglTcSY7h3ZET/ep+2zlpTwnjo8RHsFcvqd7pHpZQ3pMRZASF9i696ZWCSb1Df0rJ9gWJ0eBswn0nB3TIjNN9A/PVN/5Tkel6WeixJINU1VXKlxNAoVnGmFLvA0JkWZaRJM4rACCdU+NXUkbXpORA0VFoYKRz6koV1v4OJIyW3bMlo0F/9wWvKPbsasmypJrTpD2bAj/3sZENGj32jMEfXKomsg1ALkkrr5ldkm4+hTzuyed3ujbzaViGtc9u10X687iFS373IwqBnd/3GsbrhH09eR3/MI/rig27tGLDbtfHv/7+bbqh7v8ollZ9l5C07a0Reu6dpuEx4+pG1Kj5PaNOVZ2VuhqvGqR3HXXicI9e1xF3rr4s0T05yop1HwFKwbIGr2FjTN4XM5VxAABUAbcBlRfPai6rsV0KORaNvbKg9sUHNPfQWk049FrOYw11Jc7QK6ZJ9w3M19kf/byWL5zmub7XAORSeF2OsnEKLwo9BlB61UUYA4CHtc9+K07cKkf87EdUBjwvdHVNUiGuJ6fjX4jj6lbdc9nMRrW1NqmttU2x2F8778frmdWfVvp4bGnVeG6VeI3j0rpxpqvkYM9PoJYuz66jdL30r1j3EaDcEcYBAFAF3Bq/bgNzF7OBEaRyJdcGka/X6LxfNVt+qisO78mtETu2SUc0WtvfGqn7BuanjPf2vQl1WTd3ew9/ePZ7de0ffLAojRm38GLGJOeGb6Guk3zCGntXXye57LNXF61s15afazZKA54XaqZWu2IFG4U4rm5dYu/83AWun0+n/dgWP6LHtndn7kdaV9qfuFTiLZ81NWvA73eMPHsXzHR1I2o09vTT9O7A0MQQI2sDjR/n1a33kBmn2PvO1Yfr3tDRw12nJp9we40SjMWW5BbC7uzu1bqOOGFTmmLcR4ByRxgHAEAVCNrILdbYLkErV3IZi+Zkf0KfvuspbY+fGiB8+DW2PzDYWM0hgDNjm9Sr0Xo79h4dmHqNzm+7XnWS7nboavrQ1v1adF6zZ2PN7T1c+wcfLFqjxi28OPO9ox3XL9R14na9JgM2t4avn66+Ye6zn+vXzzVbbVU3xRpTqhDHNZeqn3z2I69j5XOMvPUuXTA/P++D+v2hY/rNzlNhXtDuhnUJo39M67KY/lyxmKWAdW5F5xTCStIj27r1yLbuklSyAihvhHEAAFQBt4bbpTMbdbI/EeoMbEEq3dzCn2+vf1HfWvShjO2Czhg3kDAZQdzi2GZ9ds9GnbjtkEa/4x7apDsyZorqP7RAeve4EpM/ruufO+vUvr8hLejZolVL5upKh66/m3YezFqNU8jZ8PxyCwfGjTpNC1oairZvbtfr03sP6+m9h10bvsXu6uun8srPea22Ac/Dutaz3WsKdVyDVv3ksx/FuC+4fe4PHDmREsRJwSsL7eHl7gO9OnK8X+NGnaZzGorTdTGsMQPt76O9s0uPbOtOeTzKwzsAiCbCOAAAqoBbg27Rec1adF5zaGO7BK10c2sErt78il47fCxju6BVKe2dXdoePzIYwNVs1GSr+9Rsh849p1KkjPt2/qlx3x7uiGvTjtRKkmRjbN+hPsfnylYFE4VxdtzCgXMaxugrC6YWbd/cqlCS3Bq+xe7q66fiyS2MaO/sGt6fKASxxRTGte7nXhOV45rPfhTjvhA0nAxaWViqLothjxmYfB97Dh7NCOOk6FeyRmGSGACnEMYBAFAFsjXowmooBR2jyasR6Lad74Zd5/06f+Nd+r8j9p4K4Hw4NrJBHccmZIz7ttJnt8J8qmBKPc6OV2hQzH2zX68//89X9fTewxnrOJ2DYnf19Xuuk4HbDffsdw0GSh3EFlu+15Ofe01Ujmu++1Hoz57b5/7SGY2OoVO5VGy6XSPrX4grZlk5XxPlWMkalUliAJxCGAcAQJUo5cDs9iogu0tmNGpmc7222bqR+nk+V8kBy4fGgDtTkpznqEg1tkkaf440Z6lGzrhKP0ob4yhIt8KoVOPkIirhRXJfkterUxjndA6KfeyDvF628KjYQWy5V8n4HYet1AG3FPxYh31usj2f2+dektZ2xMvyXia5XyMrNuzWvp5TFcxBQ6lC3mcK9bmM0iQxAAYRxgEAEBHl3jiW3EOqR7Z1a9k9W1IaPAMJoy/c+6xrEOf1fBk675eeuE3q2el/Z20BnH2Q8xopayCVrYIsKoFWLqIQXtgFafgW4th7fS6DvF6UJmmohCqZcqlO8pxAxuckJPmcG7/P5/a5L+d7mdu1YA/ipPzGwQvzuBTycxml+w+AQYRxAABEQCkbx2GGgF5jfaU3ePIebD+tCs6PYyMbNKpxmqy5/91zlsFsgVS2xljYgVYlBLW5CtrwDfPY+/lc+n29KIVHlVAlUw4VqE4TyEjexzrsc5Pv80UtnA/C6RqZPKEuI4yTSjcOnv3e/taxdwv2uYzS/QfAIMI4AAAioFSN40IMcL1qyVx9+V+f8xzgOtkAcZJ1sP2gVXC2CrjRHgFcUMVqpFZCFVO+ShUIhPm5jFJ4VAlVMuVQgZqcQMZJ0HOQ67mphHOdK6drJJEwuumXz2esW4pQyune7iSMcxWl+w+AQYRxAABEQKkaTIUIAZOD1bsN/J2tAeI42H7QKjiXLqjlqBKqmMpVmJ/LKIVHlVIlE/WqLa/rJOg5yPXcVMq5zlX6NTKQMJEZBy9bdXhSGOcqSvcfAIMI4wAAiIBSNZgKFQJ6fQvv1QDJaBQFrYKbOF26+JayD+DsqrmypdTC/lxGJTyiSqY43K6Tmc31rsfa6dycNX60trxyWC8fOKpzGoKFKJzrVFEKpfzcw8M8V1G5/wAYRBgHAEAElKrBVKgQ0KvB49YAuWxmo+783AWDjaIgIVwFVcE5qfbKllKq1CAjSoFEJXO6fmY21+vBL17kOebhqiVztf6F+PCsn68cOqZX/u+rw+sE6aZe6ec6l/E0oxJKud3Dl847S+8ZfVrFnSsAqSxjTKn3ASGyLMtIEucVAMpPKQbpH0gYLbtnS0bYkD7raZj7ta4jrhvv25qx/IGPxjXn4Br/XVHzrIIrl0kR/JwjFE65XCeIplyvH7f7ZNLKa2ZHIlAqJachD8rp3si9HSg/ljX42TTG5P0hJYyrMIRxAICgvBqLhWjspDdAFsc2669Hr9Wk/t9n3zikKrhya8QRCAHVZcWGXVqxYbfr48sXTtXyhdMKvh9Rvve4BZblFFRG+fgCyBRmGEc3VQAAIqbY/zl367IzkDD69voXCzLBw6olc/V8+4901vbva/zxfVJ/lo1CHgtufUe8rCZFiEq3KgDFka0bejG6qUd9JudKGE/Tfm8nmAOqC2EcAAAREpXGT7YZT/Nq7HTer5onbtMcP+PBFWBChoGE0YqNuxwfK6dGnB2NOKCyOI03l1SscQujPpNzJY2nGZXf/QCK47RGtQAAIABJREFUhzAOAIAISIYpUWn8eM14KkmTx9dpXUc8WPjjd1KGAk/I0N7ZpX09xxwfoxFXPgggUcnsEy/sPtCrI8f7NW7UaYFnU81H1CvPKmmClaj87gdQPIRxAACEJNdwIFsVmpRf4yfbmHBBZjyVpPnTJ2rN8/v1m50Hh5d5hj9+Q7gCVME5cXtvkyfU0YgrE9UaQKK6lLp7etQrzyppptioB58AwkcYBwBACPIJB7JVoUm5N3689kuS62Nur7d03lma/YH36KZfPJ+y3DH8iVgIl+T23pYvnEojrkxUYwAJFFs5VJ6VOrAMS9SDTwDhI4wDACAE+YQD2UKTfBo/XvslyfUxt0bYN9rO1U2/yJy9TrK9j5BDuGT13ssHjurt4++qflStpjaMzbkCwu29LTqvPBt01diIq8YAspToElydKqnyLOrKIfgEEC7COAAAQpBPOOAWmlw2s1FtrU2BurumN5py2a89B486NsIumdGoL9z7rGsV38feeUK687qsIdyRMVM05pNfV+y8z/h6T25deHPtllhpDcxqbMRVYwBZKnQJrm6VUnkWdZX2ewlAdoRxAACEIJ9wwC1MufNzF/j+j7hbg3nx+c6NKK/9mjwhdXKGG+cPdt9c1xF3DMUWxzbrr0ev1aQtv/fcx12JSbqz/9Na2zNPC55r0KqZJq8uvPl0S6ykBmY1NuKqMYAsFboERxtVi5WjHH8vcf0BuSOMAwAgBPmEA2GEKW4N5sWzmrWgpcF1v9L3eX5Lg9ZsdZ6cIb2abnFss75c+6CmxeJSv/u+HRkzRd88fJnWJual7FsYXXjpljioHBtx+ajGALJU6BIcXX6qFglLUChUzQL5IYwDACAEfsIBt0ZRGI0lt4bxo9u79YPr5uix7d2Oz5++z4mE0U2/dJ6cIVlNlxLCeRkaE+4nb5yntRt2+95nu2yVhXRLrF7VFkCWCl2Coytb1SJhCQqJqlkgP4RxAACExCsccGsU/eC6ORnjsOXSWHJrGD+yrVsn733W9fnS93nFhl2Oz7Pn4FF9paFDF4z5W03q9+6Omj4xw5SEc2iXaxfeJLolAoVHl+Doyla1SFiCQqJqFsgPYRwAAEXg1ij6TvtLgRtLTpV0ba1N+tVzr2uTrXup3+ezcwrIFsc26087vqVY7x5N8trYZXbUsLrwhjWbKgD/6BIcXdmqFglLUEhUzQL5IYwDAKAI3Bo/O7qPBFrfq9vRlbMnOYZxXs+XLj04u7V2tZbWPi71emzkEsIl5duYpzsiUFp8BqMp2xcd1RCWMCZe6VA1C+SHMA4AgCJwa/y0NNbr6b2Hfa/v1e1oX09f4NeXMhszPzx/n948erdifQc1/vg+1+28QjinBhKNeQAIT7YvOio9LGFMvNKiahbID2EcAABF4NYo+kbbuXrt8DHfjSWvbkdugdvM5nrX57M3ZhbHNqut9kHVxuKa6PVmslTCFbOBRFVEZeP8otpl+wx4VS1WeljCmHilR9UskDvCOAAAisCrURSkseTV7aittUm/2ro/pXEyo7leD37xItfnSzZmhrujeskSwqU/p10hGkhURVQ2zi+qXRifgUoOSxgTD0A5I4wDAKBIwmgUZet2ZIxJWf99Y0d6NtpqX3xAj4+4S9NizjOeSpLO+pg0Z2lGCOdWseHWEGrv7Aq1KoOqiMrG+UW14zPgrRrGxANQuQjjAAAooaCVD16VdOs64vpN2gQOm3YedG64dd4vPXGbLuvZKcVcdi7LmHBu++3WEHpkW7eW3bMltMomqiIqG+cX1S6Xz0A1de2u9DHxAFQ2wjgAAEool8oHtwo73w239pulZ1a57tP+0z6gpiv+RrHzPpPTfjs1kNLXCaOqg6qIysb5RbUL+hmotq7dlT4mHoDK5vZdOAAAKIIwq3+yNtw675fuvNAziNs7+Vo1fv0FxyBuIGG0riOuFRt2qb2zy3W/kw2ky2Y2uq4ThrbWJi1oaUhZRlVE5eD8otoF/Qx4fUlSqZJfTi1fOE1XzGomiANQNqiMAwCghLIFaPYuR5PH10mWtK+nz7ECwK3LzuXWU9Kdt0s9O913ZKhL6tkBZkj12u+amKW21iY9sq3b93sOiqqIysb5RbUL+hmgazcAlA/COAAASshrzJtsAVh69yOnhtvlr39XsQfvdn19M2G6njvrBj15+sc1JTFGbQnj2NBzqrhIN7O5XpfMOFUN5/beLpnRqHUd8VAClkqeKRCcXyDIZ4Cu3QBQPqz0WddQ3izLMlLmbHoAgOhyG3B7XUdcN9631XPbldfMdm6oDU3Q4FUNl/jwDbr+4B+nhGwLWhocxxdasWGXVmzYnfEcE8eO1MHeE67bp7+3S2Y06gv3PuvrNQEA/g0kjJbdsyXjCxDurwAQDssavJcaY/K+qVIZBwBAiQWdkCHrOlkmaEh2SX04MU+bnkwN+9wmWHCrrLAHcU7bp7+3dR3xwBNWAACyo2s3AJQPwjgAAFy4VawVi5+uRSnrZKuGGwrhNDQu3J4NuxxXcwr4nLqcTp5Qp309fb62z/YYYxoBQP7o2g0A5YEwDgAAB07jtaWP0VZoTgGYXcqsetmq4S5cJrXdnrIoyPhCThUXiYTRTb983tf2ubwmAAAAUIkYM67CMGYcAITDbbw21zHafApabZdcf/eBXr197F11H3lHbxx5R431o3RZa6OuiG1W7P94zJQ6cboSH7tZD5uLMl4z3/GFctmeMY0AAABQjsIcM44wrsIQxgFAONwmLFi+cKqWL5yW03M6Vdv5CaLcZlW9tXa1ltY+7v6CFy7TwKW3eb5mvl1xc9m+1N1/AQAAgKCYwAEAgAIrRHfK9s6unCYvSN9ucWyzvlz7oKbF4s4b2MaGa88yYUK+4wvlsj1jGgEAAKCaEcYBAODAaby2lDHacpDr5AX2x/1Uw9nHhmPCBAAAACBaCOMAAHDgNGFBvt0pc622mzJxTKBquDBeEwAAAEBhMGZchWHMOACIrlwnL0g8/FeK/e5u98c/fINil/9TqK8JAAAA4BQmcIArwjgAiLbAkxe03yw9s8rxoSNjpmjMJ7+u2HmfCfc1AQAAAKQgjIMrwjgAqBCd90tP3Cb17HR+PG1sOAAAAACFw2yqAABUMo9quOTYcAMzrlJ7RzxQtVsuFXJU1QEAAADhojKuwlAZBwBlziuIG6qGG0gY3XDPFm0KMA5csbYBAAAAKlGYlXGxvPcGAADkr/N+6c4LswZxktTe2ZUSkEnSxh0H1N7Z5fr0xdoGAAAAgDe6qQIAUGo+uqWq9erhRXsOHnVc1W15MbcBAAAA4I0wDgCAkOQ0vpqPbqnppkwc47i62/JibgMAAADAG2EcAAAe/AZsTuOrrdm63318tTxmS21rbdKarfu1MW0st7bWJtf3EWSb5Ht++cBRzWyu17b4Ed+vAwAAAMAbEzhUGCZwAID82MO3yePrtOb5/frNzoPDj7tNYLCuI64b79ua8Xwrr5mtK2Y1py4M2C01236GOTOqU6g4s7le889t0NSGscymCgAAgKoU5gQOVMYBADDEKYhKl5zAID1g8z2+Wg7dUp3UxKzMkC+EbZwmbdgWP6I///iUwK8HAAAAIBNhHAAAQ5yCKCdOwZvbOGqTJ9QN/iOPbqnFxKQNAAAAQGHFSr0DAABEhd/AySl4a2tt0vyWhozlD23dr8TDfyU98GfOQdzE6dJVP45EECcxaQMAAABQaIRxAAAM8RM4zWyud5zAoCZm6UqHbpwX77ldsd/d7fxkFy6TvvRM1vHhiqmttUkL0kJFJm0AAAAAwkM3VQAAhjjNOJpu/rkNrhMY7DvUl/LzrbWrtbT2cecniki31HQ1MUurlswNPDkEAAAAAH8I4wAAFSvojKP2IKq9s0uPbOvOWGdqw1jX7ZOVdYtjm/Xl2gc1LRbPWOfImCka88mv62FzkfZs2BXJsCuXySEAAAAA+GMZY0q9DwiRZVlGkjivAKpVMoB7+cBRbXjpDW2PHxl+bEFLg1Ytmesr+BpIGC27Z0tKlVy27QcSRr+54/Na2PuQ4+Or+z+pnou/rRfjvSkTRQTZLwAAAADFZ1mD/1c3xuT9n3bCuApDGAegmg0kjG64Z4vnjKgrr5ntu+oraGWd2m+Wnlnl+NDq/k/q1v6lOvOMUXrtzeN57RcAAACA4gozjKObKgCgIgwkjL69/kXPIE7yP2OqFLC7po8gTpJjEBd0v7IJHCICAAAAKBrCOABA2fNTEZfkZ8bUwFyCuJ5Rk/W3b1+utYl5Rdsvp2OxZut+usECAAAAEUEYBwAoe+2dXb6CuAUtDWprbcq6nu/Kss77pSduk3p2ZjyU+PAN+vyeK7X9zSMZj81srte2tLHs/OyXH07HYuOOA2rv7KIbLAAAABABhHEAgLLn1cVzZnO95p/boKkNY3111/RdWebRLVUXLtPDk76q7U9uddyfB794kR7b3l2QbqRuxyLMbrAAAAAAckcYBwAoW8kKtp3dvY6PL513lr616EOBgi5flWVZgji13a49G3Y5Przg3PdpRG0scJWa32o9t+6uBemeCwAAACAwwjgAQFnKNk7cgpaGwEGc5KOyzEcQJ7mHX+c0BA/FgowD19bapDVb92ujbd0wu8ECAAAAyA9hHACgLLmNE3fZzEa1tTbl3PXTs7LMLYibOF26+Bap9erhRWGGYkHGgauJWVq1ZC6zqQIAAAARRRgHAChLbhVs0xvH5jVRgVuIdvnr35V+d3fmBrZqOLswQ7Gg48DVxCwmawAAAAAiijAOAFCWCjU2mlOIdvnr31UsQBBnf64wQjHGgQMAAAAqR6zUOwAAQC7aWpu0oKUhZVnQbqADCaN1HXGt2LBL6zriGkgYSadCtOXve0FXPPmpnIK4MIXxXgEAAABEg2WMKfU+IESWZRlJ4rwCqAZ+Zxh12zZ9UoQFLQ2nJkXwOVFDseTzXgEAAADkx7IG/+9tjMn7P+GEcRWGMA4AUrmFWOs64rrxvq0Z66+8Zrau2H9HpII4AAAAAKUVZhjHmHEAgLLmVTHmVP22Zut+rVoy13XygzOf/hup69+dX4wgDgAAAECeCOMAAGXLKWz77q93afmCqVo0q1ntnV0pj0nSxh0H1N7Z5Tj5wa21q3V+1+OZLzRxunTxLVLr1aG/BwAAAADVhTAOAFC2nMK2fT19uumXz2ttR1wzJtU7brfn4FHdOH+q1mzdr407DmhxbLM+W7NR82peylyZajgAAAAAISKMAwCULbeuptJgBdyZ7x3t+NiUiWNUE7O0aslcvfovX9LZ+37u/CQEcQAAAABCFiv1DgAAkCunrqZ240adpgUtDSnLFrQ0qK21SZJU8+gtBHEAAAAAiorKOABA2WprbRruaurknIYx+sqCqc4TPLTf7Dxj6lkfk+YslVqv9pwcAgAAAAByYRljSr0PCJFlWUaSOK8AqsVAwmj9C3Gt2LBb+3r6hpcvaGnQqiVzncMztyDOVg3nNDmE53MCAAAAqFiWNdgGMMbk3RggjKswhHEAqpXvKjYfQZwkreuI68b7tmastvKa2bpiVnOYuw4AAAAg4sIM4+imCgCoCDUxK3tI5jOIk9wnh/CaNAIAgP/H3t2HyV3X9/5/fmYDCAS8Ibu6sZ5AorAR1oBs4xGjVRdRtxBtA7U5emJyMKmelpbepD32118P57SnN3LaYvFoXeoh5mcL2MVGIqu1bMSCacWNaxyQBQ2E1mTpbkQl4UbIzOf3x85u5jt3ezezuzPzfFzXXjvfz/dmPuNcl1z7yvvzeUuSNBUbOEiSmsMMgjiAc846veRjpmoaIUmSJEmVWBknSao7M2qskO6Dr34EjjxUfK5MEJfJRnZ961DR+FvPa53sxCpJkiRJs2EYJ0mqK6UaK+waOlS6sUK5ajgoG8QB9KdH+MpDY0Xj77ro5TZvkCRJkjQnDb1MNYRwWgjhnSGE3wshfC6E8FgIIeZ+rpvmM14aQvizEMJDIYRnQghPhBDuCSF8IEzs3lf5/lUhhE+GEB4NITwbQhgNIfxDCGHDnD+gJDWh/vRIIogDGBgepT89UnDh7II4KL8vXH63VkmSJEmajUavjFsL9M/25hDCxcA/AGflho4BZwDrcj9XhRDWxxh/Uub+HuDvgNNyQ0/mnnUZcFkI4Wbg6mjrU0lNYkbLS8uYVmOFOQRxUH5fOPeLkyRJkjRXDV0Zl/NDYAC4HtgIPD6dm0IILwS+wHh4Ngz8dIzxDOB04FeA5xkP1f6izP3nAJ9lPIj7GnBejPGFwAuB/5m7bAuwfVafSpLqzMTy0mtuGeKGu77LNbcMsW3nIJns9P49IpON7N5/mOGRoyXPTwZl5YK41vNgw6emDOIAejrb6e5oS4x1d7S5X5wkSZKkOQuNXJQVQmiJMWYKxg4CK4D/EWO8rsK9fwD8HvAMcH6M8dGC8x8G/gjIAK+OMT5ccP7/A97HePi3Osb4o4LznwS2MV4td3aM8Yez+Ywl5h0BGvl7lVSfdu8/zDW3DBWN37jxIq5Ys7zivaX2icv31vNauen9P03Ll357Rh1Tp3rPuVbxSZIkSWoMEzuVxRjn/EdBQ1fGFQZxM7Qp9/vWwiAu50bGl622AO/NPxFCOB2Y2BPuE4VBXM4f536fCbx7DvOUpLowreWlZZTaJy7fuy56eVWDOICWVOCKNcu59tJzuWLNcoM4SZIkSVXR0GHcbIUQzgP+Q+7wi6WuiTEeA+7JHV5WcHodcOoU9x8EHixzvyQ1nLnswzZVYLfi6/+9qkGcJEmSJNWKYVxpF+S9vr/CdRPnXl3h/gemcf/505wXed1gS/5M9zmSNN/msg9bpcDuuiU7uHDk74pPGMRJkiRJWoQavZvqbOVvXnSownUT584MISzNVcvl3//DGOPT07i/8mZJklTH8vdeW79mOesvXM6jR56a0T5sPZ3t7Bo6xEDBUtX1qb1sXvLl4hsM4iRJkiQtUoZxpZ2R97pSmJZ/7gzG95DLv7/Svfnnz6h4VZ6pNgq0Ok7SYlKq8UJ3Rxu9m7pmtAdbSyrQu6mL/vQI3xs9xo+feZ4zT13CpodugCMFFxvESZIkSVrEDOMkSTVTqvHCwPAo/emRkh1UK3UwnWiocOLh2+HIfckHGMRJkiRJWuQM40o7mvf6NODJMtedVuaeoyXOV7r/aMWrJKlOzaSDaqkqul1Dh0pX0fVvL27YsGKdQZwkSZKkRc8GDqUdznv98grXTZx7Mm+/uPz7XxxCqBTITdx/uMI1klS3yjVeOOes04vGKlXRJS8sEcQBdG1JHGaykd37D3PDXQ+ze/9hMllX8UuSJElaeFbGlZbfQfUC4MEy1010Tf1OhfvPB74xxf2VOq5KUt3q6Wzn77/5ffY8NJYY//z+w1y+Znmi4m1aVXTlgri126DzysnDGVXZSZIkSdI8sjKuhBjjQ8C/5g7fUeqaEMLpwBtzh4Wt/O4Fnpni/hXA6jL3S1JDaEkF3nVRcYHxnhIVb+Wq6CbHKwVxBctTp11ll8dKOkmSJEnzwTCuvJ25378YQji7xPlfBpYCGeBv8k/EGJ8Cbs8dfiiE8MIS9/9O7vdRYNdcJytJi9WjR54qOV5YCdfT2U53R1ti7ILlZ/L28182oyCu1LOnGp+opLvmliFuuOu7XHPLENt2DhrISZIkSaq6hg/jQggvDiEsm/jhxGc+LX88hFBYkvG/gccZb7JwZwjh4tzzTg4hfAj4g9x1vTHGh0u89e8DTwHtwO4Qwqty958eQvh94IO56/4wxvjDan1eSVpspqx4y2lJBT7xvos5f/mZk2P3H36Sf/ro5hkFcTN5zwmzqaSTJEmSpNlo+DAOGALG8n5ekRvfXjD+sfybYow/Bi4HfgC8GhgMITwJHAM+DpzM+PLSXy/1pjHGR4FfAJ5mfDnrwyGEHwE/Bv4HEIAdgK3/JDW0UhVv3R1t9HS2F137Dw88zgOHTzSwvm7JDi49+vnih1YI4mb6nlC+Yu67o0dduipJkiSpqmzgUEGMcV8I4XzGl5RezniQ9xTjDRo+DfzfGGO2wv39IYTX5O5/G7Ac+BHwTeCTMcbby90rSY2iJRXo3dRFf3qEA2PHWNW6lJ7O9pKNFPJDseuW7GDzkhJbak4RxM30PaF8xdzAg6P85cD3Jo9tAiFJkiRprkKM/it/IwkhRAC/V0n1aPf+w1xzy9CcgrjZyGQj23YOMpC3VPWC5Wdyf16V3oQbN17EFWuWV30OkiRJkhavEMb/QT7GOOd/mbcyTpK0aPR0tnPqXf+NS4/OXxAHpSvpvjd6rGQYV25JqyRJkiRNh2GcJGnRaPnSb89qj7iqvHcqJCredu8/XPK6cktaJUmSJGk6mqGBgySpHvRvn7JraiYb562hwkybQEiSJEnSdLhnXINxzzhJdSndB7dfXTxeEMRt3TnInrx93bo72mraUCGTjdNuAiFJkiSpcblnnCSpIUyEXRfu+TivKDxZsDS1Pz2SCOIABoZH6U+P1KyhQuHSVUmSJEmaK8M4SWpyC1X9NVHp9qbvfYRXLNmXPFlij7hyjRNsqCBJkiSpnhjGSVITK7X0c9fQoZou/ZzQnx7hTd/7CJuXJDunji1bS2uJZg3lGifYUEGSJElSPbGBgyQ1sUpLP2vtFf/y+0VBHMDgWetLXm9DBUmSJEmNwMo4SWpiC7b0s387F478XdHwjuOXcdarN5S8pSUV6N3UZUMFSZIkSXXNME6SmtiCLP3s3w739RYN7zh+Gfe88rfprVDpZkMFSZIkSfXOZaqS1MTmfelnmSDuW+1XcdZVH52XveokSZIkaSGFGONCz0FVFEKIAH6vkqZr3rqplgniSnVOlSRJkqTFJITxv5FijHP+Y8kwrsEYxklalNJ9cPvVxeMGcZIkSZLqQDXDOJepSpJqb9+O4jGDOEmSJElNyDBOklRb/dvh4D3JMYM4SZIkSU3KZaoNxmWqkhaVUvvErVgHW+5cmPlIkiRJ0iy4TFWStPiVa9jQtWX+5yJJkiRJi4RhnCSp+ip1Tu28cv7nI0mSJEmLhGGcJKm60n3lgzj3iZMkSZLU5AzjJEnVZedUSZIkSSrLME6SVD12TpUkSZKkiuym2mDspippwdg5VZIkSVKDqmY31SVzno0kqWFkspH+9AgHxo6xqnUpPZ3tAEVjLamC//7YOVWSJEmSpsUwTpIEjAdxW3cOsmd4dHLs77/5fSLwlYfGJsd2DR2id1PXiUDOzqmSJEmSNG3uGSdJAsar3/KDOIA9D40lgjiAgeFR+tMj4wd2TpUkSZKkGbEyTpKaWP6y1IcePzrt+w6MHRt/YedUSZIkSZoRwzhJalKllqVO16rWpXZOlSRJkqRZcJmqJDWpUstSC53ffgZvOa81Mdbd0cbPfv/PS3dONYiTJEmSpIqsjJOkJjW51LRA6xmnMHb0JwA8MHKUl77wVD76ngt59AdPsap1KT/7/T8n9Y2bim+0c6okSZIkTcnKOElqUqtal5YcnwjiJuwZHiWVClx76blckdpbOoizc6okSZIkTYthnCQ1qZ7Odro72hJj5yw7veS1NmyQJEmSpOpwmaokNamWVKB3U9dkN9VVrUvJZiO/dtu3iq61YYMkSZIkVUeIMS70HFRFIYQI4PcqaTYy2ci2nYMM5DV26O5o46bW24qXp65YB1vunOcZSpIkSdL8CyEAEGMMc36WoU1jMYyTNFeZbExUy5Vt2LDhU+4TJ0mSJKkpGMapLMM4SVWV7oPbry4ed3mqJEmSpCZSzTDOBg6SpPJs2CBJkiRJVWUYJ0kqzYYNkiRJklR1LlNtMC5TlVQV/dvhvt7kmA0bJEmSJDUpl6lKkmon3VccxAF0bZn/uUiSJElSg1my0BOQJM1dYQfUns52WlKh7HhF5faJs3OqJEmSJM2ZYZwk1blMNrJ15yB7hkcnx3YNHeIT77uYD35mX9F476au8oGc+8RJkiRJUk25TFWS6lx/eiQRuAEMDI/yR/0PlhzvT4+UeVCZfeIM4iRJkiSpagzjJKnOHRg7VnJ8+PEnp399qSAO3CdOkiRJkqrMME6S6tyq1qUlxztedub0ri/XsMF94iRJkiSp6gzjJKnO9XS2093Rlhjr7mjjd3tWlxzv6WxPPqBcwwaXp0qSJElS1YUY40LPQVUUQogAfq9Sc5l1N9VSy1MN4iRJkiQpIYTxv6NijGW64c3gWYY2jcUwTtK0pPtg8GZ47N7k+Ip1sOXOhZmTJEmSJC1S1Qzjlsx5NpKk+pLug9uvLn3Ohg2SJEmSVFOGcZLUbErtEQdFDRumXOIqSZIkSZoxwzhJaib92+HgPcmxs98IF28uCuK27hxkz/Do5NiuoUP0buoykJMkSZKkObCbqiQ1i3RfcbOGFetg8xcSQRxAf3okEcQBDAyP0p8eqfUsJUmSJKmhGcZJUrMotTy1zB5xB8aOzWhckiRJkjQ9LlOVpGZQYnlq9qe3kiqzR9yPnn6+5GNWtS6t6TQlSZIkqdEZxklSo+vfXrQ8dW9mNZ8aew+92UhLKpTcI27Z6Sdz5KnnJo+7O9ro6Wyft2lLkiRJUiMyjJOkRlZqnzjg1kz35B5wV6xZXnKPuCNPPcfmS87mRaedZDdVSZIkSaoSwzhJamQl9onbcfwy7sheApzYA67cXnAvOu0krr303JpNT5IkSZKajQ0cJKlRldgnbsfxy7ju+ObJ44k94MrtBececZIkSZJUXYZxkrQIZbKR3fsPc8NdD7N7/2Ey2TizB5TYJ+7BU9Ykgrj8PeB6Otvp7mhLXO8ecZIkSZJUfSHGGf6Bp0UthBAB/F6lxSm/Y2m5fdhKNVPo7mijd1PX9PZsS/fB7VcXDWd//q+5M76h7HtPZ26SJEmS1IxCGP/bKMY45z+S3DNOkuZJqZBt19ChopCtVDOF/GYLU4mDN1P4X4e7zngXb7ngSq4qUx5eAAAgAElEQVSoEK61pMK0ni9JkiRJmj2XqUrSPCkXsn3h24cTY+WaKZQbT77JdsJj9yaGdhy/jA+MvYf+9MjMJixJkiRJqjrDOEmaJ+XCtBvu+m5iT7hZN1NI9xXtE7c3s3pyn7hphXmSJEmSpJoyjJOkeVIuTHv0yFOJqrVZN1PYt6No6NZM95TvL0mSJEmaP+4ZJ0nzpKeznT//x4d59MhTRefyq9ZaUoHeTV0zaqaQvfO3SB28JzG24/hl3JG9BLAzqiRJkiQtFoZxkjRPWlKBa7tfxa/d9q2ic4VVazNpppD99t+R+sZNibEHT3kNL373DVx75Ck7o0qSJEnSIuIyVUmaR5evWT67JagVPPFPvUVjnzj6JlIhcO2l53LFmuUGcZIkSZK0SFgZJ0nzaDZLUCvq386yI/clhiaWp660YYMkSZIkLTqGcZJUZZlsrBi2zWQJakX92yt2T7VhgyRJkiQtPoZxklRFmWxk685B9gyPTo7tGjpE76au6i4VTfcVBXFwonuqDRskSZIkaXEyjJOkKupPjySCOICB4VH60yMzroarWGG3b0fR9Y+c815Wvvz93GjDBkmSJElatAzjJKmKDpTZp61wfKqlrBUr7L7023DwnuQbrN3Gyp7rubZ6H0WSJEmSVAOGcZJUReX2acsff+54lp/7+Nd44PCTk2OFS1nLVdh9q/+vuXiwYHnqinXQc32VPoEkSZIkqZZSCz0BSWokPZ3tdHe0Jcby92/LZGNREAcnlrJOKFdh1/bwLcWDXVvmOGtJkiRJ0nyxMk6SqqglFejd1FV2CWp/eqQoiJuQH8CVqrC7bskOXvHkvsTYXWe8i7ecv4GWKn4GSZIkSVLtGMZJUpW1pELZZg3lKt4gGcD1dLaza+gQA7mlqutTe9m85MuJ6/dmVvOBsfdw4yyaQ0iSJEmSFoZhnCTNo3J7yl2w/MzJpaxQXGH3vuEb4Ejynlsz3UDlgE+SJEmStLi4Z5wkzaNSe8pdsPxMPvdf35DopgonKuyufe4mlh25L3Fux/HLuCN7CVA+4JMkSZIkLT4hxrjQc1AVhRAigN+rtHhlsrHsnnJF0n1w+9WJob2Z1fyn5/9fYLw5RH4XVkmSJElS9YUw/jdXjHHOf3y5TFWS5lmlPeWK7NtRNHTK667m2he8auogT5IkSZK06FgZ12CsjJMaSP92uK83ObZ2G/RcvzDzkSRJkqQmZWWcJDW6dF9REDe2bC0vecdHYCbLXCVJkiRJi4phnCTNgxntEwcll6f+weG1HPv0N4jAVx4amxzfNXTIfeMkSZIkqU4YxklSjWWyka07B9kzPDo5VjFA698OB+9JDE12T80L4SYMDI/Snx6Z/j50kiRJkqQFk1roCUhSo+tPjySCODgRoBUpsTx1b2Y11x3fXPE9Dowdm/Z8MtnI7v2HueGuh9m9/zCZrHtMSpIkSdJ8sTJOkmqsXFBWajwO3kxhrdytme4p32NV69JpzWXGVXqSJEmSpKqyMk6SaqxcUFY4nr3ztwiP3ZsYu413jC9PzXnrea28taMtcU13Rxs9ne3TmsuMqvQkSZIkSVVnZZwk1VhPZzu7hg4xkBeCFQVo6T5S37gpcd/ezGp+5/lNbL7kbF502kmTjR+AWXdTnUmVniRJkiSp+gzjJKnGWlKB3k1diQDt7ee/LHF8+TfLL0990Wknce2l5ybOzbZZw3Sr9CRJkiRJtWEYJ0nzoCUVJgO0wn3brluyg7AkuTx1snsq1Q3KplWlJ0mSJEmqGcO4aQghvA3YCrwOeCkQgRHgn4HeGONXK9x7BvCbwAbgHCADPAzcCtwYY3yutrOXtNjk79u2PrWXzUu+nDif3z21XFCWycZZLVUtVaU3k2WukiRJkqS5MYyrIIQQgE8Av5Q3/CzjYdw5uZ//FEL4ixjjb5S4fwVwN3B2buhp4BSgK/fz3hBCd4zxh7X6DJIWn/z92Ta27Ck6f8rrrubaF7yqbFA2146o+VV6kiRJkqT5ZTfVyjZzIojrA86NMZ4aYzwN6AA+nzv36yGEn8u/MYTQAuxmPIgbAd4WYzwdOA34ReAocBHwNzX+DJIWmXOWnQ6MV8W9vuU7yZNrt3Hx5Vu59tJzuWLN8pLhmh1RJUmSJKl+GcZVtin3+3vAxhjjdydOxBgfAq4CHskN/ULBvZuBztzrDTHGu3L3ZWOMt3Ei5HtnCKG7BnOXtFjF8V+FVXFjZ62FnuunvN2OqJIkSZJUvwzjKpvYqGl/jPF44ckY4/PAt3KHhTusvz/3+ysxxn8u8exbgUdzrzeVOC+pQT36g6e4bsmOoqq4wWXrp3W/HVElSZIkqX4ZxlU2UfW2JoRQtL9eCOEk4MLc4WDe+GnAG3KHXyz14BhjBL6UO7ysKrOVtGhlspHd+w9zw10P81Pfv7Nk04bjr94wrWf1dLbT3dGWGLMjqiRJkiTVBxs4VPYJ4J3AK4FbQggfjjF+DyCEcB7wJ8BK4ADwF3n3reZE0Hl/hedPnHtZCOElMcYnqjl5SYtDYcOFW076LLQkr0m/9Of4wDTDNDuiSpIkSVL9MoyrIMa4O4Tw68CfAlcCV4YQnsmdPhX4EeOB3e/FGJ/MuzW/TeGhCm+Rf245MGUYF0KI05m7pMUjv+FCqeWpO45fxtdPfwsfmMEz7YgqSZIkSfXJZapTiDHeAPw8MNG68NTcD8ApwBnACwtuOyPv9dMVHp9/7oyyV0mqaxONFdan9pZcnnrd8c3seWjMbqiSJEmS1AQM4yoIIZwWQrgN+ALwr4zv7bYMaM29fgB4H3BfCOE18zGnGGOo9DMfc5A0MxONFQq7pwLcmjnRTPlvvv4Yu/cfJpO1AFaSJEmSGpVhXGXXA78APAy8Kcb4jzHGH8QYj8QY/xF4U+7cMuD/5N13NO/1aRWen3/uaNmrJNW1ns52/rr1tpLLU+/IXjJ5/C+PPME1twxx6Z9/lc8PHTKUkyRJkqQGZBhXRgjhDGBb7vBjMcZnCq/JjX0sd7guhDDR3vBw3mUvr/A2+ecOl71KUl1reeB2Lj36+cTYg6e8huuOby55/aNHnuLXbvsW23YOGshJkiRJUoMxjCvvXE40uDhQ4brv5r0+J/f7QSCbe31BhXsnzj1uJ1Vp8ctkI7v3H+aGux6e2XLSfTuKhs772V/lxo0X8R9XvqTsbQPDo+4jJ0mSJEkNxm6q5WXzXq+ocN1L814fBYgxPh1C+BrwRuAdjC93TQghBODtucMvF56XtLhkspGtOwcnu6IC7Bo6RO+mLlpSFbZrTPfBwXuSY2u3kXrNVVyRO/yXR8pn8RPNHyRJkiRJjcHKuPKGgYmlqR8IIRQFlyGEFk4sZf0h8FDe6U/nfr8lhPC6Es+/CliZe71z7tOVVEv96ZFEEAfTrFwrrIpbsQ56TuTzPZ3tdHe0Uc5E8wdJkiRJUmMwjCsjtx/cX+cOXwvsDiF0hhBSuZ/XAP3AxO7rN8QYM3mP+DSQBgJwewihGyB371XATbnrvhhjHKj155E0N+Uq1CpWrvVvL66K69qSOGxJBXo3dfHRX7yQc5adnjjX3dFGT2f7rOYrSZIkSVqcXKZa2e8Ar2J8qenEz09y507Ju+4W4H/l3xhjPB5CWA98BTgbuCuE8DTjAegLcpcNAe+t1eQlVU+5CrX88Uw20p8e4cDYMdY9ezddg73Ji1esg84ri57Rkgq868KXc/lrlk/ev6p1KT2d7ZWXwEqSJEmS6o5hXAUxxmdCCD3ABuB9wMVAGxCBfwPuA26OMd5Z5v6DuQq63wJ+nvEGD88DDzAe4N0YY3yu5h9E0pz1dLaza+gQA3lLVbs72nj7+S9j9/7DfG/0GHc9+O88cPhJAF530s3QknxG9uLNFcuRW1KBK9Ysr8HsJUmSJEmLRYhxmt0AVRdCCBHA71WqvvzKt1WtS3n7+S/jg5/ZV7SX3PrUXv7y5I8lxnYcv4yzrvqoYZskSZIk1aHxPpwQY5zz8iUr4yRpmgor13bvP1wUxAFsbNmTON6bWc11xzdzrZ1RJUmSJKnp2cBBkmapVPOG65bs4PUt30mM3ZrpBuyMKkmSJEkyjJOkWSsM19an9rJ5yZcTY3szq7kje4mdUSVJkiRJgMtUJWlWMtlINhs5Z9npPHrkKaB4eSrAj1/9Xm589UV2RpUkSZIkAYZxkjRjmWxk687BxH5xf770M7z+eHJ5Kmu38c6ea+Z5dpIkSZKkxcxlqpI0Q/3pkUQQtz61l58/3p+8aMU66Ll+nmcmSZIkSVrsDOMkaYYKGzeUWp5K15Z5mo0kSZIkqZ4YxknSDOU3blif2lvUPZW126DzynmelSRJkiSpHhjGSdIM9XS2093RBpSoinN5qiRJkiSpAsM4SZqhllSgd1MXe1bfWVwV5/JUSZIkSVIFhnGSNAstD9zOykf/Jjm4Yp3LUyVJkiRJFS1Z6AlI0nzJZCP96REOjB1jVetSejrbaUmF2T1s347iMaviJEmSJElTMIyT1BQy2cjWnYPsGR6dHNs1dIjeTV0zD+TSfXDwnuSYTRskSZIkSdPgMlVJTaE/PZII4gAGhkfpT4/M/GGFVXE2bZAkSZIkTZOVcZKawoGxY9MaL7WUFZgce+OzX+Xiwqo4l6dKkiRJkqbJME5SU1jVunTK8VJLWf9+6BAxRr7y0BgArzvp/0JL3gNs2iBJkiRJmgGXqUpqCj2d7XR3tCXGujvaJivfoPRS1j3Do5NB3HVLdvD6lu8kH2xVnCRJkiRpBqyMk9QUWlKB3k1dFbupllvKCrA+tZfNS76cHLQqTpIkSZI0Q4ZxkppGSypwxZrlZc+XW8oKsLFlT/GgVXGSJEmSpBlymaok5ZRayvrWjjY+/FPpouWp2Z/ealWcJEmSJGnGQoxxoeegKgohRAC/V2l2SnVTTX36csJj905ek12xjtSWOxdwlpIkSZKk+RTC+BZHMcYwxaVTquky1RDCacAbgZ8BXg8sB1qBFwA/AMaAB4GvAl+NMT5Uy/lI0lSKlrL2b4e8IA4g5fJUSZIkSdIs1aQyLoTwWuCXgI3A6RPDFW6ZmMQQ8Engb2OMT1V9Yk3Ayjg1k1JVbPkNGeYs3Qe3X50cW7EOrIqTJEmSpKayaCvjQggXAv8beAsnwrdngW8yHrQdAZ4AngFekvs5B3gd8B+A1wJ/BXwkhPBHwEdjjM9Vc46SGkMmG9m6c5A9w6OTY7uGDtG7qat6gdy+HcVjVsVJkiRJkuagamFcCGEH8D7Gm0KMAZ8F/hb4Rozx+DTubwPelXvGOuBPgA+FEN4fY7ynWvOU1Bj60yOJIA5gYHiU/vRIxY6p05bug4MF/9ezdptNGyRJkiRJc1LNbqqbgGHGl6YujzFeE2P85+kEcQAxxtEY400xxp8BVgK9jO8x95YqzlFSgzgwdmxG4zNWWBW3Yh30XF+dZ0uSJEmSmlY1w7iNQGeM8bYYY2YuD4oxPhZj/BDwSmCgKrOT1FBWtS6d0fiMlKiK29f6bm6462F27z9MJuuejJIkSZKk2anaMtUY423VelbeM78PfL/az5VU/3o629k1dIiBvKWq3R1t9HS2F10740YPBVVxD56yhg33Lge+C9RgbzpJkiRJUtOoSTdVLRy7qaqZTCdkK9XoobujrXyY1r8d7utNDP3qc7/CHdlLEmM3bryoOnvTSZIkSZIWvUXbTbVQCOElMcYnZnjPz8QYv1qrOUlqHC2pMGUgNqNGD+m+oiDu3868mDtGk0EcVHFvOkmSJElSU6nmnnGlfDuE8ObpXBhCSIUQ/hC4q7ZTktRMZtToobBpAzB67saS91dlbzpJkiRJUtOpdRi3HPjHEMIfhhBayl0UQlgB3At8eB7mJKmJTLvRQ4mmDazdxoU9H6C7oy0xXG5vOkmSJEmSplLTPeNCCLcBVwER+DqwMcb4WME17wH+Cngh8AzwmzHGv6rZpBqce8ZJSZlsZNvOwaJGD0V7xu24PBnGrVgHW+6cfMaMGkBIkiRJkhpKNfeMq3kDhxDCB4AbgNOAJ4EPxhhvDSGcBnwMeD8QgPuBX4wxfqemE2pwhnFSsSnDtHQf3H518qYNn4LOK+d3opIkSZKkRamuwjiAEEIHcCvwGsar5G4DXgucm7vk44xXxP2k5pNpcIZx0ixUqIqTJEmSJKmaYdy87M8WYxwG1jJeCReA9zAexB0B3hVj/BWDOEkLotRecV1bFmYukiRJkqSGN5/NEs4EXsl4ZdxEivgs8ON5nIMkJRV2UF2xzuWpkiRJkqSamZcwLoRwKfBt4O1ABvgz4F+BnwIGQgh/EEKwi6qk+dW/3ao4SZIkSdK8qmkAFkJoCSH8KfAl4GXAQWBdjHE7sAa4HWgBfhe4J4SwopbzkaRJ6T64rzc5ZlWcJEmSJKnGal2N9jXgt3LvcytwYYzxPoAY449jjFcBvwQ8A7we2B9C2FjjOUlS8fJUsCpOkiRJklRzNe2mGkLIAk8BvxpjvLnCdfndVrMxxiU1m1SDs5uqNA3pPrj96uTY2m3Qc/3CzEeSJEmStKjVUzfVbwGvrRTEQVG3VfeOk1RbpZo2GMRJkiRJkuZBrYOv/xhj/O50LowxPhdj/FXg8hrPSVIzS/cVNW3Y1/puMlmrSSVJkiRJtVfTMC7G+Nws7umvxVwkCSiqitubWc2Ge5ezbeeggZwkSZIkqeZcEiqpeZSoirs10w3AwPAo/emRhZiVJEmSJKmJVC2MCyFcWa1n5T3z5SGE11f7uZKaULoP7v7jxNDezGruyF4yeXxg7Nh8z0qSJEmS1GSqWRn32RDCt0IIPxcmWkzMUgjhFSGEjwHfA95WnelJaloT3VN/8L3E8ERV3IRVrUvnc1aSJEmSpCa0pIrP+ltgI9AH/HsI4W+BW4Bvxhin3IgphNAKrAfeC7yJ8aDwX4G7qzhHSc2oYJ+4eNYr6Q2/wB3fv2ByrLujjZ7O9nmemCRJkiSp2YRp5GTTf1gIXcCfAW8EJh78FPBNYD8wBjwB/AR4MfASYCWwFlgx8RjgSeBPgL+IMf6kahNsAiGECFDN71Wqa/3b4b7e5NiGT5E5fwP96REOjB1jVetSejrbaUnNqahXkiRJktSgJhaBxhjn/IdjVcO4yYeG8DrgQ8BVwKm54XJvlP8h9gOfBD4TY3TzplkwjJPyTCxPzbdiHWy5c2HmI0mSJEmqS9UM46q5THVSjPHrwNdDCNcAP8P4stPXAcuBVuAFwA8Yr5T7DvBPwN0xxuFazEdSkypYngpA15Z5n4YkSZIkSROqVhkXQlgPPBtj/HJVHqhZsTJOyilVFbd2G/RcvzDzkSRJkiTVrcVaGbcLGAFePjEQQtgD/CDGeFUV30eSplZYFbdinUGcJEmSJGnBVXuZamE6+Gbg8Sq/hyRVlu6Dg/ckx1yeKkmSJElaBFJVfNbTjHdIlaSFVaoqrvPKBZmKJEmSJEn5qhnGPQycHEL4jRDCaVV8riRNn1VxkiRJkqRFrJrLVD8DXAhcD1w/sbEd8NIQQmYGz4kxxpp0eZVUvzLZSH96hANjx1jVupSeznZaUiX2zbQqTpIkSZK0iFUz9LoBOAfYBpyUNz7nLhOSmlsmG9m6c5A9w6OTY7uGDtG7qSsZyFkVJ0mSJEla5KoWxsUYs8A1IYQPAx3A6cBXgCeADdV6H0nNpz89kgjiAAaGR+lPj3DFmuUnBq2KkyRJkiQtclVfDhpjPAYMAuSWqj4XY/xqtd9HUvM4MHZs6nGr4iRJkiRJdaDWe7NtAZ6p8XtIanCrWpdOPW5VnCRJkiSpDlSzm2qRGOOnY4yfreV7SGp8PZ3tdHe0Jca6O9ro6WwfP7AqTpIkSZJUJ0KMcaHnoCoKIUQAv1c1mordVHdcngzjVqyDLXcuzEQlSZIkSQ0ntxUbMcY5Nyqt9TJVSaqKllRINmuY0L/dqjhJkiRJUt2o6TJVSaqpdB/c15scc684SZIkSdIiZhgnqX4VNm0Aq+IkSZIkSYuaYZyk+lSqacPabVbFSZIkSZIWNcM4SfWpsCpuxTrouX5BpiJJkiRJ0nQZxkmqP6Wq4lyeKkmSJEmqA4ZxkupPqao4l6dKkiRJkuqAYZyk+mJVnCRJkiSpji1Z6AlIUiWZbKQ/PcKBsWOsal3K5d+8mZB/gVVxkiRJkqQ6YhgnadHKZCNbdw6yZ3gUgPWpvVxx8r3Ji6yKkyRJkiTVEZepSlq0+tMjk0EcwMaWPckLrIqTJEmSJNUZwzhJi9aBsWOTr9en9vL6lu8kL7AqTpIkSZJUZ1ymKmnRKNwf7pxlp0+esypOkiRJktQIDOMkLQqF+8MBvPW8Vt7a0cbSh3cVVcXta303F2YjLalQ+ChJkiRJkhYtl6lKWhQK94cD2PPQGO9as5zfX35fYnxvZjUb7l3O1p2DZLJxPqcpSZIkSdKcGMZJWhTy94fLd/Lw51h2JBnG3ZrpBmDP8Chf+Pbhms9NkiRJkqRqcZmqpAVRaX+4fD/9gzsSx3szq7kje8nk8Zfuf5x3Xfjyms5VkiRJkqRqMYyTNO8q7Q+XP/bhn7q/bFWcJEmSJEn1yDBO0rwrtz/cR99zIT930csnq+Uu/+bH4ciJawqr4gDecf7L5mPKkiRJkiRVhWGcpHlXbn+4R3/wFNdeeu74QboPHrs3cT790nfD908cv/W8Vi5fs7xW05QkSZIkqeoM4yTNu1WtS0uO/+jp58lkIy2pAPt2JE+uWMcH3v87LM/bZ66ns338WkmSJEmS6kSIMS70HFRFIYQI4PeqxSyTjWzbOchAwVJVgO6ONm567UFSn/tA8sSGT0HnlfM0Q0mSJEmSTghhvBAkxjjnipDUnGcjSTPUkgr0bupi8yVnF50bGB7liX/qTQ6uWGcQJ0mSJElqCIZxkhZESyrwotNOKhpfn9pb1EGVri3zNCtJkiRJkmrLME7Sgim1d9zGlj3JAaviJEmSJEkNxDBO0oLp6Wynu6Nt8nh9ai+vb/lO8iKr4iRJkiRJDcQGDtMUQjgT+BDwLuBVwJnAGPBd4KvADTHGH5W47wzgN4ENwDlABngYuBW4Mcb4XJXnaQMH1ZVMNtKf65D6vuFfTi5RXbEOtty5cJOTJEmSJInqNnAwjJuGEMJbgFuAl+aGjgPHgBflXXZRjPFbBfetAO4Gzs4NPQ20AKfkjoeA7hjjD6s4V8M41ad0H9x+dXLMDqqSJEmSpEXAbqrzKITwBuBOxoO4u4B1wCkxxhcDpwFdwP8CflxwXwuwm/EgbgR4W4zx9Nw9vwgcBS4C/mZePoi02O3bkTx2rzhJkiRJUgNastATWMxCCKcBO4FTgduBX4gxZifOxxifAfblfgptBjpzrzfEGP85d08WuC2EkAL+FnhnCKE7xjhQsw8iLXbpPjh4T3LMveIkSZIkSQ3IyrjK/jOwEngG+GB+EDcN78/9/spEEFfgVuDR3OtNs5+i1ACsipMkSZIkNQnDuMomQrLPxxiPTPemXEXdG3KHXyx1TRzf1O1LucPLZj1Dqd6VqIrLXrx5YeYiSZIkSVKNGcaVEUI4hfH94AC+GkJYGUL4VAjh+yGEn4QQHg8hfD6E8M4St6/mxP+291d4m4lzLwshvKRKU5fqSnbw5sTx3sxqtn7zbDJZm5BIkiRJkhqPYVx5ZwMn517/FPBt4L8ArYx3RX0psB7oDyF8ouDe5XmvD1V4j/xzy8telSeEECv9TOcZ0mKR/fbfkXrs3sTYrZluBoZH6U+PLNCsJEmSJEmqHcO48l6c9/rDwPPARmBprpPqf2B83zeAD4YQfi3v+jPyXj9d4T3yz51R9iqpQT3xT72J472Z1dyRvQSAA2PHFmJKkiRJkiTVlGFceamC1x+MMd4aY3weIMb4b8B7gaHcNb8XQqh5d9oYY6j0U+v3l0rJZCO79x/mhrseZvf+w9NbYpruY9mR+xJDt2a6J1+val1a7WlKkiRJkrTgah4e1bGjea//LcZ4W+EFMcZsCOHPgM8Ay4CLga8X3HtahffIP3e07FXSIpbJRrbuHGTP8Ojk2K6hQ/Ru6qIlVSEfLuigml8Vd8HyM+npbK/FdCVJkiRJWlBWxpWXv5/bcIXrHsx7vSL3+3De2Msr3Jt/7nDZq6R5MpsKt/70SCKIA6be861EB9WJqrgLlp/J5/7rGyoHeZIkSZIk1Skr48qIMT4RQjjEeGBWKZHITwwmrnsQyDIedl4AfLHMvRfkfj8eY3xiDtOV5my2FW7l9naruOdbQVXc2LK1rOx4Pze2LqWns90gTpIkSZLUsKyMq+zLud+rQwjl0oHVea8fBYgxPg18LTf2jlI35Z739oL3kRbMrCrcKL+3W9k930pUxbX+zC9x7aXncsWa5QZxkiRJkqSGZhhX2c25368A3lN4MoSQAn4jd3gI+Gbe6U/nfr8lhPC6Es++CliZe71z7lOV5mZWFW5AT2c73R1tibHujrbye749cnfyeMU66LxyutOUJEmSJKmuuUy1ghjjPSGEPuBK4BMhhAh8Lsb4fAjhFcBHgItyl/8/McZs3u2fBn4N6ARuDyG8P8Y4kAvwNgA35a77YoxxYF4+kFTBjCvcclpSgd5NXfSnRzgwdoxVUy01PenU5HHXltlMV5IkSZKkuhRinHqD9mYWQjgd6AfelBv6CfA08OK8y/5njPG/l7j3bOArwNm5oacZr0Z8Qe54COiOMf6wivONAH6vmqlMNrJt5yADeUtVuzvapu6KOhPpPrj96hPHa7dBz/XVebYkSZIkSTUysXtZjHHOfyBbGTeFGONTIYS3AP8F+M+MN104g/FlqfcAN8YY95a592AI4TXAbwE/D5wDPA88ANySu/e52n8KaWozrnCbjYLGDTz/TPWeLUmSJElSHbAyrsFYGadFq7AqDmDDp9wvTpIkSZK06FkZJ2nRyWRj5aq6wqo4GzdIkiRJkpqQYZykOdu+N08AACAASURBVMtkI1t3DrInb7+5XUOHTuw3l+6Dg/ckb7JxgyRJkiSpCaUWegKS6l9/eiQRxAEMDI/Snx4ZP7AqTpIkSZIkwDBOUhUcGDtWftyqOEmSJEmSJhnGSZqzVa1Ly49bFSdJkiRJ0iTDOElz1tPZTndHW2Ksu6ONnw1fsypOkiRJkqQ8Ica40HNQFYUQIoDfq+ZbyW6qO69IhnEr1sGWOxdukpIkSZIkzUIIAYAYY5jrs+ymKqkqWlKBK9YsPzHgXnGSJEmSJBVxmaqk2nCvOEmSJEmSihjGSao+q+IkSZIkSSrJME5S9RVUxY0tW8sN//4adu8/TCbrfoaSJEmSpOblnnGSZq1k04YHbi+qivuDw2u54/vfBWDX0CF6N3XRkprznpeSJEmSJNUdwzhJs5LJRrbuHGTP8Ojk2K6hQ/x1vJn8mG1vZjV3ZC+ZPB4YHqU/PZJs9iBJkiRJUpMwjJM0K/3pkUQQB3D6w7sIJ9+bGLs1011074GxYzWdmyRJkiRJi5V7xkmalVKB2iWp+xPHY8vWJqriJqxqXVqzeUmSJEmStJgZxkmalVKB2rOcnDj+HN28taMtMdbd0UZPZ3tN5yZJkiRJ0mIVYrSzYSMJIUQAv1fVWiYb2bZzkIHcUtX1qb385ckfmzy/4/hlXHd8Mx99z4WkUiHZ5MHmDZIkSZKkOhLC+N+xMcY5/0HrnnGSZqUlFejd1DXZTfWdg38Kz544/wKeA+DRHzzFtZeem7i3ZBdWAzpJkiRJUhMwjJM0ay2pMN4VNd0Hz+5PnNubvQAoXs5argtr76YuAzlJkiRJUsNzzzhJc7dvR+Jwb2Y1d2QvKbk/XKkurAPDo/SnR2o9S0mSJEmSFpyVcZLmJt0HB+9JDP341e/lxldfVHL5aakurJXGJUmSJElqJIZxkuamoCqOFet458Zryl5eqgtrpXFJkiRJkhqJy1QlzV6Jqji6tlS8paezne6OtsRYqeWskiRJkiQ1ohBjXOg5qIpCCBHA71XzYsflyTBuxTrYcueUt9lNVZIkSZJUT0IY/5s1xjjnP15dpippdmZRFTdhsgurJEmSJElNxmWqkmbnkbuTxyvWQeeVCzIVSZIkSZLqhZVxkioqu6T0pFOTF06zKk6SJEmSpGZmGCeprEw2snXnIHuGRyfHdg0d4qbXHiR1X++JC9dusypOkiRJkqRpMIyTVFZ/eiQRxAEMDI/yxLFeluUPPv/MvM5LkiRJkqR65Z5xkso6MHasaGx9ai/LjtyXHFz55nmZjyRJkiRJ9c4wTlJZq1qXFo1tbNmTHLBxgyRJkiRJ02YYJ6msns52ujvaJo/Xp/by+pbvJC+ycYMkSZIkSdMWYowLPQdVUQghAvi9ajZKdU4FJsfeN/zLySWqK9bBljsXaLaSJEmSJM2PEAIAMcYw12fZwEESUL5zau+mLq5YsxzSfXBvwV5xVsVJkiRJkjQjhnGSgPKdU7+w/zCpVODCPR/nFfkn3StOkiRJkqQZM4yTBJTunApww8DDdD5xF1ecvC95wqo4SZIkSZJmzDBOahKl9oNrSZ1Y6l6qcyrAo0ee5peW3J8YG1u2llar4iRJkiRJmjHDOKkJVNoPbiKQ6+lsZ9fQIQbyrjln2ek8euQpnuXkxPMGz1rPO+dn6pIkSZIkNRTDOKkJlNsPrj89Mt6cAWhJBXo3dSWq57IxMvDZj7N5yZcn79tx/DLOevWGeZ2/JEmSJEmNwjBOagLl9oMrHG9JhclwDsYr6s794j3wkxPXrHxRC2/obK/JPCVJkiRJanSGcVITKLcfXLnxCS0P3M7qn+xPjK27bAOpvL3mJEmSJEnS9KUWegKSaq+ns53ujrbEWHdHGz1TVbjt25E8XrGO1Guuqu7kJEmSJElqIlbGSU2g1H5whd1Ui6T74OA9ybGuLbWdqCRJkiRJDc4wTmoShfvBTalEVRydV1Z1TpIkSZIkNRuXqUoqZlWcJEmSJEk1YRgnqdgjdyePrYqTJEmSJKkqDOMkFTvp1OSxVXGSJEmSJFWFYZykpHQf3Nd74njtNqviJEmSJEmqEsM4SUmFjRuef2ZBpiFJkiRJUiMyjJN0QqnGDSvfvBAzkSRJkiSpIRnGSTqhsCrOxg2SJEmSJFWVYZykcaWq4mzcIEmSJElSVRnGSRr3yN3JY6viJEmSJEmqOsM4SeNOOjV5bFWcJEmSJElVZxgnaXyJ6n29J47XbrMqTpIkSZKkGliy0BOQNH8y2Uh/eoQDY8dY1bqUns52WlKhuHHD888syPwkSZIkSWp0hnFSk8hkI1t3DrJneHRybNfQIW567UFShY0bVr55XucmSZIkSVKzMIyTmkR/eiQRxAEMDI/y2JH/wzn5gzZukCRJkiSpZtwzTmoSB8aOFY2tT+3lnGNDyUEbN0iSJEmSVDOGcVKTWNW6tGjsktT9yQGr4iRJkiRJqinDOKlJ9HS2093Rlhh7lpOTF1kVJ0mSJElSTRnGSU2iJRXo3dTF5kvOBsaXqG5e8uXJ84+c816r4iRJkiRJqjEbOEgNLpON9KdHODB2jFWtS/ndntX82xNPs/HAnsR1Z7/IbF6SJEmSpFozjJMaWCYb2bpzMNFFtbujjU9e+ChLDn4ncW1q5Zvnd3KSJEmSJDUhwzipgfWnRxJBHMDA8Cg/OnYTy/IHbdwgSZIkSdK8cF2a1MAOjB0rGluf2suyI/clxva1vptMNs7XtCRJkiRJalqGcVIDW9W6tGjsktT9ieO9mdVsuHc523YOGshJkiRJklRjhnFSA+vpbOet57Umxpa9+MzE8a2ZbmB8+Wp/emTe5iZJkiRJUjNyzzipweXXuq1P7eXSo3dMHu84fhl3ZC+ZPM7vutrT2U5LKszjTCVJkiRJanyGcVID60+P8JWHxiaPN7bsSZx/Ac8ljr94/+N88f7HAdg1dIjeTV0GcpIkSZIkVZHLVKUGlt/AYX1qL69v+U7i/N7sBWXvddmqJEmSJEnVZ2Wc1MDOOev0ydeFVXHZFet422t/mZVjx3jo8aOTFXH5SnVjlSRJkiRJs2cYJ9W5TDaW3Ostk43s+tYhoHRVXKprC1d0Lgdg9/7DJcO4Ut1YJUmSJEnS7BnGSXUsk41s3TnInuHRybGJvd7y94u7JHV/8sYV66DzysnDns52dg0dYiDvOd0dbfR0ttf2A0iSJEmS1GQM46Q61p8eSQRxcGKvt/wlps9ycvLGri2Jw5ZUmAzw7KYqSZIkSVLtGMZJdSZ/WepDjx8tec1EoAbjS1Q3L/ny5LlHznkvK/Oq4ia0pAJXrFlem0lLkiRJkiTAME6qK6WWpZYyUdm2a+gQGw8kGzec/SKbKEuSJEmStFAM46Q6UmpZaqGJvd5aUoGbXnuQ1MGCxg0r31y7CUqSJEmSpIoM46Q6kr8PXL53XvAyznvZGUV7vaUe/WrywoLGDZIkSZIkaX4Zxkl1ZGIfuEI9ne2l93s76dTkcUHjBkmSJEmSNL/cPEqqIz2d7XR3tCXGJpalFkn3wX29J47XbrMqTpIkSZKkBWZlnFRHWlKB3k1dk91UC5elTkr3wd1/nBx7/pn5m6gkSZIkSSrJME6qMy2pUHpJ6oR0H9x+dfH4yjfXakqSJEmSJGmaXKYqNZp9O5LHZ70SNnzKJaqSJEmSJC0ChnFSI0n3wcF7kmNv/rBBnCRJkiRJi4RhnNRIHrk7ebxinUGcJEmSJEmLiHvGSYtcJhunbtgw4aRTk8ddW2o/QUmSJEmSNG2GcdIilslGtu4cZM/w6OTYrqFD9G7qKt1B9b7eE8drt1kVJ0mSJEnSIuMyVWkR60+PJII4gIHhUfrTI8UXFzZueP6Z2k1MkiRJkiTNimGctIgdGDs2vfFSjRtWvrkmc5IkSZIkSbNnGDdDIYT/FkKIEz9TXHtGCOG6EEI6hHAshPDjEMI3Qgi/GUI4eb7mrPq1qnXp9MZt3CBJkiRJUl34/9u7/+i6z7tO8O9HctIkdWihtancgSTyAu42SlpiXEgDuKikrUgCTJNzKAWTnI7Ntjs9U2gLwzlzFpjdmQNNmROGWRhcyiRmSstZZzfTgMJm8ostdXdDMm6qUNwWp+lhHKV26Q/iJiGO9OwfuvpxZUnxj3u/V1d6vc7R0ff5ca8+sqxzfd9+nu8jjDsNpZTvSfKrpzj3oiSfac2/NElJ8qIk25N8MMn/W0r51i6VyhoxNjKU0W2b2/pGt23O2MhQ+0QHNwAAAEBfKLWuuLiLllLKQJL/J8nrk3wqyQ8kSa31pGMtSymDSQ4mGUkymWRXrfWe1nPckORDSS5McletdazDddZWXZ18WnroBU9Tndif3P6O+faOPcnYzc0XCgAAAGtUKTPvw5fKgU6X01RP3bszE8R9JMnfphXGLePGzARxSfLWWuunkqTWOp3kT1qh3B8neUspZbTWem/XqqbvDQ6UXHv5luUnOLgBAAAA+oZtqqeglHJJkn+T5O+T/MIpPOTnWp/vnw3iFvlYki+2rnedfYWsWx08uGFquubOR57ILfd8Pnc+8kSmpq2uBAAAgE6zMu7UfCjJi5O8q9Z6bHZp4lJKKRdkZgVdkty11Jxaay2l/HmSdya5usO1sp4sOrjh2Mt35H955JLkkYfz5le/ItdcvqV9S+sypqZrdu97KPcdOjrXd8fBI9m7a/spPR4AAAA4NVbGvYBSyu4ko0nuqbXuO4WHvCrzf66PrjBvduwVpZRvO4166kofp/o8rBGLDm74X5/YkbsefTJ3Pfpk/sWffDq7b/urU1rhNj4x2RbEJcm9h45mfGKyo+UCAADAeieMW0Ep5ZVJbk7yTJKfP8WHLby515EV5i0cW+GGYLCMif3Jg3vnmrc+f3U+Pn1l25T7PnfslAK1w8eOn1Y/AAAAcGZsU13Z7yd5SZJfrrU+doqPuXDB9dMrzFs4duGysxZ5oVM7rI5bRxYd3HBenlty2qkEals3bTytfgAAAODMWBm3jFLKzyT5sSSfTvLvelwOtFvi4IYD05cuOfVUArWxkaGMbtvc1je6bXPGRobOvEYAAADgJFbGLaGUsjnJLUmmkuyutT5/Gg9/asH1BSvMWzj21LKzYCmLDm6YvuiqHC8/kSy679uPfM+mUwrUBgdK9u7anvGJyRw+djxbN23M2MiQwxsAAACgw4RxS/vNJC9L8ntJDpVSFi8tOnf2YsHYc7XW55I8sWDeK5N8Zpmv8coF108sMweWtujghoHtN+VDr96eP/3ME/nzR59MktM6TTWZCeSuvdztCwEAAKCbSq1uMbZYKeWBJD98mg/77Vrre0opF2RmpdtAkl+qtd68zNf43STvTPJkrbVjewFn7xnn57r2TE3XjE9MZsNnb89bPvev5gd27EnGlvxrBgAAAHRAKTMLXV7oXv6nwj3jOqzW+nSST7aab15qTpn5Cb6p1by7ibrob1PTNbv3PZR3f/RgXvrZP24fPPFMb4oCAAAATpswbgm11p211rLcR5JfXzB3tv89C57ittbnN5RSXrfEl7ghyXDrel93vgvWkvGJydx36GiuGziQHxj8bPvg8M5elAQAAACcAWFcd9yWZCJJSXJ7KWU0SUopA6WUG5J8qDXvrlrrvT2qkT5y+NjxJMmVA4+29f/dt1yRjFzfi5IAAACAM+AAhy6otT5fSrkuyf1JLk5yTynl6cyEn+e1ph1M8vbeVEg/mZqu+frTJ5Ikz86fHZIkOfrdb8t39KIoAAAA4IxYGdcltdbHk1yW5F8neTRJTXIiycNJ3pfk+2utX+tZgfSF2XvF3Xrg8Vw3cCA3bpi/xeA9F/54XjP2z3pYHQAAAHC6nKa6xjhNdW2585En8u6PHkySfPSc/63tfnHTr/3ZDPz4f+hVaQAAALBuOE0V1onZe8UtdXDDwPDO5gsCAAAAzoowDlaxrZs2Jjn54IZjL9/h4AYAAADoQ8I4WMXGRoYyum3zSQc3vOyH9vSoIgAAAOBsOE0VVrHBgZIPfe/jGXh8/uCG6e/bnYHLbuhhVQAAAMCZEsbBKjA1XTM+MZnDx45n66aNGRsZyuDAzD0hB/7bbW1zB55/thclAgAAAB0gjIMem5qu2b3vodx36Ohc3x0Hj2Tvru0Z/Ovbk8c/0f6A4Z2N1gcAAAB0jnvGQY+NT0y2BXFJcu+ho/nTzzyRLz003j75oqsc3AAAAAB9TBgHPXb42PEl+2+55wu5//BTbX3TV9zYQEUAAABAtwjjoMe2btq4ZP/IV/9rbtwwf3DDrc9fnT+rr2+qLAAAAKALhHHQY2MjQxndtrmt75KXvzhvG7yvre+8PLfsKjoAAACgPzjAATpspZNRl3Pda7bk3A0z2fibX/2KvPK//1m2P/zZtjkHpi/Njy6zig4AAADoD8I46KAVT0YdKCcFdW969SvyP/3nh9vmP/f8dPa+9DNtz3tg6lX55nf/RMZGhhr7XgAAAIDOE8ZBBy13Mur4xGTGRoZOCuou3fItefSJfzhp/pdeNZ3hBX0vet07snds+wuusAMAAABWN2EcdNBy93Q7fOz4kkHd4iAuSa4bOJDhL35kvmPHnlwxtrujdQIAAAC94QAH6KDlTkbdumnjKR++sPjghpx45mzLAgAAAFYJYRx00FIno45u25yxkaFlg7pLt3zL3PV1AwfyA4PtBzdkeGeHqwQAAAB6pdRae10DHVRKqUni59o7y52mOjVds2ffQ7l3wVbV0W2b83s/c0X+779+MoePHc9P/t1v5KIv3T7/ZBddldz0Zz34LgAAAIBZpczcw73WetY3cxfGrTHCuNVtuaBuzvj7kwf3zrff+uFk5PrmCwUAAADmCONYljCuj03sT25/x3x7x55k7Obe1QMAAAAk6WwY555xsFo8fGt728ENAAAAsOYI42A1mNifPP6J9r7hnb2oBAAAAOgiYRysBo890N6+6Cr3igMAAIA1SBgHq8E557e3t9/UmzoAAACArhLGQa9N7G87QfWxS96eW758We585IlMTTuIAwAAANaSDb0uANa9RVtUH/zCkdzyN19Iktxx8Ej27tqewYGzPqwFAAAAWAWsjIOGTE3X3PnIE7nlns/nzkeeyHPPT+fOR57Ip598tm3egelL567vPXQ04xOTTZcKAAAAdImVcdCAqema3fseyn2Hjs71vezF5+b1zzyQf3/u/zHXd+vzV+fj01e2PfbwseON1QkAAAB0l5Vx0IDxicm2IC5J/v6bz+Vtg/e19Z2X50567NZNG7taGwAAANAcYRw0YKnVbdcNHMgPDH62rW/hFtUkGd22OWMjQ12tDQAAAGiObarQZVPTNV9/+sRJ/VcOPNrWPjD1qnx8+sq85jtekp3fszlbN23M2MiQwxsAAABgDRHGQRctda+4Wc+Vc9vaH5saTZIMveT8vOeN391IfQAAAECzbFOFLlrqXnFJ8sFtn8+uwbvn2gsPbnjzpa9orD4AAACgWcI46KLlTkLd9szBtvbswQ0/sm1zrrlsS9frAgAAAHrDNlXoouVOQr3ggvb+l7z6jfmd//G17hEHAAAAa1yptfa6BjqolFKTxM91dZiartmz76Hcu2Cr6q/8k0fz81/5t/OTduxJxm7uQXUAAADAqShlZuFMrfWsV9BYGQddNDhQsnfX9oxPTObwsePZumljrvlvv5t8ZcGkE8/0rD4AAACgWcI46LLBgZJrL2/dB25if/Klv2yfMLyz6ZIAAACAHnGAAzTpsQfa2xddlYxc35NSAAAAgOYJ46BJ55zf3t5+U2/qAAAAAHpCGAdNmdifPLh3vr1jj1VxAAAAsM4I46ApD9/a3nZwAwAAAKw7wjhowsT+5PFPtPcN7+xFJQAAAEAPOU0VOmRqumZ8YjKHjx3P1k0bMzYylMGBMjPo4AYAAAAgwjjoiKnpmt37Hsp9h47O9d1x8Ej27to+E8g5uAEAAACIbarQEeMTk21BXJLce+hoxicmHdwAAAAAzLEyDjrg8LHjy/d/84H2Tgc3AAAAwLplZRx0wNZNG5fvX7xFdXhn1+sBAAAAVidhHHTA2MhQRrdtbusb3bY5P1Y+aYsqAAAAMMc2VeiAwYGSvbu2n3Sa6sCdt7VPtEUVAAAA1jVhHHTI4EDJtZdvae+0RRUAAABYQBgH3bLCKapT0/WkVXSDA6VHhQIAAABNEcZBtzx8a3u7tUV1arpm976Hct+ho3NDdxw8kr27tgvkAAAAYI1zgAN0w8T+5PFPtPcN70ySjE9MtgVxSXLvoaMZn5hspjYAAACgZ4Rx0A2PPdDevuiquS2qh48dX/Ihy/UDAAAAa4cwDrph0cEND2/6iUxN1yTJ1k0bl3zIcv0AAADA2iGMg05bdHDDrc9fnbf+5Zbs2fdQpqZrxkaGMrptc9tDRrdtztjIUNOVAgAAAA1zgAN02qItqufluSTz94W79vIt2btru9NUAQAAYB0SxkGnLdqiemD60rnr2fvCDQ6UXHv5lkbLAgAAAHrPNlXopCW2qH58+sq5tvvCAQAAwPomjINOevjWtubsFtXEfeEAAAAA21Shcyb2J49/oq3ru77/mrznvO9yXzgAAAAgiTAOOmfRwQ256Kpccc3uXNGTYgAAAIDVyDZV6JRFBzdk+029qQMAAABYtYRx0AmLDm7Ijj3JyPW9qwcAAABYlYRx0AmLt6ieeKYnZQAAAACrmzAOOmHxFtXhnb2oAgAAAFjlHOAAp2lqumZ8YjKHjx3P1k0b82PlkxmwRRUAAAA4BcI4OA1T0zW79z2U+w4dnet7yctvzw8tnGSLKgAAALAM21ThNIxPTLYFcUny2Nen2icN72ysHgAAAKC/COPgNBw+drytfd3Agdy44e75DltUAQAAgBUI4+A0bN20sa39tsH72ifYogoAAACsQBgHp2FsZCij2zYnmVkV9wODn22fMLyz8ZoAAACA/lFqrb2ugQ4qpdQk8XPtntnTVC858C9z6Zf/y/zARVclN/1Z7woDAAAAuqKUkiSptZazfS6nqcJpGhwoufbyLcmRb0++vGBg+009qwkAAADoD7apwpmY2J88uHe+7eAGAAAA4BQI4+BMPPZAe9vBDQAAAMApEMbBmTjn/Pb28M5eVAEAAAD0GWEcnK5FW1Qfu+TtueXLl+XOR57I1LSDMwAAAIDlOcABTteiLaoPfuFIbvmbLyRJ7jh4JHt3bc/gwFkfrgIAAACsQVbGwelatEX1wPSlc9f3Hjqa8YnJpisCAAAA+oQwDk7Hoi2qtz5/dT4+fWXblMPHjjddFQAAANAnhHFwOhZtUT0vz500ZeumjQ0VAwAAAPQbYRycjkVbVL/xivZVcaPbNmdsZKjJigAAAIA+Ump1+uNaUkqpSeLn2gUT+5Pb3zHf3rEnU2/+QMYnJnP42PFs3bQxYyNDDm8AAACANaaUmff6tdazftPvNFU4VQ/f2t4+8UwGB0quvXxLT8oBAAAA+o8wDlYwNV0zPjGZDZ+9PW95/BPtg8M7e1ESAAAA0MeEcbCMqema3fseyn2HjuY3NtzT/tty0VXJyPU9qw0AAADoTw5wgGWMT0zmvkNHkyTP5tz2we039aAiAAAAoN9ZGQfLOHzseJLkuoEDuXHD3XP9nx66Ia8ZuX5uC6vDGwAAAIBTJYxbQSnlZUmuSzKa5HuTXJSZP7NjSR5Kclut9f96gee4MMl7k7w1ySVJppJ8PsnHkvxOrfW5rn0DnOR0ArStmzYmSa4ceLSt/1vPnW7bwjrrjoNHsnfXdoEcAAAAsCxh3MqeTPuf0bNJTiR5Zevjx0spdyW5vtb69OIHl1IuSvJAkotbXU8neVGS7a2Pt5dSRmutX+vWN8C80w3QxkaGcsfBI3n2b9u3qH7HFW/Jny3Ywjrr3kNHMz4x6XRVAAAAYFnuGbeyDUkeTPKuJFtrrefXWjdmZoXbh1tz3pLk9xc/sJQymOTOzARxk0l+tNb64iQXJPmpJE8leW2Sj3T5e6BlfIUAbSmDAyUf+t7H27aoTn/f7gxcdsPcFtbFlusHAAAASIRxL+RHaq2vq7X+Xq31sdnOWuvjtdZ/lvkQ7mdKKd+x6LE3JhlpXb+11npP67HTtdY/SfLzrbG3lFJGu/ctMOtMArSBL/5Fe/v5Z5PMb2FdbLl+AAAAgEQYt6Ja6/0vMOXDC663Lxr7udbn+2utn1risR9L8sXW9a4zKI/TdEYB2jnnt7eHdyaZ2cI6um1z29Dots0ZGxk6iwoBAACAtc49487OswuuB2cvSikXJHl9q3nXUg+stdZSyp8neWeSq7tWIXNm7wF374KtqisGaBP7kwf3zrd37ElGrk8ys4V1767tTlMFAAAATosw7uzsXHA9seD6VZlfddh+FGe72bFXlFK+rdb61Rf6gqWUeloVMue0A7THHmhvn3jmpOdzWAMAAABwOoRxZ6iU8tIkv9JqfqLW+rkFwwsTmiMrPM3CsS1JXjCM4+ycVoC2zBZVAAAAgDMljDsDpZSBJH+UZCjJPyZ596IpFy64fnqFp1o4duGysxaota64D9LKuQ5ZYYsqAAAAwJlygMOZ+e0k17Su31VrfaSXxdAFL7BFFQAAAOBMCONOUynlg0n+eav5C7XWP1xi2lMLri9Y4ekWjj217CyaZ4sqAAAA0AXCuNNQSvlAkve2mu+vtd6yzNQnFly/coWnXDj2xLKzaJYtqgAAAECXCONOUSnl5iTvbzV/qdb6wRWm/02S6db1pSvMmx178lROUqUhD9/a3rZFFQAAAOgQYdwpaG1NfV+r+Uu11ptXml9rfTrJJ1vNNy/znCXJm1rNuztRJx0wsT95/BPtfcM7e1EJAAAAsAYJ415AK4ib3Zr6vhcK4ha4rfX5DaWU1y0xfkOS4db1vrMokU5afHDDRVfZogoAAAB0jDBuBaWU38x8EPeLtdbfOo2H35ZkIklJcnspZbT1nAOljfJlzQAAFa5JREFUlBuSfKg1765a672dqpmztPjghu039aYOAAAAYE0qtdZe17AqlVK+M8mXWs3pJMde4CEfXHwfuVLKxUnuT3Jxq+vpzASg57XaB5OM1lq/dvYVz33NmiR+rmdgYn9y+zvm2zv2JGOnuhASAAAAWKtm7jaW1FrL2T7XhrOuZu0aWHT97S8wf+Pijlrr46WUyzJzv7l/muSSJCeS/HWSjyb5nVrrc50pl7O2eIuqgxsAAACADhPGLaPW+nhmtpie7fM8leRXWx+sZou3qA7v7EUVAAAAwBrmnnGQzGxRfXDvfHvHHgc3AAAAAB1nZRzr0tR0zfjEZA4fO56tmzbmxx5/oD2ZtkUVAAAA6AJhHOvO1HTN7n0P5b5DR+f6zt/0D3njwknDOxuuCgAAAFgPbFNl3RmfmGwL4q4bOJA3PvVf5ifYogoAAAB0iTCOdefwseNt7SsHHm2fYIsqAAAA0CXCONadrZs2trWfzbntE4Z3NlYLAAAAsL4I41h3xkaGMrptc5KZLao3brh7ftAWVQAAAKCLHODAujM4ULJ31/aMT0zmkgN/knx5waAtqgAAAEAXCeNYlwYHSq69fEty5Nvbw7jhnT2qCAAAAFgPbFNl/ZrYnzy4d75tiyoAAADQZcI41q/HHmhv26IKAAAAdJkwjnVparrmsa9Pt3cO7+xFKQAAAMA6Ioxj3ZmarvmD3/1Ahr/4kbm+ey788Uy9+q09rAoAAABYD4RxrDvjE5N5yZMH2vq+8rVvZHxiskcVAQAAAOuFMI515/Cx43k257b1HZi+NIePHe9RRQAAAMB6IYxj3fnBZ/8iN264e6596/NX5+PTV2brpo09rAoAAABYD4RxrDuvnXqkrX1ensvots0ZGxnqUUUAAADAerGh1wVA0wbOOb+t/V3ff01uGNuewYHSo4oAAACA9UIYx/oysT95cO98e8eeXDG2u3f1AAAAAOuKbaqsL4890N4+8UxPygAAAADWJ2Ec68uiLaoZ3tmLKgAAAIB1ShjH+rHEFtWMXN+7egAAAIB1xz3j6GtT0zXjE5M5fOx4tm7amLGRoeUPYrBFFQAAAOgxYRx9a2q6Zve+h3LfoaNzfXccPJK9u04+GXVquuZLX5/O8MLO4Z1NlAkAAAAwxzZV+tb4xGRbEJck9x46mvGJyba+qemaP/jdD2T4ix+Z67vnwh/P1Kvf2kidAAAAALOEcfStw8eOn1L/+MRkXvLkgba+r3ztGyeFdgAAAADdJoyjb13yshefUv/hY8fzbM5t6zswfemyYR4AAABAtwjj6F/LnNOwuP8Hn/2L3Ljh7rn2rc9fnY9PX5mtmzZ2rzYAAACAJQjj6Ftf/Mo3T6n/tVOPtLXPy3MZ3bY5YyNDXasNAAAAYClOU6VvLbeybXH/wDnnt7W/6/uvyQ1jJ5+4CgAAANBtVsbRt8ZGhjK6bXNb30kr3ib2Jw/unW/v2JMrrtktiAMAAAB6wso4+tbgQMneXdszPjGZw8eOZ+umjRkbGWoP2h57oP1BJ55ptEYAAACAhYRx9LXBgZJrL9+y/IRFW1QzvLOb5QAAAACsSBhH35qariuviltii2pGrm++UAAAAIAWYRx9aWq6Zve+h3LfoaNzfXccPJK9uxYczGCLKgAAALDKOMCBvjQ+MdkWxCXJvYeOZnxicr7DFlUAAABglRHG0ZcOHzu+cr8tqgAAAMAqJIyjL23dtHHlfltUAQAAgFVIGEdfGhsZyui2zW19o9s2Z2xkaKZhiyoAAACwCpVaa69roINKKTVJ1sPPddnTVCf2J7e/Y37ijj3J2M29KxQAAADoa6XMHBZZay1n+1xOU6VvDQ6UXHv5lpMHbFEFAAAAVinbVFl7bFEFAAAAVilhHGuLU1QBAACAVUwYx9piiyoAAACwignjWFtsUQUAAABWMWEca4ctqgAAAMAqJ4xj7bBFFQAAAFjlhHGsDRP7k69+sb1veGcvKgEAAABY1oZeFwBnbWJ/cvs75tsX/2ByxY22qAIAAACrjpVx9L/F21O/9WJBHAAAALAqCePof05QBQAAAPqEMI7+5gRVAAAAoI+4Zxx9Z2q6ZnxiMoePHc9P/t14Llo46ARVAAAAYBUTxtFXpqZrdu97KPcdOpokeemGp3Ljwr/Fwzt7URYAAADAKbFNlb4yPjE5F8RdN3AgN264e37QFlUAAABglbMyjr4wuzX1I//fl+b6rhx4tH2SLaoAAADAKieMY9VbvDV11rM5t33i8M7GagIAAAA4E7apsuot3Jo6a/EW1env222LKgAAALDqCeNY9Q4fO35S3+ItqgPPP9tUOQAAAABnTBjHqrd108aT+mxRBQAAAPqRMI5Vb2xkKKPbNs+1naIKAAAA9CsHOLDqDQ6U7N21PeMTk/nC0aey89BHk79fMMEpqgAAAECfsDKOvjA4UDI2MpRHj/xDPvPlf2wbm77kh3tUFQAAAMDpsTKOVW1qumZ8YjKHjx3P158+kY2fvyM3nju/RfXW56/Oy+rrM7Zg3tZNGzM2MpTBgdLDygEAAABOJoxj1Zqartm976Hcd+joXN9vbGg/RfW8PJcvHH0qu/cdaZt3x8Ej2btru0AOAAAAWFVsU2XVGp+YbAvYkpNPUT0wfWn+4ZnnT5p376GjGZ+Y7HqNAAAAAKdDGMeqdfjY8bb24lNUb33+6nzzu38iLzn/nFN6PAAAAECvCeNYtbZu2tjWvnKgfYvqG7ZemL27tud/2Nw+b7nHAwAAAPSaMI5Va2xkKKPbNs+1F29RvWj72NwpqwvnJcnots0ZGxlqpE4AAACAU1Vqrb2ugQ4qpdQkWSs/19nTVDd89va85XP/an5gx55k7OaT5jlNFQAAAOi0UmYyhlrrWYcNTlNlVRscKLn28i3J459rHzjxzNLzAAAAAFYx21TpD8M7V24DAAAA9AEr41i1Fm49/cFnv5bXXnRVBkpJrrgxGbm+1+UBAAAAnDZhHKvS1HTN7n0P5b5DR3PdwIG859z/MD94xY09qwsAAADgbNimyqo0PjGZ+w4dTZJcOfBo29j0Yw/0oCIAAACAsyeMY1U6fOz43PWzObdt7ODg5U2XAwAAANARwjhWpa2bNiZJrhs4kBs33D3Xf+vzV+cT5/1wr8oCAAAAOCvCOFalsZGhXLrlW07aonpenpsL6gAAAAD6jTCOVWlwoOT/fNfr8+IXtwdv33jFlRkbGepRVQAAAABnp9Rae10DHVRKqUmyJn6uE/uT298x13zskrfnop/93zM4UHpYFAAAALDelDKTRdRazzqU2HDW1UC3LDo1dfilA4kgDgAAAOhjtqmyep1zfnt7eGcvqgAAAADoGGEcq9PE/uTBvfPtHXuSket7Vw8AAABABwjjWJ0WbVHNiWd6UgYAAABAJwnjWJ2Gd67cBgAAAOhDDnBgdZrdkvrYAzNBnC2qAAAAwBpQaq29roEOKqXUJPFzBQAAAOiMUkqSpNZazva5bFMFAAAAgIYI4wAAAACgIcK4BpRSLiyl/FopZaKUcryU8o1Syl+VUt5bSjm31/UBAAAA0Az3jOuyUspFSR5IcnGr6+kkg0le1GofTDJaa/1ah76ee8YBAAAAdJB7xvWJUspgkjszE8RNJvnRWuuLk1yQ5KeSPJXktUk+0qsaAQAAAGiOMK67bkwy0rp+a631niSptU7XWv8kyc+3xt5SShntQX0AAAAANEgY110/1/p8f631U0uMfyzJF1vXu5opCQAAAIBeEcZ1SSnlgiSvbzXvWmpOnbmx25+3mlc3URcAAAAAvSOM655XZf7P99EV5s2OvaKU8m3dLQkAAACAXtrQ6wLWsC0Lro+sMG/h2JYkX13pSWdPSwUAAACg/1gZ1z0XLrh+eoV5C8cuXHYWAAAAAH3Pyrg+U2stK41bOQcAAACwelkZ1z1PLbi+YIV5C8eeWnYWAAAAAH1PGNc9Tyy4fuUK8xaOPbHsLAAAAAD6njCue/4myXTr+tIV5s2OPVlrXfHwBgAAAAD6mzCuS2qtTyf5ZKv55qXmlFJKkje1mnc3URcAAAAAvSOM667bWp/fUEp53RLjNyQZbl3va6YkAAAAAHpFGNddtyWZSFKS3F5KGU2SUspAKeWGJB9qzbur1npvj2oEAAAAoCGl1trrGta0UsrFSe5PcnGr6+nMhKDntdoHk4zWWr/Woa9Xk8TPFQAAAKAzZu40ltRay9k+l5VxXVZrfTzJZUn+dZJHk9QkJ5I8nOR9Sb6/U0EcAAAAAKublXFrjJVxAAAAAJ1lZRwAAAAA9CFhHAAAAAA0RBgHAAAAAA0RxgEAAABAQ4RxAAAAANAQYRwAAAAANEQYBwAAAAANEcYBAAAAQEOEcQAAAADQEGEcAAAAADREGAcAAAAADRHGAQAAAEBDNvS6ALqjlNLrEgAAAABYxMo4AAAAAGhIqbX2ugagj5RSapLUWi2/hGX4PYFT43cFTo3fFTg1flfoF1bGAQAAAEBDhHEAAAAA0BBhHAAAAAA0RBgHAAAAAA0RxgEAAABAQ4RxAAAAANAQYRwAAAAANKTUWntdAwAAAACsC1bGAQAAAEBDhHEAAAAA0BBhHAAAAAA0RBgHAAAAAA0RxgEAAABAQ4RxAAAAANAQYRwAAAAANEQYBwAAAAANEcYBAAAAQEOEcUDXlFL+ZSmlzn70uh7otVLKy0opN5VS/nMp5bOllG+WUv6xlPLfSyl3lFJ+stc1QhNKKReWUn6tlDJRSjleSvlGKeWvSinvLaWc2+v6oNe8XsCZ8x6EflBq9XcT6LxSyvck+XSS82b7aq2ldxVB75VSTiTZsKDr2SRTSV68oO+uJNfXWp9usjZoSinloiQPJLm41fV0ksEkL2q1DyYZrbV+rfHiYJXwegFnxnsQ+oWVcUDHlVIGknw4My+Cn+pxObCabEjyYJJ3Jdlaaz2/1roxySWZ+Z1Jkrck+f0e1QddVUoZTHJnZoK4ySQ/Wmt9cZILkvxUkqeSvDbJR3pVI6wSXi/gNHkPQj+xMg7ouFLKv0hyS2beTP1tkl9N/K8UlFLeUGu9f4Xx/5jk51vN76y1/l0zlUEzSinvSPIHreaVtdZPLRp/W5I/bjXfWGu9t8n6YLXwegGnz3sQ+omVcUBHlVIuSfJvkvx9kl/ocTmwqqz0xqrlwwuut3ezFuiRn2t9vn9xENfysSRfbF3vaqYkWH28XsDp8R6EfiOMAzrtQ5m5n8kv1lqP9boY6DPPLrge7FkV0AWllAuSvL7VvGupOXVmy8aft5pXN1EX9CmvF9DOexD6ijAO6JhSyu4ko0nuqbXu63U90Id2Lrie6FUR0CWvyvy/PR9dYd7s2CtKKd/W3ZKgb+1ccO31gnXNexD6kTAO6IhSyiuT3JzkmczfwwQ4RaWUlyb5lVbzE7XWz/WyHuiCLQuuj6wwb+HYlmVnwTrl9QLmeQ9Cv9rwwlMATsnvJ3lJkl+utT7W62Kgn7RO//qjJENJ/jHJu3tbEXTFhQuun15h3sKxC5edBeuQ1ws4ifcg9CUr42AdKqXcWEqpZ/Hx5kXP9zNJfizJp5P8u558U9AFnf5dWcFvJ7mmdf2uWusjXfqWAOhvXi+gxXsQ+pkwDjgrpZTNmTlCfCrJ7lrr8z0uCfpKKeWDSf55q/kLtdY/7GU90EVPLbi+YIV5C8eeWnYWrDNeL2Ce9yD0O9tUYX36aJI/PYvHf2PB9W8meVmS30tyqJSycdHcc2cvFow9V2t97iy+PjSlk78rJymlfCDJe1vN99dabzmLrwWr3RMLrl+Z5DPLzHvlMo+BdcvrBZzEexD6mjAO1qFa6z9m5j4jnXBJ6/M7Wx8rmV3h8NtJ3tOhrw9d0+HflTallJuTvK/V/KVa6we78XVgFfmbJNOZ2ZlxaZK7lpl3aevzk7XWrzZRGKxmXi9gSd6D0NdsUwWAhrW2Gi18Y3VzL+uBJtRan07yyVZzyfspllJKkje1mnc3UResZl4vANYmYRxwVmqtO2utZbmPJL++YO5sv/+RYt1qvbGa3Wr0Pm+sWGdua31+QynldUuM35BkuHW9r5mSYHXyegHL8x6EfieMA4CGlFJ+M/NvrH6x1vpbvawHeuC2JBNJSpLbSymjSVJKGSil3JDkQ615d9Va7+1RjdBzXi8A1rZSa+11DcAaVkr5tSS/msz8r1Rvq4HeKaV8Z5IvtZrTSY69wEM+6L5ArEWllIuT3J/k4lbX05n5D+LzWu2DSUZrrV9rujZYDbxewNnzHoTVzgEOANCMgUXX3/4C8xefCgZrQq318VLKZZm5D9Y/zcxNuE8k+evMnGD8O067Y53zegGwxlkZBwAAAAANcc84AAAAAGiIMA4AAAAAGiKMAwAAAICGCOMAAAAAoCHCOAAAAABoiDAOAAAAABoijAMAAACAhgjjAAAAAKAhwjgAAAAAaIgwDgAAAAAaIowDAAAAgIYI4wAAAACgIcI4AAAAAGiIMA4AAAAAGiKMAwAAAICGCOMAAAAAoCHCOAAAAABoiDAOAAAAABoijAMAAACAhgjjAABoRCnll0sptZTyXCllxzJzxkop0615P910jQAA3VZqrb2uAQCAdaCUUpLcneSNSR5L8ppa61MLxoeSPJJkU5J9tdaf60mhAABdZGUcAACNqDP/C/yzSY4mGU7yH2fHWkHdvswEcX+b5H/uRY0AAN0mjAMAoDG11ieT3JikJvnpUsrs6rdfzsyKuRNJ3lZrPd6bCgEAuss2VQAAGldK+a0kv5jkeJJ3JvnDJOckeX+t9YO9rA0AoJuEcQAANK6Ucm6SA0muWNB9d5I3V/9ABQDWMGEcAAA9UUq5NMlEq/mNJNta21gBANYs94wDAKBX9iy4/pYkr+lVIQAATbEyDgCAxpVSrklyZ6v5mSSXZeaU1ctqrV/uWWEAAF1mZRwAAI0qpQwl+U+t5n9K8kNJHk+yOcltpZTSo9IAALpOGAcAQGNKKQNJ/ijJy5N8Icm7a63fSPLTSZ5P8qbMnLIKALAmCeMAAGjSLyUZTXIiydtqrd9Mklrrp5L8emvOvy2lfG+P6gMA6Cr3jAMAoBGllB1J/jLJOUneX2v94KLxgST3JtmZ5PNJvnc2rAMAWCuEcQAAdF0p5cIkn04ynOS/JnlTXeIfoqWUf5LkkSTfluTWWutNjRYKANBlwjgAAAAAaIh7xgEAAABAQ4RxAAAAANAQYRwAAAAANEQYBwAAAAANEcYBAAAAQEOEcQAAAADQEGEcAAAAADREGAcAAAAADRHGAQAAAEBDhHEAAAAA0BBhHAAAAAA0RBgHAAAAAA0RxgEAAABAQ4RxAAAAANAQYRwAAAAANEQYBwAAAAANEcYBAAAAQEOEcQAAAADQEGEcAAAAADREGAcAAAAADRHGAQAAAEBD/n9lXL83UAD33wAAAABJRU5ErkJggg==\n",
"text/plain": [
" \n",
"\n",
"1. False \n",
"\n",
"1. Undecided \n"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
"# Make predictions using the training set itself\n",
"targets_pred = OLS.predict(X)"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import mean_squared_error, r2_score"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Root Mean Square Error: 18.03\n",
"Coefficient of determination (R2): 0.64\n"
]
}
],
"source": [
"# The rooted mean squared error\n",
"print('Root Mean Square Error: {:.2f}'.format(np.sqrt(mean_squared_error(Y, targets_pred))))\n",
"\n",
"# The coefficient of determination: 1 is perfect prediction\n",
"print('Coefficient of determination (R2): {:.2f}'.format(r2_score(Y, targets_pred)))\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Numbers tell that the fit isn't good, as we can visually assess."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example: polynomial features and linear regression for a cubic function"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's use a **polynomial feature transformation** to get it right.\n",
"\n",
"Let's start with some wild guess for the degree, such as 6, since the higher the better, isn't??? A higher-degree polynomial can easily fit complex functions ..."
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"import scipy\n",
"\n",
"from sklearn.preprocessing import PolynomialFeatures\n",
"\n",
"degree = 6\n",
"poly = PolynomialFeatures(degree=degree, include_bias=True)\n",
"\n",
"#X_poly = poly.fit(X, Y)\n",
"X_poly = poly.fit_transform(X)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**QUIZ:**\n",
"\n",
"How many parameters do I have to learn in this case?\n",
"\n",
"1. 6 \n",
"\n",
"1. 5 \n",
"\n",
"1. 7 \n",
"\n",
"1. Still 2 \n"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"7\n"
]
}
],
"source": [
"# how many features -> parameters?\n",
"orig_features = 1\n",
"poly_degree = 6\n",
"print(int(scipy.special.binom(orig_features + poly_degree, poly_degree)))\n",
"\n",
"# this is the same as the shape[1] of the polynomial feature array \n",
"# created by fit_transform()"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"OLS_p = linear_model.LinearRegression()\n",
" \n",
"OLS_p.fit(X_poly, Y)"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"# Make predictions using the training set itself\n",
"targets_pred = OLS_p.predict(X_poly)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Root Mean Square Error: 3.10\n",
"Coefficient of determination (R2): 0.99\n"
]
}
],
"source": [
"# The rooted mean squared error\n",
"print('Root Mean Square Error: {:.2f}'.format(np.sqrt(mean_squared_error(Y, targets_pred))))\n",
"\n",
"# The coefficient of determination: 1 is perfect prediction\n",
"print('Coefficient of determination (R2): {:.2f}'.format(r2_score(Y, targets_pred)))\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It's way better now!"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model Coefficients: \n",
" [[ 0.00000000e+00 9.23703708e-01 -1.87600324e+00 5.11972922e-01\n",
" -1.18873988e-02 -5.30416272e-04 2.98615653e-04]] [120.85876255]\n"
]
}
],
"source": [
"print('Model Coefficients: \\n', OLS_p.coef_, OLS_p.intercept_)"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(7,) (1000,)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAKPCAYAAABD4eHuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAbrgAAG64BjF1z+AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3iUVdrH8e+ZmUySyaQTQgmE3kJTqooiig2xIqLia1l7Wcuu69q7rKvu6msXy2J3wV7Xuq7i8u7aFVRsFAGRXlKnnfePmQwz6YSESSa/z3WNM3PKk3uEJDfnnOccY61FREREpC1yJDoAERERkfooUREREZE2S4mKiIiItFlKVERERKTNUqIiIiIibZYSFREREWmzlKiIiIhIm6VERURERNosJSoiIiLSZilRERERkTZLiYqIiIi0WUpUREREpM1SoiIiIiJtlhIVERERabOUqIiIiEibpURFRERE2ixXogOQlmWMsYmOQUREBMBaa3b0GhpRERERkTZLIypJyloNrIiISGIYs8MDKVEaUREREZE2S4mKiIiItFlKVERERKTNUqIiIiIibZYSFREREWmzlKiIiIhIm6VERURERNqspE5UjDEeY8xBxpgrjDHPGWOWGWNs5HFNM695X8w1ljahfaEx5i/GmMXGmApjzAZjzAfGmFNNS95oLiIikoSSfcO3scBrLXUxY8zewOnb0X4U8AaQHykqBTKBCZHHdGPModbaqpaKUUREJJkk9YhKxEbgHeAW4FhgdXMuYozxAA8CAeDjJrTPBl4hnKR8C4yx1mYCGcC5gB/YH7itOfGIiIh0BMk+ovKBtTYvtsAYc1Mzr3Uj0DfyXASMbqT9RUAXoAKYYq1dAmCt9QF3G2OygFnA6caY26213zUzLhERkaSV1CMq1tpgS1zHGDMeOA/4Drihid1OiDw/XZ2k1HAn4akgJzBzh4MUERFJQkmdqLQEY0wq8DBggDOstZVN6DMQ6Bl5+3pdbay1pcAHkbf7t0CoIiIiSUeJSuOuAgYDD1lr32tin6Exrxc20K66bkgz4hIREUl6SlQaYIzZBbgY+DXy3FTdYl6vbKBddV2WMca7neGJiIgkvWRfTNtsxhgX4SkfF3CetXbjdnTPjHld3kC72LpMwmtWGovLbkccIiIi7ZpGVOp3CTASeMVaOzfRwYiIiHREGlGpgzFmCHAl4RGOs5txia0xrz3AlnraeerpUy9rbYO72WrERUREkokSlbrdDbiBq4GNdawfqf7/ZmLqqqy1/sjrVTFtu1N/otI98rwlcheQiIiIxNDUT916R57/RHiko+ajet+TnjFl58T0j73TJ/YOoJqq677ewXhFRESSkhKVVmCtXQwsj7w9sK42xpgMYM/I2zd3RlwiIiJ1WfD6bA67sCs/fPZOokOpRYlKHay1vay1pr4H8Eik6bKY8ttrXObRyPMxxphedXyZcwAvEASeaI3PISIi0phQMMB5b17ISzmrKXluMpdcMZ7SDc06Fq9VJH2iYozJNcZ0qn6w7TN7YstbYR+TWwkfgOgBXo2cpIwxxm2MOQu4PtJuts75ERGRRJlz92l8mu0iPTgWnxPm+D8iFAwkOqyojrCY9jOguI7yP0Qe1R4BTmqpL2qt3WyMmQq8QXjn2Y+NMVuBNCAl0uxN4MKW+poiIiLbY/Oa5Vy68hFyXGeQGZxKheMzLuyygayCokSHFpX0IyqJZK39BCgBbgO+J5yglAHzgdOAg6y1VYmLUEREOrLr//dINqb1xBs8CID00C48uG4ya7Y0eqzdTmOs1bYbyaR6HxX9uYqISEMWf/Q6Q1+aQl7wetJDu0TLjxvXk1lHDNuhaxsT3vKrsb2/mkIjKiIiIh3QhU+eSIoZG5ekZKa6+P1+AxIYVW1KVERERDqYV5+4htezN5HrPy2u/Lx9+5PvTU1QVHVToiIiItKBVJZu4oJPZ5EdmEaK7Rot75Xv4cTdeyUusHooUREREelAZt1yKEu8uWQFpseVX31oCW5X20sL2l5EIiIi0iq+/e9r3GQ/IM9/Kg62TfHsN6SQSQM7JzCy+ilRERER6QBsKMSZTx6Hk13xhHaPlqe6HFw1dUgCI2uYEhUREZEO4JF7TudfOWXk+c+IKz9r7770yPMkKKrGKVERERFJcut+XsxFKx6OLKDtHi3vkZfOmRP7JjCyxilRERERSXK/+98pbE7tRnbgmLjyq6aWkJbiTFBUTaNERUREJIm9/NiVPOZdQr7/XEz0qDmYPLiQyYPb5gLaWEpUREREktSGVT9y+lez8AYnkxbati1+htvJ9YeXRLe6b8uUqIiIiCSp8/+yH2s8WeT4T4krv/jAQXTNTk9QVNtHiYqIiEgSeumxy3k8awl5/tNw4o2W79Izh+PHFycwsu2jREVERCTJbFj1I2d8dRPpwXFkBCdGy10Ow5+OHIbT0fanfKopUREREUkiNhTijFsnssbjJd93blzdGRP7MKhLVoIiax4lKiIiIknkb3edwjPZK8nzn4WT3Gh5v85efrtP/wRG1jyuRAcgIiIiLWPxR6/z21/n4HHsSUZwz2i502H4y/QRbX7PlLpoREVERCQJ+CpKOe7JaVSm5JDnPyuu7qyJfRnRIydBke0YJSoiIiJJ4Iob9uHT7Aryfb/FybZ1KIO6ZHLevu1vyqeaEhUREZF27h9P38At7o/wBqfgCY2Llqc4DX89eiRuV/v9dd9+IxcRERGWLfqQmZ9fRUqomDz/qXF15+3TnyHd2tddPjUpUREREWmnqsq2cNSD+7MxLYVOvosxuKN1Y3rlctbebftk5KZQoiIiItJOXXDdbnycU06u/xTcdttus1lpLm4/Zhdczvb/a779fwIREZEO6LF7zuQ+z9ekB8eTGTw4ru6macPpntM+zvJpjBIVERGRdubjtx/ljFX34woV0sl3QVzdsWN7MGVY1wRF1vKUqIiIiLQjK7/7mMPePJlKl5sC32U4Yg4c7FuQwZVThyQwupanREVERKSdKN+8jsPvncgqT4g8/1m47bbFsmkpDu6euSsed3JtOq9ERUREpB2woRC/uXZXPs4pxxvcH29wv7j6m44c3u4OHGwKJSoiIiLtwLXX7cPfs3/GHepHnv/MuLr/GV/M4bt0T1BkrUuJioiISBv3wO0ncK35F06bR0HVlXH7pYzskcMVUwcnMLrWpURFRESkDXvpscs5c+NjGOumoOoKXORH6/Iy3Nwzc1dSXe3vVOSmUqIiIiLSRn346r3MWDyLkIF8//mk2gHROpfDcPdxu9ItSfZLqY8SFRERkTZo0b9f5JD551CZAtmBY8gIToyrv/7woezWN7+e3slDiYqIiEgbs/ij19n3xSPZmGbxBCaSEzg+rv43e/Tm2LE9ExTdzqVERUREpA354bN32GfeVH71hEgLjqSTP37n2YkDCrhsyqAERbfzKVERERFpI5Z8+T77PHkAqzJCuEN9KfBdhiElWt+/s5c7j0uOwwabquN8UhERkTZs6cL5THp0H372BnGFutC56hoceKL1XbLSmPObsWSlpTRwleSjREVERCTBvv3va0x4ZCLLMoM4bS6dfdfhJDdan5Xm4pHfjE2aE5G3hxIVERGRBPr03SfY87mprPSGcNhsOlfdSIrtFq13uxw8eOIYBnbJTGCUiaNERUREJEHmv3IPk94+nnXpFofNpLDqBtx22908xsAdx4xkbO+8BEaZWEpUREREEuD5OX9k//87hy2p4LAZdK66HrftHdfm5mnDOXBo1wRF2DYk11nQIiIibZwNhbjt5iO4qPIlbAo4bCadq64l1faLazfriGFMH90jQVG2HUpUREREdpKAr5LzrxzDPZ6FYAgvnK26HrftFdfu2kNLOG5cx9jQrTFKVERERHaCDat+ZOYt4/lHzjoAnKECCn3xC2cBLp8ymBN375WACNsmJSoiIiKt7PN//Z0jXz6eJTkBAFyh7hT6rsdlO8e1u2rqEH4zoXddl+iwlKiIiIi0osfuOZPTV91PZeTu4tTgYAp8V+IkK9rGYeCmI4dz9BitSalJiYqIiEgrKN+8jt/duBf3Z3xD9S74nsAEOvl/h8EdbedyGG4/ZiRTh3er50odmxIVERGRFvbZe09x3Esn8W22L1xgISswjdzAyXHt0lIc3DNzV/YZVJiAKNsHJSoiIiItJBQMcNvNR3BpxSv4s8NlxrrJ85+FN7hfXNtOXjcPnTiGET1yEhBp+6FERUREpAUs/uh1TnviGD7I3QLOcJkzVECB7zJSbf+4tv06e/nbSWPokeep40oSS4mKiIjIDvBXlnPLLYdzne8tqradI0hacASdfX/ExCyaBRjXO4/Z/zOabE/HOgW5uZSoiIiINNP8V+7h3Hd+zxc5ldt+o1oH2YFjyPEfAyb+pJoTdivmioOH4HbpBJumMtbaRMcgLcgYYwH05yoi0np+/uY/XPzg0TydtTyu3BkqoLDqIlIoiSt3uxzMOmIYR40q2plhJowxBgBrrdnRa2lERUREpIm2rF3BX+8+npsD/6IidkbHgie4F4W+cwmZ+HUn3XPSue/4UQwryt65wSaJpE5UjDEeYCIwCtg18lx9eMK11tprGujbHTgMmATsAnSPVK0G/g94wFr7bhNiKAQuBqZGvnYFsAh4BHjIauhDRKTNK9+8jnvuOYmbNr/G+nQb3RcFwuf1dK04G6fZjVCN8YP9hxTy52nDyc1wI82T1FM/xpi9gX/WU11vomKM6QEsA2L/ypVH3qfHlD0MnG6tDdZznVHAG0B+pKgUSGNbgvgmcKi1tqqxz9JUmvoREWk5pRtW89CDZ/PndS/yS0YovtJCtn8yBcEz8Mf9agjvj3Ll1CEcN7ZndBqkI2nJqZ+OsJpnI/AOcAtwLOERkcY4CScl7wAnAt2ttRmAFygBXoy0+w1wTV0XMMZkA68QTlK+BcZYazOBDOBcwA/sD9zWnA8lIiKtZ/VPX3L5VXvQ85ZuXFDxfK0kJSVUTEn5reQEL6iVpAzqksnL505g5rjiDpmktLRkH1Fx1hztMMYsBYppeEQlG+hrrf20nnoDvAYcSHiUpMBaW1mjzfXAFYSnekqstUtq1F8KzAKCwBBr7Xfb/QHrjk0jKiLNtGXtClb8+Ckrf/6aDZt+YVPpOjaWrWdT5SY2+bZQFfLjtwF8NoDfBvET/vHiwkGKcZJiXNFnr8tDljuT7LRsstJzycrIJcubT35+Dwq7D6CwuIQ0rzb6aktsKMT/vfEgD7x7K0+kfY+vjsURDutlaOlv2OLaD0t8EpLiNJw7qT9n7d23w9/Vo8W0TVTflEwT+m0G6kxSIvXWGPMw4UTFCwwGPqvR7ITI89M1k5SIO4HLIv1nAlc3J1YR2T5rli7i2y/f5duf/sO3a77h24qfWWI2syLdR2l9ywhSiFuTsF18kcfm2lWZVVBYlULnYBqFxkv31E70zOpBz4J+9CwqoUefXejaZwTOFK1vaE0bVv3I449fzAOrX2VhdlX4p3JNNoXhW48gmH4cm121f3WO6JHDLUcNZ0BhZusH3MEkdaLSymJHUJyxFcaYgWxbtPt6XZ2ttaXGmA+AgwhPASlREWlhG39ZwkcfPM1Hi9/low0L+ShlDatih/BTI48E2ZoKW1P9/IAf2Ar8Av6vYBXhx3/BGYKiMic9AhkUO/Pom9mTvgUD6dtrF/oM2o0uvYdjHB37X+/NsXnNcl56ZhZ///553sxcg98J1HVTjnWyx9ZplGccx4YUFwTiqzPTXPxuvwGcsFsvnA5N87QGJSrNt3fk2QfUnLYZGvN6YQPXWEg4URnScmGJdFxlG9fwwRuzeeerF3mnfBGfZ1cQHXhu4iyLsak4bDZOcnDabBw2GwfpGJuGg1SMTcOQSvxaexv5bxBrKrFUEqJq22tTStBsIcQWgmYLljJo4u+0oAOWZQZZxhbmswVYCuveh3XAx+DxQZ+KVPraXPqmd6dvfj/6Fg2j74DxFA/ejZQ0bdFebfnXC3j9jbt4bfm7vOFdTZWLev9epPvcTPQfy6bM6axIIfyTPoYxcMyYnly0/wDyvQnMdjsAJSrNYIzpDZwZeft3a+2WGk1iz+pe2cClquuyjDFea21pS8Uo0lH8umQhL754E88ve4N3vevC6wrckUc9jE0jJdQLty3GZbuQHuhCWqgrmC6ETF3j/i3L2CAOtmLtRvxmLeWudQTMWoJmfczzGjCBRq9V7oaF7ioWshpYDaWfwLd/h2/B8QL0LHPRJ5BJn5TO9Mkupk/hIPr02pU+g3cnr1vfpB6NWbv8G/793mO8/+2b/KNyIV9nR26wbCBpHbqpE8Nzz+dr92i+CQahrHabcb3zuHLqEIZ2174oO4MSle1kjEkH5gEeYD1waR3NYicpyxu4XGxdJuGFuY19fa2SlQ5v/Yrveeqpy3h65Rv8O2dreNSkvl8+NoXU0ABSQ0PwBvriCfXD7+hMzZseQzvx97U1ToLkgMnBSW8y61xNF8JtN4D9hQqzki0pv+B3rCJgVhMwv2BNZV2d4q/ggKWZAZaykXfZCMHFsOrN8LTSvyGrCvpUpNPH5NInvRt98vrRp2govfuOpnjwbqRmZDX6NdqK0g2rWfjfV/jy2/f4z8r/8mFoGYuzIsMgjUzxFZQb9mEK7q4n8R9/Bh+Wh4DafygjirK56ICBTOjXSXfz7ERKVLaDMcYFPEl44zg/cJy1tqERExFpIQFfJf+YO4s5nz7MS96V4TUFuXU0tA5SQ4NJD+1Knm841tGPUMxKWH+7GUBw4DOdwHTCyTByawyupLIVV2glVXYpG1KWUeFagd+sIGjWQRP/PbMlFT5PreBzKoBVUPpxeDOFb8G8Ap0rHHT3pdKdLLq78+mW0YXuOT3pXtiP7kVDKOwxiNwuvXG501r809elqmwLy75ZwJIfP+anFQv5acMP/FC+kq8ca/kxK+Z/UBMGxTpVGKaExtCl+HQ+qezL/60ti2xeEarVtqRbFufv25/9hhQqQUkAJSpNZIxxAo8DhxNeTnWctfbNeppvjXntAWpODcXW1dWnXo3d6qURF0k2635ezOw5v+WeLe+w0huqc8GjsRl4gmPI9Y0lldEEIluYB7cjKXE5DEW56RTleujkdZPvTaWTN5X8DDeZaS7S3U7SU5x43C7S3Q4c1bdfRvpbC/5giAp/kApfkHJfkHJfgHJfkM0VfjaU+dhQ5mNjmY8N5T7Wl/r4dUslVYHavxiboopMqhyDgEFkhaB68CDFBMhkHY7gz1SEfmKDcwnr037Gb1aB8Tf5+tbAr54Qv3oq+JQK4FewX4d3ptpIOKGJyK6EfL+L/GAqeaSR7/CS6fTgcaWHHykePO4M0t0eXM7at0+FQiHKfaWUVZVS5i+j3F9BWbCC9YEtrAmVssZZwRp3gE1pNX68NTLFF8tYGLM5g4lZE8noeTwLfT15f/km7M9Q5/wOsGf/Tpw5sS+7981XgpJASlSaICZJmUF4PPB4a+0zDXRZFfO6O/UnKtXb8m/R+hSReN/85xX++sxFPJ66mMoUav0r2Vg36aExdK6chHGMJoQLTK2bMmpJT3EysEsmg7tmMaRrJn0LvPTM99A1O32n37VhrWVjuZ9fNlfwy6ZKftlSyS+bKli1qYLlG8pZtr6c9WW+xi8Uw29dbKALOLqAYwypQLcqcGDJS6nEa9fgCCyjwv8T68yPrEhbRqVrQ5MX99ZlcxpsTgvwEwHCv/TXxzcIEb5PsvHZqvA9lM5GWzUqJQijt3jZzTOE7j0Op7TTRD7+NcS8lZux3wNsqrNfeoqTQ0d044TdiynppjUobYESlUZEkpQniE9S/t5It9g7fYYC39TTrvruoK93KEiRJLLww+e54dnzmZv1M7aOIXx3qB/5VVNItxMJmlSsY9uoRl2K8z2M6ZXH2F557FqcS+9OGW3mNlJjDHkZbvIy3PX+Utxa6WfZ+nKWbyhn6foylq8PPy9ZV8avW5p++kYIwzp/OusoBoohZS8ACgOQjqEgtZLM0FocvuVUVf3IxuB3rHMuYVX6pjo3PmtLvD4YVuZluLsHgzuPIr3rJEpzR/Plr5W8uXQjW5cFYNnGBq9R0i2LY8f25LCR3chMa+6mOdIa2vhfv8SqJ0l5urF+1trFxpjlhPdSOZDw4tua184A9oy8rW8KSaTD+Pr/XuKquWfzbPbKWtM7xqbiCe5Jt6pD8Dn6AhCsJ9fwprrYs38nJg3qzMQBBRRm7Zz1E60lMy2Fod2z67zDZEuln5/WlvHjmlJ+XBt+/LCmlGXrywmEmj4LXBGwLA+kAkXhh2v36G+Hwa4UCjMc5DjL8ATX46z6hWDVMsorl1DuX85m+ysbHJVscPlZnxpq8aTG2PB6ks5+NwWhdIqcufTJ7EGPToPILNiFQPYQ1jo78/2acr5dvYU315URWgfwc6PX7pnn4eDhXZk6vKtGT9qwpN5Cvy5N2UI/0s5JeOHs0YRHk5sykhLbv3oL/XLCW+gvrVF/MfBntIW+dHC/LlnI1fcezQPp39S688ZhveT4ppIXPBx/A7cN53pSmDKsK1OGdWVMr7wOv325Pxhi+YbySAJTxg8xiczWysZved4ebqeDfK87/Mhwk+O2eGwZHipwhcpxBMswgVJMoAzr34STAA4sDizGhJ8dxpDizsSZmkVKahau1CysOxObVkAgLZ/NVSE2lPlYV1rFyk0VrNhYwdqtzTvLdVCXTCYOLGDqsG4M7Z6ltSetpCW30E/6RMUYk0v8jOenQA/ChxTeHFNeWb1OJJKkPEb4EMPqhbO1RkUa+brZhJebdSE8tXOCtfYTY4wbOAW4nfAysHuttWc357PV83WVqEi7ULFlA3/93xncVPl2ra3rnTaXvKojyLIHE6jnvtJUl4MDh3bh8JHdmdC/EynOjp2cNIW1lrWlVfy4piw6fVT9WLa+DH8w+X5udPK6Gdc7n4kDCthrQAFdstv3CFt7oURlO8SMoDTmEWvtSZE+ewH/ipT7gQ2N9D2/rtEWY8wo4A3CJyhD+M6eNLadGvImcKi1tnn/NKiDEhVpD95+5mbOWnAFP2TF34XisBl0qjoKrz2cYD2H6/TulMHMcT05alQROR6dgdNSgiHLyo0VLFlfxpK1peEEZn05y9aX8cumSnzB5t2dtDOlpTjo3zmT4UXZjCrOZXRxHj3y0jVqkgA6lLD1xf7TLAUobKR9el2FkRGUEuCPwFTCIzllhBfbPgI8bK1t+9/9Ii3k1yUL+d1dU3kyaxnE7CVmrJss/yF0CswgYDx1bLUFew8s4NQJfdi9bz6ONrIYNpk4HYae+R565nuYOKAgri4UstFpl5WbKli5MXxn0spN4SmYdaU+1pZW4Wvmrdbbw2Gga3Y63XPTKcpNpzgvg4FdvAzskkXPPE+bWSgtLSfpR1Q6Go2oSFtkQyGemv1bzl12Lxtj98KwkB4aT/eqM/GbTrX6OQxMGdaVs/buq8WObZy1ljJfkHVbq1hfVsX6Uh9lvgClVUHKqgKUV4VfVwaChEKWYMgStJZQyBKy4HY5SHU5SHU5cbscpKU4yElPITfDTY7HTZ7HTW5GCoVZaZrmawc09SP1UqIibc2GVT9y1q2TmJsdfxeGK9SV7hVngmNUnf0OGdGN3+03gN6dMnZGmCLSgjT1IyLtwptz/8TJH1/BquyYKQHrJMc/ndzgMYQctX8E7dm/E388cJAOfBMRQImKiLSCgK+Sq67fhz+5FkDMgEhKqBc9Kn5H0NGn1okqfQoyuOaQEvaqsT5CRDo2JSoi0qJW//Qlx94xkfdyY7Yot47IKMpxBB3x+6Onpzg5b9/+nDKhd4ff/0REalOiIiIt5v2X7mTG/AtYnbttvMQZKqCo8mIwg2uNokweXMh1h5XQLafOG+dERJSoiEjLmH378Zyz4QkCMVM96cHxdK26kKCJXxCbnZ7CtYeWcNjIbtrjQkQapERFRHZI0O/jD1fvxm2pn27bA9q6yPf9Bm/o0Fpn8kweXMisI4bSuZ2fwSMiO4cSFRFpti1rV3DcrFG8mrMmWuawORRVXI4xg+PaprocXH1ICceO7aFRFBFpMiUqItIsq3/6kgPvHMcXOZXRMneoH90rryRk8uPa9uvs5a7jdmFQl6yalxERaZASFRHZbj998R77P7ofP+ZsO4k3I7A3Bb7zCZn4M3qOGlXEdYeV4HHrx42IbD/95BCR7fLlB89wwMszWJ0VuYfHQnbgWHICM4ndg9LlMFx9yBCOH1+sqR4RaTYlKiLSZP9+7X6mfHAmm6tv4rEO8n3n4A0dENcuL8PNPTN3ZXyf/NoXERHZDkpURKRJ5r9yDwctOIfSyM06xqbSueoS0uyYuHaDu2bxwAmjKMr1JCBKEUk2SlREpFEfvnpvOElxh987rJeuldfiYmBcuz37d+KembuSmZZSx1VERLafEhURadCHr97Lgf8+OyZJyaJb5Q046RPX7shdu3PTkcO1Db6ItCglKiJSr//7x4NxSYrT5tK18kac9Ixrd86kvly0/0AtmhWRFqdERUTqtPDD55nyr9Oja1KcoU50rboRJ93j2l1x8GBO3bNPHVcQEdlxSlREpJYlX77P/i8excYMC4DT5tGtahYOusW1u/7wofzP+OJEhCgiHYQSFRGJ8+uShez/yGR+ieyT4rBZdKm8Pi5JMQb+PG04R4/ukagwRaSDUKIiIlFb1q7goDvG8kOOHwBjM+hSeR0uto2aOAzcNmMkh43sXt9lRERajJbniwgAAV8lM2btwmc5FQAYm0Zh1bWk0C+u3c1HjVCSIiI7jRIVEcGGQpx/5Rj+kbMuUuCkwHcZqXZQXLvrDyvhqFFFCYhQRDoqJSoiwp23Tucez8LwGwv5/t+SHto1rs1lUwbxP7v12vnBiUiHpkRFpIN75fGruLDsuej77MBMvMHJcW3O26cfp+/Vd2eHJiKiREWkI1v44fMc8831hCI/CbyBA8gJHBvXZsboHly434AERCciokRFpMPavGY5Rz43g7LIrrNpwVHk+86Oa7P3wAJuOGKodpwVkYRRoiLSAYWCAU740zi+zwrfhuwKFdHZdzEYZ7TN0O5Z3H3crqQ49WNCRBJHPxNDh3EAACAASURBVIFEOqBZNx7ISzmrAXDYDDr7rsCQEa3vnpPOwyeNISNVWy2JSGIpURHpYF5/6jquCr0TfmMddPJdTIrddstxhtvJwyeNoXNmWoIiFBHZRomKSAey/OsFzPzyGmxkyUlu4GTSQ6Pi2tw2YyQDu2QmIDoRkdqUqIh0EAFfJcfNPoCNaeGDBj2BiWQFjohrc9H+A9i/pEsiwhMRqZMSFZEO4pobJvNh7lYgvHg2339uXP3U4V05Z1K/urqKiCSMEhWRDuCdZ29hluNDIHyGT4HvMhykR+sHd83ilqNG6DZkEWlzlKiIJLk1Sxdx/H8uCa9LsZDnPwe37Rmtz0x1cd/xu5LudtZ/ERGRBFGiIpLEbCjEyf87idUZIQC8wQPxBifFtbll+nCK8zPq6i4iknBKVESS2AN3nMBrOWsBSAn1Is9/elz9KRN6c+DQrokITUSkSZSoiCSpHz9/l9+tfQIAY9108v0Bgztav2vPHC45aFCiwhMRaRIlKiJJKOj3ceKcw6Pn+OT4T8Jti6P12ekp3KXt8UWkHdBPKZEk9NdbjojeipwWHE1W8NC4+puOHEa3nPS6uoqItClKVESSzFfzn+WKitcAcNhsOvnOj6ufMboHBw3TuhQRaR+UqIgkkYCvkt88ewI+F2Ah33c+TnKj9b07ZXDVIUMSF6CIyHZSoiKSRO746ww+zikHICO4L57Q2Gidy2G4fcZInYgsIu2KEhWRJPHTF+9xRelLADhtPnn+0+LqL9xvACN65CQiNBGRZlOiIpIEbCjEmX+bRkUK4d1nfefiwButH9EjhzP26pO4AEVEmkmJikgSeOzeM3krdwNQPeUzJlrndjq49ajhuHQrsoi0Q/rJJdLOrVm6iAt/fhCof8qnf2FmIkITEdlhSlRE2rk/3HUoG9JtZMrnnPgpn6JsTtuzdwKjExHZMUpURNqxD16+i0czfwLAE9oj7i4ft9PBrdNHaMpHRNo1/QQTaacCvkrO+ecfADA2nVxf/IGD5+3bT1M+ItLuKVERaafuuX0mX2VXApDj/x9c5Efr+nf2cvpefRMVmohIi1GiItIOrf7pS67c9BwA7lB/MoNT4+pnHTkMt0vf3iLS/uknmUg7dPE9R7AlFbAO8nznYGK+lY8Z04MxvfISF5yISAtSoiLSznz46r08FllAmxk8hFTbL1qXn+HmkoMGJSo0EZEWp0RFpB0JBQNc+HZ4Aa3T5pHjnxlXf8XUweR43IkITUSkVSR1omKM8RhjDjLGXGGMec4Ys8wYYyOPa5p4jUJjzF+MMYuNMRXGmA3GmA+MMacaY0wT+vc1xtxvjFlijKk0xqwxxrxhjJm2wx9QOpynHjiPj3LKAMjxn4QDT7Ruj375HD6ye6JCExFpFcl+jOpY4LXmdjbGjALegOjtFKVAJjAh8phujDnUWltVT/8pwDyI/jbZErnW/sD+xpi/AadYa21zY5SOo3zzOi75cTZ4wR0aiDe4T7TO5TBcd9hQmpA7i4i0K0k9ohKxEXgHuAU4FljdlE7GmGzgFcKJxbfAGGttJpABnAv4CScct9XTvzcwl3CS8iEw0FqbDWQD10WanQz8oVmfSjqc2+44lhXeIFhDnu+MuLqT9+hF3wJvPT1FRNqvZE9UPrDW5llrJ1trL7bWPg3UOfpRh4uALkAFMMVa+zGAtdZnrb0buDrS7nRjzIA6+l9HOKlZDUy11n4X6V9qrb0amB1pd7kxJrdZn046jNU/fcmfKt8GICO4D6l221+5Tl43v923f6JCExFpVUmdqFhrgzvQ/YTI89PW2iV11N9JeCrICcStaDTGZADVa1DutdZuqqP/nyLPWcDhOxCndABX3DudMndkB1r/SXF1Fx8wiKy0lMQEJiLSypI6UWkuY8xAoGfk7et1tbHWlgIfRN7uX6N6ApDeSP+lwDf19BeJ+uL9uTyc8R0A2YFjcLJtAG54UTZHjSpKVGgiIq1OiUrdhsa8XthAu+q6IQ30X9SE/iVNjEs6oEufPxdrwBXqSlbg0Li6qw8pweHQAloRSV5KVOrWLeb1ygbaVddlGWNiVzJW999orS1vQv9uDbSRDuyDl+/i9Zy1AOQETsCwbYrniF26M6pYy5tEJLkpUalb7JGzDSUasXWZdbxuqG9sfZOPuI3ZB6bOR1OvI22fDYW49J3LAHCHBpAR3DNal5bi4I8HagdaEUl+SlRE2qjXnrqOD3O3goVc/8lxdadM6E2X7LQERSYisvMoUanb1pjXnnpbxddtreN1Q31j67c22CqGtdY09GjqdaRtCwUDXPbxnwFID40hLTQsWpeX4eaMiX0TFZqIyE6lRKVuq2JeN7QneXXdlshdQDX75xpjGkpWqvuvaqCNdEBPP3A+X+ZUgnWQU+N25N/u00+3I4tIh6FEpW6xd/oMrbfVtrqvG+jf0B091f0bujNIOhh/ZTlXfR/eD9AbnIzbFkfreuZ5mDmuuL6uIiJJR4lKHay1i4HlkbcH1tUmsqlb9erGN2tUzye8o21D/YuBwfX0lw7s4XtP48esAMamkl3jdOQ/HDAQt0vftiLScegnXv0ejTwfY4zpVUf9OYAXCAJPxFZYa8uAZyNvz4qcG1TTHyPPW4EXdjRYSQ5VZVu4YdXfAcgMHIIreh4mjCjK5uBhXRMVmohIQiR9omKMyTXGdKp+sO0ze2LLa+yDAnAr4XN6PMCrkZOUMca4jTFnAddH2s2uPsenhquAMqAr8LIxpn+kf4Yx5irgzEi7G6y1G1vq80r7Nmf2WazwBjE2nazAkXF1lxw0WJu7iUiHY6xN7q03jDFLgaZM6j9irT2pRt9RwBsQ/WftViANortuvQkcaq2t86BDY8wUYB7b7u7ZTHgUxhl5Pwf4jW3BP4TqvVSS/c81GfkqSul/VQ7LvUGy/ceQEzg+Wrdn/048dsq4BEYnItJ0xoT/UdUSd6Mm/YjKjrDWfkJ4MextwPeEE5QywmtQTgMOqi9JifR/DRgOPAAsJXz+zybgLeAoa+3JLZmkSPv26OxzWO4N4rAZZAXiz6n83X51HdAtIpL8kn5EpaPRiEr75K8sZ8AV2SzNDJDjP57swDHRun0Hdeahk8YkMDoRke2jERWRJPP4A+eyNDOAw2aRWePgwQs1miIiHZgSFZEEC/gquXHpYwBkBabhiNnQ+MCSLgztXtdNYyIiHYMSFZEEe/KB8/gxK4DD5pAZODhaboxGU0RElKiIJFDQ7+PGn+YAkO0/CgfbDhqcOrwbA7s0+WBtEZGkpERFJIFeeOxyvsvy47BZeIPbNjF2GLhgcv8ERiYi0jYoURFJEBsK8eev7gUgK3B43GjKISO60beg5h6EIiIdjxIVkQR578Xb+SinDGMz4tamAJwzqV+CohIRaVuUqIgkyE3/mgVAVmAqDjKi5QeUFDKgUGtTRERAiYpIQnz23lO8mbseY9Nq7Zty7iStTRERqaZERSQBbn75EgC8gQNxsm2flL0GFDCsSPumiIhUU6IispP99MV7zPUuB5tS64Tkc7U2RUQkjhIVkZ3sL0/+lpADvMHJuMiLlo/tncfY3nkN9BQR6XiUqIjsRGuXf8PDKQvBOsgKTIur02iKiEhtSlREdqLZj5xHZQp4QruRYrtEy4cXZbNn/04JjExEpG1SoiKyk/gqSrl767tgIcsfP5pyxl59o8eii4jINkpURHaSuXP+wC8ZIVJDJaTabYcN9shL54CSwgRGJiLSdilREdkJbCjEbd89AlDrTp9T9uiNy6lvRRGRuuino8hO8OFr9/FpTgWuUBGe0LhoeXZ6CtNH90hgZCIibZsSFZGd4PZ3q7fLPzyu/PjxPclIdSUiJBGRdkGJikgrW7pwPs9nrsRhc/AG94mWu50OTtytV+ICExFpB5SoiLSyu566gJADMgMHY3BHy4/YpTuds9ISGJmISNunREWkFW1dv4oHQ59grJvMwJS4ulP37J2gqERE2g8lKiKt6PE5v2dzGmQEJ8YdPjhpYAH9CzMTGJmISPugREWkldhQiHtWPg8WMgOHxtWdMqFPgqISEWlflKiItJL5r97DwuwqUkNDcdtt0zz9OnvZo19+AiMTEWk/lKiItJJ73rsFgMzAIXHlJ+7eS9vli4g0kRIVkVaw+qcveTZjOc5QAZ7Q+Gh5ZpqLI3fpnsDIRETaFyUqIq3goSd+j98JmcEpGJzR8hmje2iDNxGR7aBERaSFBXyV3L/lnxjrxhs4IFpuDJygDd5ERLaLEhWRFvbq09fxszcYuSU5K1q+76DO9Mz3JDAyEZH2R4mKSAu759PZdd6SfNLu2uBNRGR7KVERaUHff/IWb+auJzVUoluSRURagBIVkRb0wHOXA+ANHhhXfuJuxbolWUSkGZSoiLQQX0UpcwIf47BZZAQnRMsz3E6O2LUogZGJiLRfSlREWsjLT13LWo/FG9gXQ0q0/LBduuPVLckiIs2iREWkhTz41RywBm/woLjy48b2TExAIiJJQImKSAtY/vUC3sheR1poOCm2W7R8RI8chnbPbqCniIg0RImKSAt4eO6lWAPeQPxoysxxGk0REdkRSlREdlDQ7+Phsvk4bW6tc30OGd6tgZ4iItIYJSoiO+itZ28O70Qb2A/DtkWz03YtIt3tbKCniIg0RomKyA568L/3gXWQWWPvFE37iIjsOCUqIjvg1yULedG7krTQrrhs52j52F559C/MTGBkIiLJQYmKyA549Kk/EnCCN7BfXPlxGk0REWkRSlREmsmGQvxt3ds4bBae0LhoeXZ6CgcO7ZLAyEREkocSFZFm+vidx/gm20dGYJ+4RbSHj+xGWooW0YqItAQlKiLN9Og7fwEL3mD8tM/00T0SFJGISPJRoiLSDL6KUp5iIW47ALctjpYP6ZqlnWhFRFqQEhWRZnj179ezPt3WWkQ7Y4xGU0REWpISFZFmeOSLRzE2lYzgXtEyt9PBYSO1E62ISEtSoiKyndb9vJhXM1fjCe6Og4xo+f4lheR43AmMTEQk+ShREdlOTz19eXjvlKCmfUREWpsSFZHt9Miq13GFupAWGh4t656Tzu59OyUwKhGR5KRERWQ7LPr3i3ySU05GcHJc+bRRRTgdJkFRiYgkLyUqItvh0ddmgTV4g5PiyqePKkpQRCIiyU2JShMYY/Yzxsw1xiwzxlQaYyqMMT8ZY54wxkxspG+mMeYaY8xXxphSY8xmY8xHxpjfG2O08rIdCfp9PO77mNTQEFy2MFo+rncePfI8CYxMRCR5uRpv0nEZYwxwL3BGTHElYIHekcdxxpjbrLW/q6N/MfAe0CtSVA6kAqMjj5nGmH2ttRtb6zNIy3n3hb+yKiNEnm+fuPIjd+2eoIhERJKfRlQadhLbkpRngAHW2nRrrQcYBLwYqbvQGHNEbEdjjBN4mXCS8guwn7U2A/AAxwBbgV2AJ1r5M0gLefI/D4FNISO4R7Qs1eXgoGFdExiViEhyU6LSsBMizz8Ax1prv6+usNYuBqYDP0WKjq7R9yRgWOT1NGvt25F+IWvt39mWAB1kjNm3FWKXFlRZuonn3D/gCY3FgTdaPnlIIVlpKQmMTEQkuSlRaVj1P5W/sNYGalZaa/3A55G33hrVJ0ae/2mtXVDHtZ8GlkRen1BHvbQhr82bxZZUyAjUmPbZRdM+IiKtSYlKw6pHS0YYY2qt5zHGpAAjI28/jin3ANXzA6/XdWFrrQX+EXm7f4tEK63mya+exGGzSA+NipblZ7jZa0BBAqMSEUl+SlQadm/kuR/wlDGmX3WFMWYgMBfoA/wI3BbTbzDb/t8ubOD61XVdjDF5LRKxtLgta1fwSsZKMoJ7YWLWnx8yohspTn0LiYi0Jt310wBr7cvGmAuBPwNHAUcZYyoi1enAJsLJzBXW2i0xXWNPplvZwJeIresGbGgsJmOMbUrs0nKen3stVS7IrYzfO+UITfu0mC1btlBaWorf7090KCLSiJSUFLxeL1lZWTvl6ylRaYS19nZjzPfAw0BnwglKtVQgE8gmPsnIjHld3sDlY+sy620lCfXUD8/jyupOqh0YLetTkMHwouwERpU8Nm7cyOrVqxMdhohsh82bNxMMBsnNzW31r6VEpQGRtSZ/I3xHz8fA8cCngCF8a/GsSNmBkf1QvmztmKy1De7TrhGXlrVm6SLezlqPN3h8XPmRu3QnvM2O7IgtW7ZEkxRjDGlpafr/KtKGWWuprKzEWsvq1atxOp2tPrKiRKVhtxBOUr4D9rLWVsTUvWWMmU/4rp8BwN3AnpG6rTHtGtqyNLZua72tJGHmPXMtQWPwBveOKz9spKZ9WkJpaSkQTlKKi4tJT09vpIeIJFpFRQXLli3DWktpaWmrJypaCVgPY0wmcHrk7V01khQAImV3Rd5OMMZ0jrxeFdOsod9osXWr6m0lCfPkin+QGhqEy3aJlo3VlvktpnpNSlpampIUkXYiPT2dtLQ0gJ2yrkyJSv0GsG3E6ccG2n0f87p35PkbIBR5PbSBvtV1q621jS6klZ1r6cL5/Dt3K57gXnHlWkTb8jTdI9K+7MzvWSUq9QvFvC5uoF1hzOutANbacuDDSNmBdXWKnCN0QOTtm82MUVrR0y/cANZBRnBCtMzlMBw0tEsDvUREpCUpUanft0D1dM+p9Wz45mTb9NBGYHFM9SOR50nGmHF1XH864T1YAB7d8XClpT29/l+khYbhZNuq9r0GFJDj0aHXEu+aa67BGFPrMXnyZAACgQDGGO67775on/vuu4+XXnqp1rVuuukm3n///RaL7YUXXsAYw4oVK1rsmg254oor6NJFyby0HCUq9YisP3kw8nZX4GVjzDBjjCPyGA68BuweaXO7tTYYc4lHgK8I3yH0bPV5PpG+04EHIu1et9a+09qfR7bPdx+/wRc5lbWmfQ4ZoQMIpW7Z2dksWLAg7nHnnXcC4HK5WLBgAUceeWS0/c5KVETaO93107A/Av0JT99UP6oidakx7Z4CboztaK0NGGMOBf5J+ATlt40x5YSTw7RIs8+Ama0VvDTfM6//BawLT3D3aFmqy8HkwYUN9JKOzOVyMX78+HrrG6oTkfppRKUBkVGVKYSnaV4EVhAeIQH4GXgWmGqtPa7GaEp1/6XAcOA6wtvlW8APfAJcBIy31m5s5Y8hzTBvw3zSQyNxxuzDt8+gzmTqpGRphppTPxMmTOCLL77goYceik4TPf744xQVFbF582auvPLKaPn8+fMBCAaD3HjjjfTt25fU1FQGDRrEY489Fvd1rLVceeWVdO7cmaysLE4++eToLeANefDBBzHG8MknnzBhwgTS09MZOHBgnSM+d9xxB/369SM1NZX+/ftzxx131Htdv99PYWEhN954Y626PfbYg6OPrnnovEhtGlFpROTwwGcij+b03wpcHXlIO/DDZ+/weU4F+b6a0z7d6ukhLWrCBNhJ6ynqVVQEkQRhewQC8YesO53OOu+OmD17NocffjiDBw/m0ksvBaBfv36UlJSw1157MXPmTE466SQASkpKADj77LN58sknufrqqxk5ciRvvPEGJ554IgUFBRx4YHjN/l//+ldmzZrFFVdcwe677868efO45JJLmhz/0Ucfzdlnn83ll1/O7NmzmTZtGp999hlDh4ZvULz33nu54IIL+P3vf89+++3HO++8wwUXXIDP5+Oiiy6qdb2UlBROOOEE5syZw+WXXx4t//777/n3v//Na6+91uTYpAOz1uqRRA/CozZWmu9P1x9gzdVu2+OPc23xH1+xxX98xQ658nVbXhVIdGhJZ+nSpfbrr7+2S5cu3VZYXGwtJPZRXLxdn+Pqq6+21d97sY+33nrLWmut3++3gL333nujfUaMGGFPOeWUWtfKzs62119/fVzZt99+awH7+OOPx5Ufe+yxdvz48dGv0blzZ3vuuefGtZk0aZIF7M8//1xv/A888IAF7J///OdoWSAQsH379rUzZ86MXr+wsNCeeuqpcX1PO+00m5OTY6uqqqy11l5++eW2sLAwWv/NN99YwL7//vvRsksvvdR269bNBgL6nmqv6vzejRHzu2iHf69p6kekhnnr3yc9NAZHzMbB+w0pJN3tTGBU0tZlZ2fz0UcfxT3Gjavrhr/t9/bbb5OSksJhhx1GIBCIPvbdd18+/fRTQqEQS5cuZc2aNRx22GFxfY844ogmf53Ytk6nk8MOO4z//ve/ACxfvpxff/2V6dOnx/WZMWMGmzZtYtGiRXVec9CgQey+++7MmTMHgFAoxGOPPcYJJ5yA06nvKWmcpn5EYvz0xXt8mlNBp6r4aZ9DR2raZ6cpKkp0BM2KweVyMXr06FYIBtatW4ff7yczs+6zS9esWRM9M6lz585xdTXfN6Suvr/88gtA9LmwMH5BefX7DRvq37PylFNO4fzzz+eOO+5g/vz5rFixgpNPPrnJcUnHpkRFJMa8V/6Msemkh7b9wslOT2FCv4IERtXBNGNtSLLLy8vD7XYzf/78Ote85OfnRxfNrlmzJq6u5vuGrFmzhuzs7Lj3XbuGb8mvfq55vV9//TUaY31mzJjBBRdcwLPPPsvrr7/OHnvswYABA5ocl3RsmvoRifHMuvfxBMfhiLn7/KChXXC79K0iLcvtdlNZWdmk8n322Qefz0dpaSmjR4+u9UhJSaG4uJiCggJefPHFuL7PP/98k2OKbRsMBnnppZcYO3YsAMXFxRQWFjJv3ry4PnPnziU3Nze66LcuGRkZzJgxgzvvvJMXXnhBoymyXTSiIhKx5Mv3+TinnIIq3e0jrW/QoEH885//5M033yQvL48+ffqQl5fHoEGDeOWVV5g8eTJer5dBgwZRUlLCaaedxvTp07n44osZNWoUFRUVLFq0iJ9++on777+flJQU/vCHP3DJJZeQl5fHHnvswdy5c/nuu++aHNP999+Py+ViyJAh3H///SxZsoTnnnsOCK9ZufrqqznnnHPIzc1l33335Z///CcPPPAAN998M253wzs2n3LKKey2225kZGTotmTZLvpnokjEM9Fpn12iZZ28bsb1rn9IW6S5rrrqKgYMGMD06dMZM2ZM9Fbdv/zlL6SmpnLwwQczZswYPv/8cyC8k+1ll13GnDlzmDJlCieffDKvv/46e+65Z/Sav//977nkkku4++67mTZtGlVVVfzpT39qckxPP/008+bN4/DDD2fRokXMmzePYcOGRevPOussbrvtNp555hmmTp3KvHnzuO222+q8Nbmm8ePHU1hYyFFHHVXvWhuRupjwXUStdHFjPMCewERgN6AbUEB4Z9b1wFrCJw3/C/iXtXZxPZeSJjLGhO9RbsU/12Q19kIvi7yjKfD/IVp23LiezDpiWAO9ZEcsW7aM8vJyPB4PxcUNnf0prenBBx/ktNNOo6KigrS0tMY7NMOXX37JiBEjeO+995g4cWKrfA3ZeRr73q1eS2Wt3eFjlltl6scYsytwBnAskFFdXKNZ98hjJHBMpN9nwP3Ak9bastaITaQuyxZ9yEc5ZRRU7RFXPmWozvYR2RHr1q1j8eLFXH755YwYMUJJimy3Fk1UjDEjgVuBSWxLTCqBTwmfa7MO2ED4VOK8yKM3MA7oSfjwv/uAm40xs4D/tdb6WjJGkbo89/ItGJtKWmjXaFmOJ4VxfTTtI7IjXnjhBU4//XQGDx7M448/nuhwpB1qsakfY8wc4HjC617WAnOBJ4GPrLWBBrpW9+8MHBa5xoRI8TLgRGvtBy0SZAegqZ/m2euCbD7JGkaB79Jo2fRRRdwyfUQCo0p+mvoRaZ925tRPSy6mPQH4lvB0Tzdr7W+ttQuakqQAWGvXWGsfsNZOBPoAswmvaZnUgjGK1LJm6SI+zN6CJ1hj2meYpn1ERBKtJROVY4Fh1tq/2zpOEt4e1tpl1tqzgH7AOy0SnUg9Xn7pFqxxkx7ctslbZqqL3fvlJzAqERGBFlyjYq39e0tdK+aaK4AEH6Mqye6FJa+TlrlL3Nk+k4cUkurSOSQiIommfVSkQyvdsJq3vGtqTfscOLRLgiISEZFYrZqoGGO2+5YJY4zuXZOd5h/P30KV04UnODZa5nE7mThAZ/uIiLQFrT2i8qUxZu+mNDTGOIwxNwBvt25IItu88PVzpIVG4MAbLZs0qDNpKZr2ERFpC1o7UekGvGWMucEYU+9PfmNMMTAfuHQnxCQCgL+ynFfcS/EEd48rP0jTPrKdrrnmGowx0Ue3bt2YNm0aP/74Y6t+3aOOOoq99947Lo5OnTo1ub/P5+Oaa66JbtNfbenSpRhjeOWVV1oq1B0yZ84cjDHRE6Kb6s033+T2229vpah23HvvvYcxhoULF25Xv9mzZ/PCCy/UKu/Vq1eTjjNob1o7KZgHOAknIB9EEpI4xpgZwOfAeMKbw53TyjGJAPDey3ewOdWBJzg+WpbqcjBpYOcERiXtVXZ2NgsWLGDBggXceuutfP755+y7776Ule28TbZPPfVU3njjjSa39/l8XHvttbUSla5du7JgwQImTJhQT8+d6+CDD2bBggV4PJ7GG8do64lKc9WXqDz//POcd955CYiodbXq6cnW2hnGmLeA2wknIl8YY8601j4dOQfoLuBEwrvYLgSOsdZ+3ZoxiVR74eMnSEsdipPsaNnEAQVkpOpQcdl+LpeL8ePDSe/48ePp2bMne+65J6+99hrTp0+v1T4YDBIMBhs9dXh7FBUVUVRUtMPXSU1NjX6WtqCgoICCgsSvG6usrGy1s5Bawi677NJ4o3ao1adZrLUPAqOBL4Es4AljzJOEt9U/iXCScg8wRkmK7CyhYIAX7NekB+N/GOtuH2kpo0aNAsLTKAAnnXQSo0eP5oUXXqCkpIS0tDT+85//ALB8+XKOOeYY8vLy8Hg8HHDAASxeHH9G688//8yUKVNIT0+nV69ePPjgg7W+Zl1TP+vXr+eMM86ga9eupKWlU+kcJgAAIABJREFUMXDgwOgoQ/UpxieffHJ02mrp0qV1Tv0Eg0GuueYaevbsSWpqKiUlJTz55JNxX6v6M7711lsMHz6cjIwMJkyYwKJFi+LaPfTQQ5SUlJCenk6nTp2YOHFirTaxak79VMc3d+5czjjjjP9v777jpCrv/v+/PltnK70uSLGAiAgqgpEYBAE1aqKIaGyYxBhJvG+xxogK/lKMSsQ7MepPxR4VEayggiAI0osCKjYQkSZFQJe6c33/mLIzW2bbtN15Px+Peew517nOmWvOHmY/XJVGjRrRrl077rzzTrxeb/BejBs3jq+//jr42UaMGBG85ty5c/nZz35Gbm4uzZo146qrrmLPnj3l3nPRokX079+fnJwc7r333uB7//e//+Wyyy6joKCAli1bMnbs2HLlnjlzJn369MHj8dCqVStGjhxZZfPVuHHj6N27N40aNaJVq1acc845fPHFF8Hj/fv3Z+nSpTz11FPBz/Xkk08CFTf9TJw4kWOPPZbs7Gzat2/PbbfdxqFDpfOwBj7nypUrGTRoEHl5eXTt2pXJkydHLGc8xaU/iHPuU+AkfDUoBgwHjsK39s8vnHN/dM7tj0dZRACWvPsMG3O95HpLA5X0NGNAVzX7SHQEApTWrVuHpd18883ceuutTJ06lU6dOrFjxw769evHmjVrePjhh5k4cSI//vgjp59+Onv37gV8S2L84he/YNWqVTz++OP885//5IEHHmD+/PkRy7B371769+/PK6+8wu23387UqVO54YYb2LhxI+D7QwowevToYLNVmzYVz8h8xx138Ne//pXf/e53vPbaa5xyyilccsklPP/882H51q9fz0033cRtt93G888/z9atW7nwwguDy3rMmTOH3//+91x66aVMmzaNCRMm8JOf/IRdu3bV+B7ffPPN5OfnM2nSJC699FLuuusuJk2aBPiawX71q1/RunXr4Ge7/fbbAZg3bx4DBw6kdevWTJo0ifHjxzN16lSuvPLKcu9x8cUXc/bZZzN16lTOPvvsYPpNN91Ebm4ukyZN4qqrrmLs2LE8+OCDweMff/wxZ5xxBs2bN+fll19m7Nix/Pe//+WCCy6I+Jk2bNjAH//4R1599VUeffRRSkpKOOWUU4L35z//+Q9du3blrLPOCn6un//85xVe65133mH48OEcf/zxvPrqq1x77bXcd999/PGPfyyX91e/+hXnnnsuU6ZM4cgjj+Siiy5iw4bkmMYsnnXchfhmmnWEL1hY86dTpI5eef9RMtM6keFKA5M+nZrSODd61fBSO/0m9GPD7sR+QbYrbMfcX8+t8XmB/6l+9dVXjBw5koKCAk4//fTg8e3btzNjxgx69uwZTLv99tv58ccfWbFiBU2b+mZ0OOWUU+jYsSMTJkzgD3/4A9OmTWP58uUsWLCAPn36AL4am8MPP5wjjzyy0vI8/fTTrF69mmXLlgXfc8CAAcHjvXv3BuDwww+P2NSzY8cOxo8fz+jRoxk9ejQAQ4YMYcOGDYwZM4aLL744LO+8efOC5fJ6vZx33nmsWbOGrl27smjRInr06MGtt5auq3XuuedGuq2VOvXUUxk3bhwAgwYN4q233mLy5MlceOGFtGvXjjZt2lTYjPWnP/2Jn/zkJ7z4Yuk8pUVFRQwcOJBVq1bRvXv3YPr//M//8L//+7/B/UAAeswxx/DII48E78XWrVv529/+xjXXXENaWhp33XUXHTp04LXXXiM93TeWpGnTpgwfPpz58+dz8sknV/iZ7r///uB2SUkJgwYNomXLlrz66qtcfvnldOvWjby8PFq0aFFl89wdd9xB//79eeqppwA444wzALj11lsZPXp0WDPhqFGj+PWvfw34nq1WrVrxxhtv8Pvf/z7ie8RDXAIVMzsdeBpoBZQADwDD8K2Y/K6Z3Q3c6ZzzxqM8IlN+XEpu7tCwtEHdWiWoNBJqw+4NfL3r60QXo8a2b99OZmZmcP+www7jxRdfDKuhKCoqCgtSAGbMmMGgQYMoLCwMBjoFBQWccMIJLFmyBIBFixbRqlWrYJAC0KFDh2DzUmVmzpxJr169yr1nTa1atYri4uJyfW2GDx/OiBEj2Lp1Ky1b+oL+jh07hgVP3bp1A3w1BV27dqVnz57cfPPNjBo1ivPOO4++ffvWup/O4MGDw/a7devG+vXrI55TXFzM/Pnz+de//hXWBNKvXz8yMzNZunRpWKBSWW3FeeedF7Z//vnn89hjj7FhwwYOO+wwFi1axAUXXBAMUgCGDh1KRkYGc+fOrTRQWbBgAbfffjvLli1jx44dwfTPPvss4ucqq6SkhGXLlpXrTDx8+HBuueUW5s+fH/b7DL2XzZo1o2XLlklToxLrCd/SzewfwFtAa2Ad0M85dxNwHPAyvlFBf6aSUUEi0fb50ul82ugAOSV9wtIVqEhdNGrUiMWLF7NkyRI2bNjAunXrOPPMM8PytGpV/hnbtm0bL774IpmZmWGvWbNm8c033wCwefPmYCAQqqK0UNu3b6+0KacmNm3aVGH5A/s7d+4MpjVu3DgsTyAI2bdvHwCnn346TzzxBHPmzKF///40b96ckSNH1mp0VEXvFXifyuzcuZOSkhJGjhwZdr+zs7M5ePBg8J6X/Yxllb33gf3Avdq0aVO5c9PT02nWrFlYABJq/fr1DB48GOccjzzyCPPmzWPx4sW0bNmyys9V1rZt2zh48GClv7OyZajNvYyXWNeozAN642vqeQG42jm3B8A5twsYZmZXAfcDJ+MbFXSNc+75yi4oUldvzvgP6d4WZLsjgmlHtymkXZOaDX2U2GhXWPdRK4koQ0ZGBieeeGLEPGblV7xv2rQp5557brD/RKhAZ9fWrVuzdevWcse3bt1KTk5Ope/XrFmzsI6YtRUIdrZu3UqzZqWLdW7ZsgUg2GRVXVdccQVXXHEF3333HZMnT2bUqFEUFhZy991317msVWncuDFmxpgxYzjrrLPKHW/btm3YfkW/M6Dc7yOwH7hXbdq0KZenpKSE7du3V3q/3nrrLYqLi3n11VfJy8sDfM2JlQU2kTRv3pzMzMxyZajt7yyRYh2onAT8CPyPc+6JijI45x41s/fxBTI9gGcABSoSM69vmk1uQfjaPqpNSR616RtSnw0cOJCJEycGR8FUpHfv3owdO5aFCxcGm3/Wr1/PsmXLOOWUUyo8J3Dtl156iY8++ogePXqUO162tqMy3bt3Jzc3l5deeok77rgjmD5x4kSOOuqoWg8dbtGiBVdffTWTJ0/m44+jP+izolqBvLw8+vbty5o1a8I+S01NmTKFa665Jrg/efJk2rRpE+z30adPH6ZMmcLf/va3YPPP5MmTOXToUKXz0+zdu5e0tDQyMkr/NE+cODGsiaqyz1VWeno6J5xwAi+99FJYOSdOnEhaWlqlTU/JKNaBygpguHPu80iZnHOfmtlJwH1A+e7IIlGya+t65hTupOmh8E5ogxWoSIJcf/31PPvsswwYMIBrr72WoqIitmzZwuzZs+nXrx8XX3wxZ511FscddxzDhg3jH//4Bx6PhzvuuKPKpp/LL7+cBx98kMGDBzNmzBi6dOnC2rVr+eyzz7j77rvJysqiU6dOTJw4ke7du+PxeCoMaJo2bcp1113HX/7yl2DN0eTJk5k6dWq5UT9VufPOO9mxY0ew2Wf58uXMnj07JrUpXbt2ZcuWLTz55JN0796d5s2b07FjR+655x4GDhxIWloaF1xwAQUFBaxfv54333yTv/71rxx11FFVXnv16tVcffXVDB06lDlz5vD444/zwAMPkJbm61ExevRoevXqxS9/+UuuueYaNmzYwC233MKQIUMqDRIGDBhASUkJV155Jb/5zW9YvXo19913X7lmma5du/L222/z9ttv06xZMzp16hRW0xUwduxYhgwZwpVXXslFF13EypUruf3227nqqquiMt9OvMQ6UOnrnDtQnYz+fP9jZm/FuEySwt5+7X5K0vLweEs7y7Vt5OGYtoUJLJWksubNm7NgwQJuu+02Ro0axffff0+bNm3o169fMGgwM1577TV+97vf8etf/5qWLVvy5z//menTp7Nt27ZKr+3xeJg5cyZ/+tOfuOOOO9i9ezcdO3Zk5MiRwTwPP/wwN954I6effjr79+9n7dq1FV7rrrvuIiMjg4ceeogtW7ZwxBFH8Oyzz3LRRRfV6PP27t2b+++/nxdeeIE9e/bQoUMHxowZEzayJlouvPBCZs2axc0338x3333HFVdcwZNPPkm/fv2YM2cOd955J5dddhklJSV06NCBM844o9I+KWXdc889vPHGGwwdOhSPx8Ptt98eNuz3mGOOYdq0afz5z3/m/PPPp7CwkIsvvph77rmn0msee+yxPPHEE4wdO5YpU6Zw3HHH8dJLLzF8+PCwfKNHj2b9+vVceOGF7N69myeeeCJsjpiAwYMH88ILL/CXv/yF5557jpYtW3LDDTdUOOdLMrPA2HZpGMzMAej3WrHLbzycl3Pa0+LgTaVpJ3fgrl90j3CWxMrXX39NcXExubm5dOigvvSS/NatW0enTp14/fXXw+ZVSTVV/dsN9O1xzlXcyacGtACgpIySgweYmrGWXG/4aJ/B3TQbrYhIsopaoGJmkafbq901i8ys/vT4kaS24J3H2e5JJ6ekdGRGgSeDPp3rT+93EZFUE80alYlmtsLMzrPKxnNVk5m1N7N/A18Ag6JTPEl1byx4Go+3B2mUDkM+rUtLMtNVsSgi1dOxY0eccynd7BNv0fyG/i9wLDAJ+NbM7jOzE6obtJhZCzP7jZnNBNYCI4EtwHtRLKOksNd/XE6uJnkTEalXojbqxzl3qZmNB8YBPwVG+V8/mtky4EPgO2AHsB9oAjQFOuObbyXQG8eA3cDdwP1arFCiYe1Hc1hduJ+ifaWBSma60b9L4peOFxGRykV1eLJzbgnwMzPrA1yDbz2ffOBUfMFLRUJrXD4EHgGedc5FXgtbpAbefPtfZLpOZNA8mNa3czMKPJkRzhIRkUSLyTwqzrmFwEIzuxb4Gb5ApQ/QFmgBeIDt+GpYPgbmAO855z6NRXlEXv92Fjn5A8PSBnSNPFmWiIgkXtQCFTM7F9jnnHsnkOZf1+cN/0skIfZs38h7BdtpUtI7LF2BiohI8otmjcorwCagKJDg7xi73Tk3rNKzRGJsxusPcCi9kOyDXYJpnVvk0aFZXgJLJSIi1RHtpp+yI3z6A5uj/B4iNfLG6inkeE7AQga5Deii2hQRkfogmsOTi/GN5BFJGs7r5S37khyvmn0k9l555RUGDx5Ms2bNyMrKoqioiIsuuoh58+Ylumg10rx5c8aMGVPp8QMHDjBmzBhWrFgR1fddtGhRhe87ZswYmjdvXv4ESQnRDFQ+A7LM7Hozy60yt0gcrJw3mY254Ck5PphWkJ3BiR01G61E16hRoxg6dChFRUU89thjzJgxg7vvvps9e/bQr18/vvzyy0QXMWoOHDjA2LFjYxKo1LcF8yT2otn08yzQE7gXuDdknrdWZlZSg+s451ysV3WWFDFtzuNke48mnfxg2k+Pak5Whmajleh59dVXGT9+fIWr2F522WW8/vrr5OTkVHr+3r17Ix6vzxryZ5P4iOa39XjgQeAQvr4qgUjFavESiYq3vltQrtnnNPVPkSgbP348vXv3LhekBJxzzjm0bds2uG9m/POf/+S6666jRYsWHHvsscFj//73vznyyCPJzs7miCOO4P777w+71ogRIzjxxBPD0tatW4eZ8cYbpQMszYwHHniAP//5z7Ro0YKWLVvyhz/8gf37w+fQnDNnDscddxwej4cTTjiBDz74oMrPW1BQAMCVV16JmWFmrFu3LliO5557jssvv5zGjRtzzjnnBMvz73//O+w6oU06Tz75JNdee20wr5nRv3//sPzLly+nb9++5Obm0qtXL95///0qyyr1XzRnpvUC15rZrUBXIA+YhW8m2qHReh+R6tr93QbmFn5Pi4PhgUp/BSpJ7YKHPmDTrn0JLUObRh4mXfOTauU9dOgQ8+fP58Ybb6zRe9x7772ceuqpPPPMM3i9XgAeffRRrr32Wq6//nqGDBnCrFmzuOGGG9i/fz9/+tOfavw5xo0bx4ABA3j22Wf56KOPuPXWW+nQoQM333wzABs3buTMM8/kpJNOYtKkSWzcuJFLLrmE4uLiiNedOXMmAwYMYPTo0fz85z8HoE2bNmzatAmAG2+8kfPPP5+XXnqJ9PT0apX15z//OTfccAPjxo1j/vz5ABQWFgaPFxcXc8UVVzBq1Chat27N2LFjOe+881i/fj25uept0JBFvYnFP6PsEvBFxcAB59zsaL+PSFXeffNfOGtJlusQTDuuXSNaFGQnsFRSlU279vHt93sTXYxq2759O/v376d9+/Zh6c45SkpKW73T09MJXfqsdevWvPjii8F9r9fLmDFjGDFiBOPGjQNg8ODB7Nq1i7///e9cd911eDyeGpWtY8eOPPnkkwAMGTKEefPmMXny5GCgMn78eDweD2+++Wbwj31eXh6XXnppxOv27u0L/g8//HD69u1b7njfvn158MEHa1TWFi1a0LFjx+D5Ze3du5fx48czYMAAwBcY9erVizlz5nDGGWfU6L2kfol1Q/2VwHUxfg+RCk37+LXyzT4a7SNR5pwDoOz6q+PGjSMzMzP4KvuHO1ATEbBhwwY2btzIsGHh004NHz6c3bt3s3LlyhqXbfDgwWH73bp1Y8OGDcH9RYsWMWjQoLAaifPPP7/G71NW2c8WDZmZmWFNQd26dQMI+zzSMMW006pz7qlYXl+kMs7r5S33ObklF4WlD+yq1ZKTXZtGNas1SHQZmjdvTnZ2drk/mJdddlnwD2ugBiJUq1bhz2Kg2aRsemB/x44d1S5TQOPGjcP2s7Ky2LevtFlt8+bN9OjRIyxPTk4O+fn51EXZzxANhYWFpKWV/t86KysLIOzzSMOk0TXSIH284HU25GXQbl9pJ8UWBdkc07YwwlmSDKrbNyRZZGRkcPLJJ/POO+9w1113BdNbtWoV8Q922RqYNm3aALB169aw9C1btgDQtKlvSL3H4+HAgQNheWoTxICv+ans++3du5cffqjbmrBlPxtAdnZ21MotqUVjNKVBmjb7UTzeHqRR2h/ltC4tSEvToDKJvuuuu46FCxfyzDPP1Poa7dq1o23btrz00kth6RMnTqSwsDA4Mqhdu3asW7curCZh+vTptXrP3r17M3369LDOs5MnT67yvNrUZrRr145PPvkkuO/1epk5c2adrysNn2pUpEF6a8sH5OQND0vTbLQSK7/4xS+47rrrGDFiBLNmzeKcc86hefPmbN++PRhEVNWckpaWxpgxY7j66qtp1qwZgwYNYvbs2Tz00EP87W9/C3ak/eUvf8kdd9zBb3/7W0aMGMHy5ct54oknalXu6667jgcffJCzzz6b66+/no0bN/L3v/+9ynlPsrKy6NSpExMnTqR79+54PJ5yTUhlnXfeeTz44IP06tWLzp0789hjj7F79+6wPF27dgXggQceYMCAARQWFtKlS5eKLicpRDUq0uD8sGMz7xfsxOMtnY02I8045QhNwS2xc//99zNp0iS++eYbfvOb3zBgwABGjhzJ5s2bmTp1aqVzrIS66qqr+L//+z+mTJnC2WefzfPPP8+4cePChiZ3796dCRMmMH/+fM4991xmz57NhAkTalXmoqIipk6dyrZt2xg6dCj/+c9/ePbZZ6s13Pfhhx9m27ZtnH766fTu3ZuNGzdGzH/nnXcybNgwRo8ezYgRI+jZsye//vWvw/L89Kc/5aabbuKBBx6gT58+XH311bX6XNKwWKDHujQMZuagdCRCKnrtmdsY+sUTFO1/NJh2UqemTLz65ASWSiry9ddfU1xcTG5uLh06dKj6BBFJClX92w30U3LO1bm9XTUq0uBMW/VKWG0KwM+OapGg0oiISF0oUKkmMys0s1vM7AMz+87M9pvZBjObZWZjzKxxJecV+I+vNLMfzGyXmS02sxvMLCven6Ohc14vb5V8Rk7JCWHpClREROondaatBjM7DXgeCIw1PAT8ABT5X/2BV4AVZc7rALwHdPQnFQPZwIn+1yVmNtA5tzOmHyCFfLb0bdblQ/uQYcnN8rLo1kbDkkVE6iPVqFTBzE4B3sQXpMwA+gHZzrkmQC6+gOOvwK4y56UDr+MLUjYBg5xzef5zLgL2AL2A5+LyQVLE9Pcm4PF2I43SUQunHqVhySIi9ZVqVCIws1zgaSAHeBm40L/4IgDOub3AUv+rrBFA4L/1Q51z8/3neIEXzSwN+C9wpr9W5d2YfZAUMn3jXDx54et+nHqURvuIiNRXqlGJ7DKgM7AX+H1okFINV/h/zgoEKWW8AKz1b19e+yJKwMF9xczK2Vyuf8pPj1T/lGSXyqPUROqjeP6bVaASWSCAeNU5t626J/lrYk7x706rKI/z/Zbf8u8OriiP1MzCGU9SnNWULNcpmNa9qJDm+VotOVllZmYCvplI9+6tPysmi6SyvXv3BmcPDvwbjiU1/VTCzAKdXgFmm1ln4DZgCNAC2AksBB52zpUNRo6mNAhcFeFtAsdam1lT55wWvqiD6UtexFPSKyxNo32SW35+Prt27cI5x9dff43H46lwnRgRSQ7OOfbt2xesUanrApbVoUClch2BwPDhdsBHQB5wAN/onVbAucC5Zvawc+6akHPbhmx/G+E9Qo+1BaoMVAITukl5079fRk7eNWFpp6rZJ6kVFhZSUlLC5s2bcc6pVkWkHmndujWFhbEfUalApXJNQrZvBXYDFwMvO+cOmll74B58I3h+b2afOuce8OcvCDm3mMqFHiuoNJdUadfW9SwqLKbNgdIalfzsDI7v0CTCWZIMmjRpQnp6Oj/88AMHDx5MdHFEpAqZmZnk5+fHJUgBBSqRpJXZ/r1z7sVAgnPuGzO7BOiCb5jxaDN70Dl3KJaFqmo64lStcZk17SHS7QjSKf2H85PDm5GZrm5Y9UFhYWHcvvREpH7Rt3jl9oRsfxMapAT4RwGN8+82BwLDTULPjbS6V+ixPZXmkipN//gNckrKTJvfRc0+IiL1nQKVyoX2H/k0Qr5PQrYDKzOFLiNaFOHc0GORlx6ViN45tKbc+j7qnyIiUv8pUKmEfwROIFiJ1JwS2hQTyPcJEJhzpXuEcwPHNmvET+2tWzWXLwuyyPZ2CaZ1bpFH+6ZVL1UvIiLJTYFKZO/4fx5tlY+ZPDpkey2Ac64YmOdPO6PcGYD/ekPKvI/UwvQZ/z8e77EY6cE01aaIiDQMClQie8L/sz0wvOxB/zT41/t3vwWWhRx+yv/zNDPrU8G1h+Gb9RZ80/RLLU1fPwtPSc+wtH5HaNp8EZGGQIFKBM6594FJ/t2HzGy4mWUC+IcnP4dvxA/AbWWm2H8KWImvaehlMxvoPy/NzIYBj/rzTdM6P7VXcvAA72Z9S473uGBaeprRp3PTBJZKRESiRcOTqzYCaAmcim99nv1mVkz4PCt3OeeeCj3JOXfIzM4FZuGbPG6G/7w0wOPPthy4JKalb+CWz36BXdnNKNjfPpjWs31jCjyxn9ZZRERiTzUqVXDO/QicBlwFzAF+BPLxNfW8AJzinLuzknPXAT2Au/BNl++Ag/hWW74R6Ouc2xnjj9CgTV/wHB5veLPPKWr2ERFpMEyrljYsgQnfUuX3etp1TViV91vySvoH0yZefTIndVLTj4hIogTGn1Q1SWl1qEZF6q3iXdv4IP97PCWl/VPystLpdVjjBJZKRESiSYGK1Fvz3nkMl96B9JDuQn06a9p8EZGGRJ1ppd6a+dGreFD/FBGRhkz/9ZR6a+YPKzV/iohIA6dAReqlXVvXs6RgPx5v6QoFzfOzOapVfgJLJSIi0aZAReql9995jEy6kEZOMK3fEc2ofKUDERGpjxSoSL008+M3y82f0k/r+4iINDgKVKRemrn34womemuWoNKIiEisKFCRemfbN2v4qFEa2d6jgmmHt8ijTaOcCGeJiEh9pEBF6p3Z0x/D4+2OkR5M02gfEZGGSYGK1Dsz17xVbliy5k8REWmYFKhIvTPz4Gd4vKXT5qcZ9D1c/VNERBoiBSpSr2z8fBmfFeaQ5ToE044takShJzOBpRIRkVhRoCL1ynvvPh42yRtA386qTRERaagUqEi9MvPLGXhKeoSlqdlHRKThUqAi9cpM9xUeb2mgkm7Qu2PTBJZIRERiSYGK1BvrVs1lfX4Bma59MK1H+8bkZ2sRcBGRhkqBitQbs2ZNILvk2LC0k9U/RUSkQVOgIvXGzHXvhTX7AJys/ikiIg2aAhWpF5zXy8z0r/F4S2tUMtOMEzo0SWCpREQk1hSoSL3wxfJ32ZLbhExXFEw7rn1jcrPUP0VEpCFToCL1wuy5z+Ip2z9FzT4iIg2eAhWpF+Z8M7d8/xR1pBURafAUqEi9MNu+JjskUMlMN45X/xQRkQZPgYokvXWr5vJtblMyXetg2vGHNcGTmZ7AUomISDwoUJGkN3v2UxqWLCKSohSoSNKbs2522LBk0EKEIiKpQoGKJL33vGvDalSyM4xehzVOYIlERCReFKhIUvv2syWsz29GhmsZTDuhQ1OyM9Q/RUQkFShQkaQ2Z1YF/VPU7CMikjIUqEhSm/3lu2R7NdGbiEiqUqAiSW32oS/xeI8J7mdnGD3aqX+KiEiqUKAiSWvL2lV8XtCIDNcqmHb8YU3JytBjKyKSKvSNL0nr/ZlPhNWmAPTu1DRBpRERkURQoCJJa/bn08kuE6j0UaAiIpJSFKhI0pp94POwQCUjDc2fIiKSYhSoSFLasfFLVhdmk+UOC6Z1L2pMblZGAkslIiLxpkBFktL7Mx4n29stLE3NPiIiqUeBiiSl2Z++jackvH/KSQpURERSjgIVSUqz935Ctrd7cN8E4NloAAAew0lEQVSAEzsoUBERSTUKVCTp7P5uAx8WQJbrFEzr0rqARrmZCSyViIgkggIVSToLZj1DJkdjlC48qP4pIiKpSYGKJJ25q6fhCWn2AU30JiKSqhSoSNKZu2tluYneTuqoQEVEJBUpUJGkcnBfMQtzi8n2HhVM69Q8j5aFngSWSkREEkWBiiSVFe+/REnGURilHWd7d2ySwBKJiEgiKVCRpDJ36ZRyCxGe1KlZgkojIiKJpkBFksrcrYu1EKGIiAQpUJGk4bxe5mZuIdt7dDCtdWE27ZrkJLBUIiKSSApUJGl8sfxdvvd0Jo3SwOSkTs0wswSWSkREEkmBiiSNuR88T3ZJ+PwpWt9HRCS1KVCRpDFv/Tw8Ic0+AL01f4qISEpToCJJ433vurD+KYWedI5smZ/AEomISKIpUJGk8N36T/gqvxnplM6ZckKHpqSlqX+KiEgqU6BSQ2b2JzNzgVcVeQvMbIyZrTSzH8xsl5ktNrMbzCwrXmWuD+bNejqsNgXghA6a6E1EJNVlJLoA9YmZdQHurGbeDsB7QEd/UjGQDZzof11iZgOdczujX9L6Z+5n08mmb1jaCR3UP0VEJNWpRqWazCwNeBzwAPOryJsOvI4vSNkEDHLO5QG5wEXAHqAX8FwMi1yvzC3+lGxvt+B+ukHP9o0TWCIREUkGClSq71rgFHzBxTtV5B0BHOvfHuqcmwHgnPM6514ErvYfO9PMBsagrPVK8a5tLMuHLNchmHZMUSNystITWCoREUkGClSqwcw6AX8FtgOjqnHKFf6fs5xzFdW+vACs9W9fXvcS1m+LZj1Luql/ioiIlKdApXoeBfKA651z30XKaGa5+GpeAKZVlMc554C3/LuDo1XI+mreyjfLzZ9yovqniIgIClSqZGZXAQOBGc65p6txytGU3tdVEfIFjrU2s5T+qzx3x4pyI35O7KgaFRER0aifiMysCLgX2Etpv5KqtA3Z/jZCvtBjbYEd1SxTxCHR9Y235BAfeHbSyHtUMK2ocQ6tCj0JLJWIiCQL1ahE9gjQCBjjnPuqmucUhGwXR8gXeqyg0lwN3McLXmdfVmfSKA1MVJsiIiIBqlGphJldCvwcWAH8M8HFCXLORZyqtb7VuMxfPKV8s4860oqIiJ9qVCpgZi2B8UAJcJVz7lANTt8Tsp0bIV/osT2V5mrgPtgwv4IZaVO6y46IiIRQjUrF/gE0Ax4CPjWzsivjBae/Dzl2wDl3ANgYkq8I+KiS9ygK2d5YSZ4G7wO3nuyS0one8rLS6dI6ZVvCRESkDNWoVKyT/+c1+Go7yr5uDckbSLvHv/8J4PVvd4/wHoFjm51z1epI29Ds2PglX+Y3JoNmwbTjOzQhXQsRioiInwKVKHPOFQPz/LtnVJTHzAwY4t+tapbbBmvBe8/iCZk2HzTRm4iIhFOgUgHnXH/nnFX2AsaG5A2kXxdyiaf8P08zsz4VvMUwoLN/uzpzszRI89fMqKAjrfqniIhIKQUqsfEUsBIw4OXAej5mlmZmw/DNdAswzTn3boLKmHAf7FodFqikGfQ8TAsRiohIKXWmjQHn3CEzOxeYhW8F5RlmVowvMAxMGLIcuCQxJUy8koMHWJy7jybe0oUIu7YuJD9bj6SIiJRSjUqMOOfWAT2Au/BNl++Ag8BS4Eagr3NuZ8IKmGCr5r/CwYyuGKUrJGuiNxERKUv/fa0F59wYYEw18u0B7vS/JMT8Ja+Q7e0alqaOtCIiUpZqVCQhPti4kGxvl7C04w9ToCIiIuEUqEhCfOA2kBUSqDTPy6Rdk5wElkhERJKRAhWJu+/Wf8LX+S1ID1mLsVeHpvimlxERESmlQEXibsHs/6rZR0REqkWBisTd/M/eLdeRtpfmTxERkQooUJG4+2DPx2E1KmkGPdo1SmCJREQkWSlQkbg6dGAfi3P3kek6BtO6ti4kN0sj5UVEpDwFKhJXH819mZKMI8MmelOzj4iIVEaBisTV/GWvlutI20sdaUVEpBIKVCSuPti0SB1pRUSk2hSoSFzNt2/DJnpr5MmgU7O8BJZIRESSmQIViZvv1n/C+rwmZNA0mNbzsCakpWmiNxERqZgCFYmbRe+/qGYfERGpEQUqEjcLP5upjrQiIlIjClQkbhbu+rhcjUrPdqpRERGRyilQkbhwXi+LPLvJcocH0w5vkUej3MwElkpERJKdAhWJi8+XTac4uxNGaWCiZh8REamKAhWJi4WLpqgjrYiI1JgCFYmLhes/KN+Rtr1qVEREJDIFKhIXi/Z/FRao5GSmcVSr/ASWSERE6gMFKhJz+374no/yM8lwrYNpPds3ISNdj5+IiESmvxQScyvmTiLNys6fov4pIiJSNQUqEnMLP5parn9Kz/YKVEREpGoKVCTmFm1ZRpb3yLA0BSoiIlIdClQk5hawkeyQQKV1YTYtCz0JLJGIiNQXClQkprZ9s4b1+S1Jo3SEz3GqTRERkWpSoCIxtej9F8JqUwB6aH0fERGpJgUqElOLPptFlveosDT1TxERkepSoCIxtXDXarLLBCrdixolqDQiIlLfKFCRmHFeL4uyd5HlOgfTOjfPo1GOVkwWEZHqUaAiMfPF8nf5IfswjKxgmjrSiohITShQkZhZtHhKuf4px7VTs4+IiFSfAhWJmYXr5pUf8aMaFRERqQEFKhIzC/d/GVajkpEG3doUJrBEIiJS3yhQkZjY/+NuPswrIdO1D6Z1bVOIJzM9gaUSEZH6RoGKxMSH816GtMMxSgOT4zTRm4iI1JACFYmJJSvfrqAjrQIVERGpGQUqEhOLNy0l24V3pNXQZBERqSkFKhITS7zfhNWo5GamcUTL/AhniIiIlKdARaLux51b+TQ/m0zXOpjWvV1j0tMsgaUSEZH6SIGKRN3yeZPIoEyzjyZ6ExGRWlCgIlG3ZPX0cgsR9lBHWhERqQUFKhJ1S7auIKvMjLQ91ZFWRERqQYGKRN0ivg2rUWmSk0m7JjkJLJGIiNRXClQkqnZtXc9X+Y1Jp7QG5bjDGmOmjrQiIlJzClQkqpbOfYlsp/4pIiISHQpUJKqWfPIuWd4jwtI04kdERGpLgYpE1ZLtK8sFKscWKVAREZHaUaAiUbUobXNYoNKyIIuWhZ4ElkhEROozBSoSNdu+WcO3ec1IpyCYdmyR+qeIiEjtKVCRqFn6wSSyXJlmH/VPERGROlCgIlGzeM0s9U8REZGoUqAiUbNk52oFKiIiElUKVCRqFmduLdORNlsdaUVEpE4UqERgZs3M7Eoze9bMPjazH81sv5ltMLNXzOy8alyjwMzGmNlKM/vBzHaZ2WIzu8HMsuLxOeJh4+fL2JrTokxHWtWmiIhI3WQkugBJbjPh92gfcBAo8r9+YWbTgAucc8VlTzazDsB7QEd/UjGQDZzof11iZgOdcztj9QHiZemCKeU60nZXoCIiInWkGpXIMoBFwEjgcOdcjnMuH+gEPO7PcybwSNkTzSwdeB1fkLIJGOScywNygYuAPUAv4LkYf4a4WPzFbPVPERGRqFOgEtkA51wf59xDzrmvAonOuXXOud9SGqBcambty5w7AjjWvz3UOTfDf67XOfcicLX/2JlmNjB2HyE+luz+lCzv4WFpGposIiJ1pUAlAufcrCqyPB6yfWKZY1f4f85yzs2v4NwXgLX+7ctrUbyk4bxelmRtI8t7ZDCtZUE2rdSRVkRE6kiBSt3sC9lOD2yYWS5win93WkUnOucc8JZ/d3BMShcn6z+Zz05PS3WkFRGRqFOgUjf9Q7ZXhmwfTem9XRXh/MCx1mbWNIrliqslC19RR1oREYkJjfqpJTNrDNzq333fObcm5HDbkO1vI1wm9FhbYEc13tdVu5BxsmTtXLJcl7A01aiIiEg0qEalFswsDXgGaAPsB64tk6UgZLvcsOVKjhVUmivJLd3zmTrSiohITKhGpXYeAM72b490zn0Yrzd2zlmk4/GucXFeL8s8O8kJGZrcQh1pRUQkSlSjUkNmdh/wR//uKOfchAqy7QnZzo1wudBjeyrNlcS++XQh32e3IJ3CYJqafUREJFoUqNSAmd0D3ODfvck5N76SrBtDtosiXDL02MZKcyWxZYtfI9tpojcREYkNBSrVZGb3Ajf5d292zt0XIfsngNe/3T1CvsCxzc65KjvSJqNlX83TjLQiIhIzClSqwd/cc6N/92bn3L2R8vvX/Znn3z2jkmsaMMS/+040ypkIy3avKR+oqCOtiIhEiQKVKviDlEBzz41VBSkhnvL/PM3M+lRwfBjQ2b/9dB2KmFDLMreFBSrqSCsiItGkQCUCM/sHpUHK9c65cTU4/Sl8k8AZ8HJgPR8zSzOzYcCj/nzTnHPvRqvM8bTpyxVszWmujrQiIhIzGp5cCTM7DLjZv+sFbjGzWyKccl9ovxXn3CEzOxeYhW8F5RlmVowvOAxUOSwHLol22eNl2YJXyHLh86doRloREYkmBSqVSyuz3aqK/PllE5xz68ysB77+LecDnYCDwGrgeeBfzrkD0Slu/C378v1yE711b1tYSW4REZGaU6BSCefcOnzNNnW9zh7gTv+rQVm28xOycvqFpR2jGhUREYki9VGRWluWsTWsRqVxTiZtG6kjrYiIRI8CFamVbd+sYUNePhk0C6YdU1SIb9S1iIhIdChQkVpZvmBKuf4px7RVs4+IiESXAhWplaVr3iPL2zks7Rh1pBURkShToCK1smzHarKcAhUREYktBSpSK8tsc1jTjyczjU7Ny43QFhERqRMFKlJj32/5mq8KMsl0pYs/d21dSHqaOtKKiEh0KVCRGlsxfwpZ3k5haWr2ERGRWFCgIjW27NNZFfRP0YgfERGJPgUqUmPLvvtII35ERCQuFKhIjS11G8kMCVTSzejSuiCBJRIRkYZKgYrUyA87NrOmwEuW6xBMO6JlPp7M9ASWSkREGioFKlIjH86fQgbtMTKDaWr2ERGRWFGgIjWy7ON3y02d302BioiIxIgCFamRZVs+LNeRVoGKiIjEigIVqZFlJRvIcmUWI2yjockiIhIbClSk2vb98D0f5+8Pm+ytXZMcGuVmRjhLRESk9hSoSLV9vOhNSGtDGrnBNHWkFRGRWFKgItW2YtUMslzZqfPV7CMiIrGjQEWqbcXGZeVG/KhGRUREYkmBilTbin3rKpg6XzUqIiISOwpUpFq8JYdYkbs7rEalWV4WrQqzE1gqERFp6BSoSLWsXTmH4qwmpNMkmNatbSFmlsBSiYhIQ6dARaplxbJpYQsRgiZ6ExGR2FOgItWy4usFYfOnAHRro0BFRERiS4GKVMuK3Z+VG5qsQEVERGJNgYpUy4qM7WSG1KhkZaTRqXleAkskIiKpQIGKVGnbN2vYkJdGpisKph3VKp+MdD0+IiISW/pLI1X6cNFrZLnDMNKDaUe3VrOPiIjEngIVqdKKz+aUG/FztPqniIhIHChQkSot37aq3IgfBSoiIhIPClSkSivcpnIjfo5uU5Cg0oiISCpRoCIR7d29g0/z95Pp7RhMa9PIQ+PcrMQVSkREUoYCFYlo9aI3wJqTTmkNipp9REQkXhSoSEQrVr+rZh8REUkYBSoS0YpNy8MmegPoqqHJIiISJwpUJKIV+9aR5TqGpanpR0RE4kWBilTKW3KID/P2hA1N9mRq6nwREYkfBSpSqS9XzOLHzGwyXNtgWpdWBaSnWQJLJSIiqUSBilRqxYppZLoO4VPnq9lHRETiKCPRBZDkteLrheVG/HRtrRE/IiISP6pRkUqt2PN52ERvoBoVERGJLwUqUqkVmdvL16goUBERkThSoCIV2rpuNRtzvWSF1KgUNc6hUU5m4golIiIpR4GKVOjDxa+T7lqSRn4wTTPSiohIvClQkQqt+Px9TfQmIiIJp0BFKrRi+2qyvJ3D0hSoiIhIvClQkQp96DaXW+NHgYqIiMSbAhWp0ILR6zg8u09wPyczncOa5iawRCIikooUqEiFLK85W/aVzgfYpbWmzhcRkfhToCIVWrNlD86V7qvZR0REEkGBilTok027w/a7aWiyiIgkgAIVqVDZQEUz0oqISCIoUIkDMyswszFmttLMfjCzXWa22MxuMLOsRJevIp9s2hO2r8UIRUQkEbR6coyZWQfgPaCjP6kYyAZO9L8uMbOBzrmdCSlgJUb8pCM92zfmk027+XH/IQo8mjpfRETiz1xoj0mJKjNLB5YDxwKbgMudczPMLA0YBjwKFADTnHNnRek9HYB+ryIikihmvlGizrk6DxdV009sjcAXpAAMdc7NAHDOeZ1zLwJX+4+daWYDE1A+ERGRpKZAJbau8P+c5ZybX8HxF4C1/u3L41MkERGR+kOBSoyYWS5win93WkV5nK995i3/7uB4lEtERKQ+UaASO0dTen9XRcgXONbazJrGtkgiIiL1iwKV2Gkbsv1thHyhx9pWmktERCQFaXhy7IROPFIcIV/osSonKwmM6hEREUkFqlERERGRpKUaldgJndo1N0K+0GN7Ks3lV9WYdNW4iIhIQ6IaldjZGLJdFCFf6LGNleYSERFJQQpUYucTwOvf7h4hX+DYZufcjtgWSUREpH5RoBIjzrliYJ5/94yK8phvjuEh/t134lEuERGR+kSBSmw95f95mpn1qeD4MKCzf/vp+BRJRESk/lCgEltPASsBA14OrOdjZmlmFliUEHyLEr6boDKKiIgkLa2eHGNm1hGYBXT0JxXjCxA9/v3lwEDn3M4ovZ9WTxYRkYTS6sn1iHNuHdADuAvfdPkOOAgsBW4E+kYrSBEREWloVKPSwKhGRUREEk01KiIiIpISFKiIiIhI0lKgIiIiIklLgYqIiIgkLQUqIiIikrS0enIDFehxLSIiUp+pRkVERESSluZRkUqFzMmi6pk4071PLN3/xNG9T5xkvfeqUREREZGkpUBFREREkpYCFREREUlaClREREQkaSlQERERkaSlQEVERESSlgIVERERSVqaR0VERESSlmpUREREJGkpUBEREZGkpUBFREREkpYCFREREUlaClREREQkaSlQERERkaSlQEVERESSlgIVERERSVoKVAQzG2Fmrhqv0+v4Poeb2SNmttbM9pnZVjN728yGRuuz1Ddm1szMrjSzZ83sYzP70cz2m9kGM3vFzM6r4/Xj8rtNRmZWYGZjzGylmf1gZrvMbLGZ3WBmWXW8diszG2dma8xsr5ntMLP3zey3ZmbR+gz1USyf6VR+nqsjHvcnEd/jGbG6sNRLXuC7CMf31/bCZnYW8BKQ60/aDTQDBgODzewJ4Dcu9aZK3kz4v8N9wEGgyP/6hZlNAy5wzhXX4X1i9rtNRmbWAXgP6OhPKgaygRP9r0vMbKBzbmctrn0C8Da+5xfgB6AA6Od/DTOzc51zDeqe1kA8numUep5rISb3J2Hf4845vVL8BYwAHLAuRtfvhO/L3AFzgaP86fnAWH+6A25O9L1IwL13wELgGqBzSHpH4LGQe/NMMv5uk/EFpAMf+T/3RuB0f3oaMNz/5eqAqbW4diNgk//8T4AT/elZwB+AA/5j/0n0fUjg/Y/ZM52Kz3Oy3J9Efo8n/MbqlfhXHAKVZ/zX3wQ0ruD4I/7ju4Amib4fcb73p1Vx/OGQL4D2yfa7TcYX8JuQe3ZyBccvDjk+sIbX/v/85xUDnSo4fqv/+KHAF3mqvWL5TKfi85ws9yeR3+PqoyIxZWZ5QKDt8iHn3PcVZPu7/2ch8Mu4FCxJOOdmVZHl8ZDtE2NZlgbkCv/PWc65+RUcfwFY69++vIbXDuR/wTm3toLj/8L3v8504JIaXrtB0DPd8CT6e1yBisRaPyDHvz2togzOuXX4qtHB19YppfaFbKcnrBT1hJnlAqf4dyt73hzwln+32s+bmXUBDqvi2j8A79f02ilGz3T9k9DvcQUqEqqFmS31j5DYa2Zf+Xvu96/DNbuHbK+OkG+V/+cxdXivhqh/yPbKOlwnFr/bZHQ0pd9rqyLkCxxrbWZNq3nt0Ge5OtfuVs3rppr+Idu1faZT5XmurWjfn4R+jytQkVC5wPH4OgSm4es8dQkwy8wmmFltRom19f/c6SL38P+2TP6UZ2aN8fV5AHjfObemDpeLxe82GYU+P99Wmiv8WHWfuZpeu9DM8qt57ZQQxWc6VZ7n2or2/Uno97gCFQHfyIixwHGAxznXFN+Dfgoww5/nSuD+Wly7wP+zqmGIgeMFEXOlCDNLw9d5rQ2+oYTX1vJSsfzdJqPQ5yfSMxd6rLrPXCyv3eBF6ZlOtee5pmJ1fxL6Pa5ApR6qwaQ+lb3OCL2ec+4d59wY59xHzj/3g3OuxDn3ATAEeNWfdaSZHRnnj5tUon3vI3gAONu/PdI592FtyqvfrSSROj/Tep4ja6j3R4GKROSc8wI3+nfTgHNqeIk9/p+5EXOVHt8TMVcKMLP7gD/6d0c55ybE4n2i8LtNRqHPT6RnLvRYdZ+5WF67QYvHM91An+eoqeP9Sej3eKq349VXzwNv1OH8XTXJ7Jz7wsy2Ac2BzjV8r43+n03MLDdC+2ZRmfzJKqb33szuAW7w797knBtfh/eqUh1/t8ko9PkpwjfxW0WKQrar+8yVvfbuKq692z8KKKXF85lugM9zVNXh/iT0e1yBSj3kr9KrL1NEh46OOAZYXEm+QK/ySD3KEy6W997M7qX0fzw3O+fui8X7NHCf4Js+PA3fM1XhUEpKn7fNzrkd1bx26LPcndKhmJVd++NqXrfB0jPdYCT0e1xNP1IlMzscXwQOpRNlVddcYK9/u8L+Gf51WY72775T4wI2AP6q8dAv9Hvj9L51+d0mHf//9Ob5dyt73gxfez3U4Hnzj1BZX8W184Cf1vTaDVEinumG9jxHWx3uT0K/xxWopDj/l3ZVxwNfMF5q2OzhnPsReNm/e42ZNaog2y3+n3uAV2py/YbA/4UeqBq/MVpf6LH+3Saxp/w/TzOzPhUcH0ZptffTNbx2IP9FZtaxguN/wLf2SQnwXA2v3WDE4plO4ee5WmJ5fxL+PR7t9QD0ql8vfAuFLQKuxvflbf70NKAvvhk8A+tyVLjQGvBkIE8lx0MXs5oDHOlPzwPuwPePJlUXJfxHyP0dVYvzR4Sc3z/av9v6+MLXpB1YlHAD/vV8/J97GL5+QhUuSgiMCbknHSs4Hroo4WrgBH96Fr5F+PY3tPtZi/tf62daz3Od7nud7k8yf48n/ObqldiX/+F2Ia99+JYH31cmfQKQUck1Ij7g/jxnAT+GXO97fAu3BfafCPzDSpUXvunYA5+/BNhcxevGCq5R1Rd7nX639fXl/+xrQz7jj/iqrgP7y6hg4TSqCFT8eU4AtoXk203pqskOeBvITvQ9qI/PtJ7nOt37Ot2fZP4eV2da2YJv4qWTgZ5AC6AJvod7LfABMME5N6/SK1SDc26qmfXAVz04CN/Mhd/j+4PxiHPu5UjnN1BpZbZbVZG/prOcxuV3m4ycc+v8z9uNwPn4/jd4EF8tyPPAv5xzB2p57aVmdgy+Z/lsoD2+L+9V+JqdJjjfUNBUFMtnOmWf52qK+f1J1Pd4oGpIREREJOmoM62IiIgkLQUqIiIikrQUqIiIiEjSUqAiIiIiSUuBioiIiCQtBSoiIiKStBSoiIiISNJSoCIiIiJJS4GKiIiIJC0FKiIiIpK0FKiIiIhI0lKgIiIiIklLgYqIiIgkLQUqIiIikrQUqIiIiEjSUqAiIiIiSUuBioiIiCQtBSoiIiKStBSoiIiISNJSoCIiKc3MbjEzZ2YHzOykSvKcZWZef75fxbuMIqnMnHOJLoOISMKYmQHvAKcDXwE9nXN7Qo63AT4EWgBPO+euSEhBRVKUalREJKU53//WLgO2Ap2BhwPH/EHM0/iClC+APySijCKpTIGKiKQ859xmYATggF+ZWaDW5BZ8NS0HgYudcz8kpoQiqUtNPyIifmY2Drge+AG4BpgAZAI3OefuS2TZRFKVAhURET8zywI+AE4ISX4HOMPpy1IkIRSoiIiEMLPuwEr/7i6gq79pSEQSQH1URETC/S5kuxDomaiCiIhqVEREgszsbOB1/+5HQA98o4F6OOe2JKxgIilMNSoiIgTnS3nCv/sEcCqwDmgJPOUfqiwicaZARURSnpmlAc8AzYHPgWudc7uAXwGHgCH4RgOJSJwpUBERgZuBgZTOl/IjgHNuPjDWn+dvZnZ8gsonkrLUR0VEUpp/fZ+5VDJfir+25V2gP/AZcHwgkBGR2FOgIiIpy8wKgBX4ps6fDgypaL4UM2uHb72fpsCTzrkr41pQkRSmQEVERESSlvqoiIiISNJSoCIiIiJJS4GKiIiIJC0FKiIiIpK0FKiIiIhI0lKgIiIiIklLgYqIiIgkLQUqIiIikrQUqIiIiEjSUqAiIiIiSUuBioiIiCQtBSoiIiKStBSoiIiISNJSoCIiIiJJS4GKiIiIJC0FKiIiIpK0FKiIiIhI0lKgIiIiIklLgYqIiIgkLQUqIiIikrQUqIiIiEjSUqAiIiIiSev/AQ1GrXnwqJCPAAAAAElFTkSuQmCC\n",
"text/plain": [
" \n",
"\n",
"1. $x^1$ and $x^2$ \n",
"\n",
"1. Boh?! \n",
"\n",
"1. None of the above $\\rightarrow$ $x^1, x^2, x^3$ matter\n",
" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Show relative feature importance"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's show the **importance of the features** based on the values of the learned coefficients"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 0, 'Importance')"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABnIAAAOeCAYAAAA3Bo5aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAbrgAAG64BjF1z+AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdfaykZ3nf8d+1e8A2NsYGArWBugpQF4QRCQRDFoziBArImLqEUrmAHNEGkTalgFPUImogasAmVUHQKKImiRO0QXEDwbIj4kAFDlAotAhIKMGBNWCME/MWv7DBb1f/mDE+rPfs2eXMy33mfD7SavY888w813r+OZqv7+eu7g4AAAAAAADj2bXsAQAAAAAAADg4IQcAAAAAAGBQQg4AAAAAAMCghBwAAAAAAIBBCTkAAAAAAACDEnIAAAAAAAAGJeQAAAAAAAAMSsgBAAAAAAAYlJADAAAAAAAwKCEHAAAAAABgUEIOAAAAAADAoIQcAAAAAACAQQk5AAAAAAAAgxJyAAAAAAAABiXkAAAAAAAADGpt2QOQVFUvewYAAAAAAGD2uru28norcgAAAAAAAAZlRc5Aui3MAQAAAACAVVC1pYU4P2BFDgAAAAAAwKCEHAAAAAAAgEEJOQAAAAAAAIMScgAAAAAAAAYl5AAAAAAAAAxKyAEAAAAAABiUkAMAAAAAADAoIQcAAAAAAGBQQg4AAAAAAMCghBwAAAAAAIBBCTkAAAAAAACDEnIAAAAAAAAGJeQAAAAAAAAMSsgBAAAAAAAYlJADAAAAAAAwKCEHAAAAAABgUEIOAAAAAADAoIQcAAAAAACAQQk5AAAAAAAAgxJyAAAAAAAABiXkAAAAAAAADErIAQAAAAAAGJSQAwAAAAAAMCghBwAAAAAAYFBCDgAAAAAAwKCEHAAAAAAAgEEJOQAAAAAAAIMScgAAAAAAAAYl5AAAAAAAAAxKyAEAAAAAABiUkAMAAAAAADAoIQcAAAAAAGBQa8seAAAAAGBkVcueAADG173sCVaXFTkAAAAAAACDEnIAAAAAAAAGJeQAAAAAAAAMSsgBAAAAAAAYlJADAAAAAAAwKCEHAAAAAABgUEIOAAAAAADAoIQcAAAAAACAQQk5AAAAAAAAgxJyAAAAAAAABiXkAAAAAAAADErIAQAAAAAAGJSQAwAAAAAAMCghBwAAAAAAYFBCDgAAAAAAwKCEHAAAAAAAgEEJOQAAAAAAAIMScgAAAAAAAAYl5AAAAAAAAAxKyAEAAAAAABiUkHMIVXVcVb2uqi6vquurqqvqd5Y9FwAAAAAAsDMIOYf2wCQXJPnJJJ9a8iwAAAAAAMAOs7bsAQb3jSQP7e6vV9XRSfYveyAAAAAAAGDnEHIOobu/n+Try54DAAAAAADYmdxaDQAAAAAAYFBCDgAAAAAAwKCEHAAAAAAAgEEJOQAAAAAAAIMScgAAAAAAAAa18iGnqvZUVU//PH+Dc06vqpun51y06BkBAAAAAAAOZuVDTnd/NMll0x/fUFW71z9fVacmuTzJsUkuSfLqxU4IAAAAAABwcNXdy55h7qrqUUk+l2R3kvO6+5Lp8ZOTfCzJKZnEnHO6+/YDXvtvkpyQZC3JBUk+neQ906ev6u6rZjBfJ8lO+CwAAABgu6la9gQAMD5fb99TTX+J6O4t/TaxI0JOklTVxUlekmRfklMzWYFzVZLTknwkyTO6e/9BXndNJqHnYF7f3a87jGsf1n/knfJZAAAAwHYi5ADA5ny9fU9CzhGqqockuTrJMUlekeScJGdkslLnjO7+7hyvLeQAAADANiXkAMDmfL19T0LOj6Cq3pQf3gPnmiR7uvu65Uw04dZqAAAAMC4hBwA25+vtexJyfgRVdVKSa5PsSvLtJE/q7quXO5WQAwAAACMTcgBgc77evqdZhZxdM5lmG6iqtSTvyN3/5vskuceeOAAAAAAAAKPYESGnJtnr4iRnJbkhyb4kRyd5/TLnAgAAAAAAOJQdcWu1qnpzkvOT3JzkzCSPSLI3yR1JHtvdn1/ieG6tBgAAAANzazUA2Jyvt+/JrdUOU1Wdn0nEuS3J87r7k0neneSzSXYneeMSxwMAAAAAANjQSoecqnpxkouSdJLzuvvKJOnJ0pfXTk87u6r2LGlEAAAAAACADa1syKmqZyd5Z5JK8sru3rv++e6+LMknpj9euODxAAAAAAAANrWSIaeqnpzk0iRrSS7s7rdscOprpo97quq5CxkOAAAAAADgMFXbgWjpqqqTxGcBAAAA46ktbU8MADuDr7fvqaa/RHT3ln6bWMkVOQAAAAAAAKtAyAEAAAAAABiUkAMAAAAAADAoIQcAAAAAAGBQQg4AAAAAAMCghBwAAAAAAIBBCTkAAAAAAACDEnIAAAAAAAAGJeQAAAAAAAAMSsgBAAAAAAAYlJADAAAAAAAwKCEHAAAAAABgUEIOAAAAAADAoIQcAAAAAACAQQk5AAAAAAAAgxJyAAAAAAAABiXkAAAAAAAADErIAQAAAAAAGJSQAwAAAAAAMCghBwAAAAAAYFBCDgAAAAAAwKCEHAAAAAAAgEEJOQAAAAAAAINaW/YAAAAAACPrXvYEAMBOZkUOAAAAAADAoIQcAAAAAACAQQk5AAAAAAAAgxJyAAAAAAAABiXkAAAAAAAADErIAQAAAAAAGJSQAwAAAAAAMCghBwAAAAAAYFBCDgAAAAAAwKCEHAAAAAAAgEEJOQAAAAAAAIMScgAAAAAAAAYl5AAAAAAAAAxKyAEAAAAAABiUkAMAAAAAADAoIQcAAAAAAGBQQg4AAAAAAMCghBwAAAAAAIBBCTkAAAAAAACDEnIAAAAAAAAGJeQAAAAAAAAMSsgBAAAAAAAYlJADAAAAAAAwKCEHAAAAAABgUEIOAAAAAADAoIQcAAAAAACAQQk5AAAAAAAAgxJyAAAAAAAABiXkAAAAAAAADErIAQAAAAAAGJSQAwAAAAAAMCghBwAAAAAAYFBCDgAAAAAAwKCEHAAAAAAAgEEJOQAAAAAAAIMScgAAAAAAAAYl5AAAAAAAAAxKyAEAAAAAABiUkAMAAAAAADAoIQcAAAAAAGBQQg4AAAAAAMCghBwAAAAAAIBBCTkAAAAAAACDEnIAAAAAAAAGJeQAAAAAAAAMSsgBAAAAAAAYlJADAAAAAAAwKCEHAAAAAABgUEIOAAAAAADAoIQcAAAAAACAQQk5AAAAAAAAgxJyAAAAAAAABiXkAAAAAAAADErIAQAAAAAAGJSQAwAAAAAAMCghBwAAAAAAYFBCDgAAAAAAwKCEHAAAAAAAgEEJOQAAAAAAAIMScgAAAAAAAAYl5AAAAAAAAAxKyAEAAAAAABiUkAMAAAAAADAoIQcAAAAAAGBQQg4AAAAAAMCghBwAAAAAAIBBCTkAAAAAAACDWlv2AAAAAAAjq1r2BMAydC97AoAJK3IAAAAAAAAGJeQAAAAAAAAMSsgBAAAAAAAYlJADAAAAAAAwKCEHAAAAAABgUEIOAAAAAADAoIQcAAAAAACAQQk5AAAAAAAAgxJyAAAAAAAABiXkAAAAAAAADErIAQAAAAAAGJSQAwAAAAAAMCghBwAAAAAAYFBCDgAAAAAAwKCEHAAAAAAAgEEJOQAAAAAAAIMScgAAAAAAAAYl5AAAAAAAAAxKyAEAAAAAABiUkAMAAAAAADAoIWcDVfX3q+pdVfWFqrqxqm6uqr+oqtdV1fHLng8AAAAAAFh9a8seYGAPTvLQJO9N8rUkdyR5QpL/mOTsqnpSd9+6xPkAAAAAAIAVV9297Bm2lar6lSQXJTmru6+Y0Xt2kvgsAAAAYDxVy54AWAZf1QFbVdNfIrp7S79NuLXakds3fTxhqVMAAAAAAAArz63VNlFVRyc5LskxSR6b5NeS7E/y4WXOBQAAAAAArD4rcjb3L5PckOSrSS5PcluS53T3tUudCgAAAAAAWHlW5Gzuj5J8Icn9kvx0kjOTnLjUiQAAAAAAgB2h2q5dR6Sqnp/kD5I8vbs/MKP37CTxWQAAAMB4akvbEwPbla/qgK2q6S8R3b2l3ybcWu3IvSfJ3yX5hWUPAgAAAAAArLaVDjlVtaeqevrn+Rucc3pV3Tw956LDeNu16R+3VwMAAAAAAOZqpUNOd380yWXTH99QVbvXP19Vpya5PMmxSS5J8up1zz14g7d9aSYh5xMzHxgAAAAAAGCdld8jp6oeleRzSXYnOa+7L5kePznJx5KckknMOae7b1/3ut9J8ugkf5rkK0mOS/K0JM9J8sUkT+ru785oRnvkAAAAwKDskQM7k6/qgK2a1R45Kx9ykqSqLk7ykiT7kpyayQqcq5KcluQjSZ7R3fsPeM3ZSf5Vkp9I8mNJbk/yV0nel+TXu/vGI7j+Yf1H3gmfBQAAAGw3Qg7sTL6qA7ZKyDkCVfWQJFcnOSbJK5Kck+SMTFbqnDGrlTWHuL6QAwAAANuUkAM7k6/qgK0Sco5QVb0p6/bASXJNkj3dfd1yJrqbW6sBAADAuIQc2Jl8VQdslZBzhKrqpCTXJtmV5NuZ7HFz9XKnmhByAAAAYFxCDuxMvqoDtmpWIWfXTKYZXFWtJXlH7v733ifJ/o1fAQAAAAAAsHwrH3JqkrwuTnJWkhuS7EtydJLXL3MuAAAAAACAzaz8rdWq6s1Jzk9yc5Izkzwiyd4kdyR5bHd/fonjJXFrNQAAABiZW6vBzuSrOmCr3FrtMFTV+ZlEnNuSPK+7P5nk3Uk+m2R3kjcucTwAAAAAAIBDWtmQU1UvTnJRkk5yXndfmSQ9Wfby2ulpZ1fVniWNCAAAAAAAcEgrGXKq6tlJ3pmkkryyu/euf767L0vyiemPFy54PAAAAAAAgMOyciGnqp6c5NIka0ku7O63bHDqa6aPe6rquQsZDgAAAAAA4AhU27Vr6aqqk8RnAQAAAOOpLW1PDGxXvqoDtqqmv0R095Z+m1i5FTkAAAAAAACrQsgBAAAAAAAYlJADAAAAAAAwKCEHAAAAAABgUEIOAAAAAADAoIQcAAAAAACAQQk5AAAAAAAAgxJyAAAAAAAABiXkAAAAAAAADErIAQAAAAAAGJSQAwAAAAAAMCghBwAAAAAAYFBCDgAAAAAAwKCEHAAAAAAAgEEJOQAAAAAAAIMScgAAAAAAAAYl5AAAAAAAAAxKyAEAAAAAABiUkAMAAAAAADAoIQcAAAAAAGBQQg4AAAAAAMCghBwAAAAAAIBBCTkAAAAAAACDWlv2AAAAAAAj6172BADATmZFDgAAAAAAwKCEHAAAAAAAgEEJOQAAAAAAAIMScgAAAAAAAAYl5AAAAAAAAAxKyAEAAAAAABiUkAMAAAAAADAoIQcAAAAAAGBQQg4AAAAAAMCghBwAAAAAAIBBCTkAAAAAAACDEnIAAAAAAAAGJeQAAAAAAAAMSsgBAAAAAAAYlJADAAAAAAAwKCEHAAAAAABgUEIOAAAAAADAoIQcAAAAAACAQQk5AAAAAAAAgxJyAAAAAAAABiXkAAAAAAAADErIAQAAAAAAGJSQAwAAAAAAMCghBwAAAAAAYFBCDgAAAAAAwKCEHAAAAAAAgEEJOQAAAAAAAIMScgAAAAAAAAYl5AAAAAAAAAxKyAEAAAAAABiUkAMAAAAAADAoIQcAAAAAAGBQQg4AAAAAAMCghBwAAAAAAIBBCTkAAAAAAACDEnIAAAAAAAAGJeQAAAAAAAAMSsgBAAAAAAAYlJADAAAAAAAwKCEHAAAAAABgUEIOAAAAAADAoIQcAAAAAACAQQk5AAAAAAAAgxJyAAAAAAAABiXkAAAAAAAADErIAQAAAAAAGJSQAwAAAAAAMCghBwAAAAAAYFBCDgAAAAAAwKCEHAAAAAAAgEEJOQAAAAAAAIMScgAAAAAAAAYl5AAAAAAAAAxKyAEAAAAAABiUkAMAAAAAADAoIQcAAAAAAGBQQg4AAAAAAMCghBwAAAAAAIBBCTkAAAAAAACDEnIAAAAAAAAGJeQAAAAAAAAMSsgBAAAAAAAYlJADAAAAAAAwKCEHAAAAAABgUEIOAAAAAADAoIQcAAAAAACAQQk5AAAAAAAAgxJyAAAAAAAABiXkAAAAAAAADErIAQAAAAAAGJSQAwAAAAAAMCghBwAAAAAAYFBCDgAAAAAAwKCEHAAAAAAAgEEJOQAAAAAAAIMScgAAAAAAAAYl5AAAAAAAAAxKyAEAAAAAABiUkAMAAAAAADAoIQcAAAAAAGBQQg4AAAAAAMCghBwAAAAAAIBBCTkAAAAAAACDEnIAAAAAAAAGJeQAAAAAAAAMSsgBAAAAAAAYlJADAAAAAAAwKCEHAAAAAABgUELOJqrqQVX19qr6SlV9v6q+UVVXVNXDlz0bAAAAAACw2taWPcDIprHmqiS3JvmtJF9L8oAkT0xy/yRfWt50AAAAAADAqqvuXvYMw6qqjye5V5KndffNc7xOJ4nPAgAAAAAAVkNVJUm6u7byPlbkbKCqfibJ6Ume0903V9XRSbq7v7/k0QAAAAAAgB3CHjkbe+b08aaq+kiS/Un2V9X/rqqnLnEuAAAAAABghxByNvYPp4//I8l3krwgyS8lOSnJB6rq8csaDAAAAAAA2BncWm1j950+/r8kZ/d0A5uq+mCSzye5IMnZS5oNAAAAAADYAazI2dj+6ePv3hVxkqS7r07ysSRPW8pUAAAAAADAjiHkbOzr08frD/LcN5IcX1W7FzgPAAAAAACww6x0yKmqPVXV0z/P3+Cc06vq5uk5F6176pPTx4ce5GUPS/Kt7r5j1jMDAAAAAADcZaVDTnd/NMll0x/fcOAKmqo6NcnlSY5NckmSV697+n1JvpfkF6vqXute8xNJnpzk/XMcHQAAAAAAILVu+5eVVFWPSvK5JLuTnNfdl0yPn5zJXjenZBJzzunu2w947cuTvCXJx5PsTfKAJP82SSf5qe7+8oxm7CRZ9c8CAAAAAAB2iqpKknR3bel9dkI8qKqLk7wkyb4kp2ayAueqJKcl+UiSZ3T3/g1e+y+SvCrJo5PsT/LBJP+hu68+gusf1n/knfBZAAAAAADATiDkHIGqekiSq5Mck+QVSc5JckYmK3XO6O7vzvn6Qg4AAAAAAOwgQs4Rqqo35Yf3wLkmyZ7uvm45E93NrdUAAAAAAGC1CDlHqKpOSnJtkl1Jvp3kSUdye7R5EnIAAAAAAGC1zCrk7JrJNIOrqrUk78jd/977ZLLfDQAAAAAAwLBWPuTUJHldnOSsJDck2Zfk6CSvX+ZcAAAAAAAAm1n5W6tV1ZuTnJ/k5iRnJnlEkr1J7kjy2O7+/BLHS+LWagAAAAAAsGrcWu0wVNX5mUSc25I8r7s/meTdST6bZHeSNy5xPAAAAAAAgENa2ZBTVS9OclGSTnJed1+ZJD1Z9vLa6WlnV9WeJY0IAAAAAABwSCsZcqrq2UnemaSSvLK7965/vrsvS/KJ6Y8XLng8AAAAAACAw7JyIaeqnpzk0iRrSS7s7rdscOprpo97quq5CxkOAAAAAADgCNTkTmMsU1V1kvgsAAAAAABgNVRVkqS7ayvvs3IrcgAAAAAAAFaFkAMAAAAAADAoIQcAAAAAAGBQQg4AAAAAAMCghBwAAAAAAIBBCTkAAAAAAACDEnIAAAAAAAAGJeQAAAAAAAAMam3ZA1TVM5M8PckdSf64uz+03IkAAAAAAADGMPcVOVX13Kr6YlX9xkGeuyjJFUn+XZJXJflgVb1x3jMBAAAAAABsB4u4tdpzkzw8ycfWH6yqxyU5P0kluS7JV6Z///dVdcYC5gIAAAAAABjaIkLOE6ePHzjg+Eumj+9L8g+6+8eT/GYmMecXFzAXAAAAAADA0Kq753uBqr9OckJ3H3XA8b9M8ogkP93dn5geOznJtUn2dffD5zrYQKqqk2TenwUAAAAAALAYVZUk6e7a0vssIOTcmuTG7n7gumP3T/LNJN/p7gcccP5NSda6+5i5DjYQIQcAAAAAAFbLrELOIm6tdkuSE6pqbd2xp0wfP36Q829LcvvcpwIAAAAAABjcIkLOFzLZ9+ZZ6469IEkn+bP1J1bVfZLcL8lfL2AuAAAAAACAoa1tfsqWvTfJ6UkurqqLkpyU5J9nEnIuPeDcn8ok+uxbwFwAAAAAAABDW0TIeVuSFyZ5TJKLpscqydu7+0sHnHtOJoHnqgXMBQAAAAAAMLS5h5zu3l9Ve5K8KsmTk3w3yeXd/Xvrz6uqeyf52STXJfnTec8FAAAAAAAwuuruZc+w41VVJ4nPAgAAAAAAVkNVJUm6u7byPrtmMg0AAAAAAAAzt4g9cn6gJvnpcUlOSXKf7t67yOsDAAAAAABsJwu7tVpVvSzJa5M8+K5j3b173fMnJvlQkt1Jntrd31nIYANwazUAAAAAAFgt2+rWalX11iRvT/L3knwvyT2KxTTcfCbJo5KctYi5AAAAAAAARjb3kFNVT0/yy0luSfL8JMcnuWGD0/cmqSRnz3suAAAAAACA0S1ij5yXZbIC54Lu/sPk7uVEB/G/po+PW8BcAAAAAAAAQ5v7HjlVdV0m++Kc2N03To99I8mD1u+Rs+787ya5V3cfO9fBBmKPHAAAAAAAWC3baY+cByS58a6IcxjuTHKPwAMAAAAAALDTLCLk3JjkvlV1r81OrKoHJDkhybfmPhUAAAAAAMDgFhFyPp+kkjzhMM594fTx/8xvHAAAAAAAgO1hESHnvZmEnAuqasPrVdXpSX41SSe5dAFzAQAAAAAADG0RIec3k3w5ydOTXFFVP3fXdavqhKo6o6p+I8mHkxyX5HNJ9i5gLgAAAAAAgKFVd8//IlWnJrkyycMyWXFz0NOSXJPkZ7t739yHGkhVdZIs4rMAAAAAAADmr6qSJN1dW3mfRazISXf/ZZLHJXlrkhsziTbr/9yS5O1JnrDTIg4AAAAAAMBGFrIi54cuONkn5zFJTk6yO8n1ST7T3bcvdJCBWJEDAAAAAACrZVYrcuYecqrq5Olfv9Xd35/rxbYpIQcAAAAAAFbLdrq12rVJvprkgQu4FgAAAAAAwMpYW8A1bklyW3d/fQHXAgAAAAAAWBmLWJFzTZJjpnvjAAAAAAAAcJgWEVfel+TeSZ69gGsBAAAAAACsjOru+V6g6rgkn05ydJJndvdfzPWC21BVdZLM+7MAAAAAAAAWo6qSJN1dW3qfBYScc5M8KMkbkhyV5IokH03yN0nu2Oh13b13roMNRMgBAAAAAIDVsp1Czp1J7rpIrfv7oXR3r81vqrEIOQAAAAAAsFpmFXIWEUuuy+HFGwAAAAAAANaZ+4ocNmdFDgAAAAAArJZZrcjZNZNpAAAAAAAAmDkhBwAAAAAAYFBCDgAAAAAAwKDW5n2BqnrHj/Cy7u6XznwYAAAAAACAbaS6e74XqLozyZFcpDIJObvnNNJwqqqTZN6fBQAAAAAAsBhVlSTp7trK+8x9RU6SvTl0yLlfkscnOSnJt5K8fwEzAQAAAAAADG/uIae7X7jZOVW1K8lLkrw9yd9096vmPRcAAAAAAMDoFrEiZ1PdfWeS/15V90tyYVX9WXf/0bLnAgAAAAAAWKa575FzJKrqvkm+k+Sq7j5z2fMsij1yAAAAAABgtcxqj5yhQk6SVNW3k6S777/sWRZFyAEAAAAAgNUyq5CzaybTzEhVnZjkhCRHLXsWAAAAAACAZRsq5CT5tenjF5c6BQAAAAAAwADW5n2Bqjp3k1OOTvKwJP80yWOSdJLfnvdcAAAAAAAAo5v7HjlVdWcmcWbTU6ePe5O8qHfQhjH2yAEAAAAAgNUyqz1y5r4iJ8l1OXTIuT3Jd5J8Jsnvd/eVC5gJAAAAAABgeHNfkcPmrMgBAAAAAIDVMqsVObtmMg0AAAAAAAAzN/eQU1XnVtU5R3D+2VV17jxnAgAAAAAA2A7mfmu1qrozyTe6+yGHef6+JA/r7kXs3zMEt1YDAAAAAIDVst1urXakQ27pHwUAAAAAALAKRtwj5/gkty57CAAAAAAAgGUbKuRU1elJTkxy3bJnAQAAAAAAWLaZ70NTVS9K8qIDDp9YVVce6mVJTkhyWpJO8j9nPRcAAAAAAMB2M/OQk+THk/zcAceOOsixjfxVkgtmOhEAAAAAAMA2VN092zes+pkkZ6479JokNyd56yFedmeSG5P8eZIPdvftMx1qcFXVSTLrzwIAAAAAAFiOqkqSdHdt6X3mHQ+q6s4k13f3yXO90DYm5AAAAAAAwGqZVciZx63VDvTIJDtqhQ0AAAAAAMAszH1FDpuzIgcAAAAAAFbLrFbk7JrJNAAAAAAAAMzcIm6tliSpqsck+aUkT0ny0CTHJtmoQnV3H7Wo2QAAAAAAAEa0kJBTVS9L8tYku7NxvFnPPcYAAAAAAIAdb+63VquqJyZ5WybR6B1Jzp4+9e0kz0xyXpJ3JbktyTeTvDDJM+Y9FwAAAAAAwOiqe76LX6rqXUnOTfK27n759NidSa7v7pPXnfeTSf4kk8Dz+O6+ea6DDaSqOknm/VkAAAAAAACLUTW5QVl3H86dyjY09xU5meyJ00n+6wHHf2jw7v6/SX45ySOT/MoC5gIAAAAAABjaIlbk7E+S7j5m3bHbk9zU3ScecO69k9yU5IvdfdpcBxuIFTkAAAAAALBattOKnO8lufWAYzclOX4abn6gu2+dnn/KAuYCAAAAAAAY2iJCznVJjquq+6479qXp4xPWn1hVJyW534LmAgAAAAAAGNoigslnp4+nrjv24Uz2yPlPVXVUklTVvZK8Zfr8ny9gLgAAAAAAgKEtIuRcnkm0ecG6Y/8tyfeTPD3JV6vqw0m+luTnk/T0eQAAAAAAgB1tESHnj5P85yT77jrQ3V9O8qIktyT5sSRPTfKg6dP/pbt/bwFzAQAAAAAADK26e3kXr3pgkrOSPCzJ3ya5sru/sLSBlqSqOkmW+VkAAAAAAACzU1VJku6uLb2PeLB8Qg4AAAAAAKyWWYWcRdxaDQAAAAAAgB/B2iIvVlWPTvKPk5yS5Jjufum659aS3D9Jd/cNi5wLAAAAAABgRAu5tVpV3TfJxUl+/q5DmQSb3evOOTbJV5KckOSR3b1v7oMNwq3VAAAAAABgtf5dkMQAACAASURBVGybW6tNV9pckUnE+bskfzJ9/CHdfUuS35rO9E/mPRcAAAAAAMDoFrFHzi8keUqSfUn+UXc/O8nfbnDuH04fn7WAuQAAAAAOrbb0P9ACAGzZIkLOuUk6ySu7+2ubnPvpJHcmefTcpwIAAAAAABjcIkLOYzMJOe/f7MTuvjWT1ToPnPdQAAAAAAAAo1tEyDkuyU3TSHM47p3k9jnOAwAAAAAAsC0sIuR8M8nxVXXsZidW1SOSHJvk+rlPBQAAAAAAMLhFhJxPTR+fdRjnvnz6+NE5zQIAAAAAALBtLCLkXJKkkvxqVT1oo5Oq6hVJ/nUm++n89gLmAgAAAAAAGNravC/Q3e+pqvcneWaST1XV7yY5Okmq6pwkpyX5Z0keNX3Jpd39oXnPBQAAAAAAMLrq7v/P3p1H23rW9QH//nIvkIHIFCEhYmJFIlMqghAajZFJwRjMAiwUi5cC1YpWgQC2FAkOC5KAYuuIQYlioFIQEEEok0wuRKoQZBBKQhlUsJEhJISQ/PrHfm9zvJxz7jnn7n33c875fNbaa+93/u298+TZ7/ne530Xf5CqmyZ5cZLvz2zEzdesMj2/KskjuvvqhRc1kKrqJDkc3wUAAACwCVWJ83UAYAuqZtFHd9dBVl3X4bi0Wrr7yu7+gSTnJHlNks9nFt5UkquSvD7JQ7v7B3dbiAMAAAAAALCWwzIiZ9UDV90kyd7u/tJSChiIETkAAAAwKCNyAIAtmteInIXfI2ct3X1NkmuWdXwAAAAAAIDRzf3SalV1fVV9ao1ld6yqU+d9TAAAAAAAgJ1oUSNy1hom9KYkX7/A4wIAAAAAAOwYcx+RswGHdC04AAAAAACA3WIZQQ4AAAAAAAAbIMgBAAAAAAAYlCAHAAAAAABgUIIcAAAAAACAQQlyAAAAAAAABlXdPd8dVl2f5FB32t29dx71bAdV1Uky7+8CAAAAOERVifN1AGALqipJ0t11KPtZ1IicmsNj6arq5KrqNR4vXHZ9AAAAAADAzraIUS/PXMA+l+2Pkrz8gHn/exmFAAAAAAAAu8fcg5zu3olBzvu6+0XLLgIAAAAAANhdFnVptR2nqo6qqqOWXQcAAAAAALB7CHI25klJrkpyVVV9tKp+svbfpQgAAAAAAGBBFnGPnJ3k+iRvTPKKJB9PckKSxyX5r0m+OclPL680AAAAAABgp6vuXnYN20pV7UnypiTfleTO3f3BOeyzk8R3AQAAAIOpSpyvAwBbsP/CXt19SFf4cmm1Teru65Kcn6SS3H/J5QAAAAAAADuYIGdrLp+ej1tmEQAAAAAAwM6244Ocqjq9qnp6PGyNde5VVVdO61ywgd3efnr+h/lVCgAAAAAA8M/tinvkVNUrk5yd5ENJ7jJdHm3/slOSvD2z0TUXJ3l0Tx9KVd26uz9zwL6OTPK2JHdL8q3d/dE51OceOQAAADAi98gBALZoXvfI2S1Bzh2TXJpkT5J93X3xNP+2Sd6Z5KQkr05yTnd/dcV2f5TkVknelOSTSU5I8qjMRuQ8s7vPm1N9ghwAAAAYkSAHANgiQc4mVdVFSR6T5LIkpyQ5Jslbk9w1sxE5D+juqw/Y5jFJfmRa/5ZJvpTkfyX5te5+2SaOvaEPebd8FwAAALBtCHIAgC0S5GxSVZ2Y5CNJjkryhCTnJDkjs5E6Z3T35xZ4bEEOAAAAbEeCHABgiwQ5W1BVz07y1BWzLk9yend/ejkVzbi0GgAAAAxKkAMAbJEgZwuq6oTM7nVzRJIrkpzW3R9ZblWCHAAAABiWIAcA2KJ5BTlHzKWabaCq9iZ5fm54z0cnuXrtLQAAAAAAAJZrVwQ5NYu9LkpyVpLPJrksyZFJnrnMugAAAAAAANazKy6tVlUXJjk3yZVJ7pPk9kkuSXJdklO7+wNLLM+l1QAAAGBULq0GAGyRS6ttUFWdm1mIc22Sh3T3u5O8JMn7kuxJ8qwllgcAAAAAALCmHR3kVNWjklyQpJPs6+7XJ0nPhr48fVrt7Ko6fUklAgAAAAAArGnHBjlV9aAkL0hSSZ7Y3ZesXN7dr0ryrmny/MNcHgAAAAAAwEHtyCCnqu6d5KVJ9iY5v7uft8aqT5ueT6+qBx+W4gAAAAAAADao2g37lq6qOkl8FwAAADCYqsT5OgCwBVWVJOnuOpT97MgROQAAAAAAADuBIAcAAAAAAGBQghwAAAAAAIBBCXIAAAAAAAAGJcgBAAAAAAAYlCAHAAAAAABgUIIcAAAAAACAQQlyAAAAAAAABiXIAQAAAAAAGJQgBwAAAAAAYFCCHAAAAAAAgEEJcgAAAAAAAAYlyAEAAAAAABiUIAcAAAAAAGBQghwAAAAAAIBBCXIAAAAAAAAGJcgBAAAAAAAYlCAHAAAAAABgUIIcAAAAAACAQQlyAAAAAAAABiXIAQAAAAAAGJQgBwAAAAAAYFCCHAAAAAAAgEEJcgAAAADW0r3sCgCAXU6QAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACD2rvsAgAAAACGULX6/O7DWwcAwApG5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkbFBVfWtVXVNVXVXft+x6AAAAAACAnU+Qs3G/keTaZRcBAAAAAADsHoKcDaiqRyW5V5LnLLsWAAAAAABg99i77AJGV1W3SHJhkmcl+cSSywEAAAAAAHYRI3IO7tlJvpjkgmUXAgAAAAAA7C5G5Kyjqk5L8rgkZ3X3NVW17JIAAAAAAIBdxIicNVTVniS/meSPu/s1y64HAAAAAADYfYzIWdtPJblDknOWXQgAAAAAALA7CXJWUVU3S/LMJC9Ksqeqbj8tuvX0fMI077Luvm4ZNQIAAAAAADtfdfeya1iYqjo9ydunyR/q7peuss69krwxyTFJLuzup1TVyUku28Ahbtfdn5xDnZ0kO/m7AAAAgOGtdW9c5+sAwBbU9Nuiu9f4kbHB/ez08KCqXpnk7CQfSnKXlSNoquqUzIKe45JcnOTR3d1VdXSSB62yuzOTPD7JLyb56yR/0t1Xz6FGQQ4AAAAsmyAHAJgjQc4GVdUdk1yaZE+Sfd198TT/tknemeSkJK9Ock53f/Ug+9qX5HeTPLC7/3SONQpyAAAAYNkEOQDAHM0ryDliLtUMrLs/mOSF0+QzqupGVXXzJH+aWYjz9swuu7ZuiHMoqqrXeyzquAAAAAAAwPa240fkJElVnZjkI0mOSvKEJOckOSOzkTpndPfnFnz8DX3Iu+G7AAAAgGEZkQMAzJFLq21SVT07yVNXzLo8yend/enlVHQDl1YDAACAAQhyAIA5EuRsUlWdkOSTmV1O7ookp3X3R5Zb1YwgBwAAAAYgyAEA5sg9cjahqvYmeX5ueL9HJ7l6eRUBAAAAAAAc3I4PcmoWeV2U5Kwkn01yWZIjkzxzmXUBAAAAAAAczI6/tFpVXZjk3CRXJrlPktsnuSTJdUlO7e4PLLG8JC6tBgAAAENwaTUAYI5cWm0DqurczEKca5M8pLvfneQlSd6XZE+SZy2xPAAAAAAAgHXt2CCnqh6V5IIknWRfd78+SXo27OXp02pnV9XpSyoRAAAAAABgXTsyyKmqByV5QZJK8sTuvmTl8u5+VZJ3TZPnH+byAAAAAAAANmTHBTlVde8kL02yN8n53f28NVZ92vR8elU9+LAUBwAAAAAAsAnVbti3dFXVSeK7AAAAgCWqNe5D7HwdANiCmn5bdPcaPzI2ZseNyAEAAAAAANgpBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxq77ILAAAAABhC97IrAAD4GkbkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCg9i67AFhX1bIrAAAAYLfrXnYFAMAuZkQOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQc46qurbq+qXquq9VfWFqvpsVb21qn5w2bUBAAAAAAA7X3X3smsYVlW9JMn9k7w8yXuSHJnkEUnumeTnu/tn53ScThLfxSqqll0BAAAAu53zdQBgC2r6+3Z3H9IfugU566iq05O8p7u/vGLeniRvT3KPJLfp7ivmcBxBzloEOQAAACyb83UAYAvmFeS4tNo6uvsdK0Ocad51mY3Q2ZvklKUUBgAAAAAA7AqCnK257fT8maVWAQAAAAAA7GgurbZJVXVikr9J8qHuPm1O+3RptbW4tBoAAADL5nwdANgCl1Zbgqo6OskfJblxksctuRwAAAAAAGCH27vsAraLqrpxZvfGuVuSh3b3pUsuCQAAAAAA2OEEORtQVTdK8odJ7p/kR7r7lUsuCQAAAAAA2AV2/KXVqur0qurp8bA11rlXVV05rXPBAcv2JLkkyYOT/Fh3v+gwlA0AAAAAAJDqXXDDvqp6ZZKzk3woyV26+7oVy05J8vYkxyW5OMmje/pQquqIJL+X5JFJfrq7f2VB9XWS7IbvYtPqkO4BBQAAAIfO+ToAsAU1/X27uw/pD927Jci5Y5JLk+xJsq+7L57m3zbJO5OclOTVSc7p7q+u2O65SZ6Y5M+T/Poqu35nd39sDvUJctYiyAEAAGDZnK8DAFsgyNmkqrooyWOSXJbklCTHJHlrkrtmNiLnAd199QHbvCXJd6+z20d39ws3cOwNfci75bvYFEEOAAAAy+Z8HQDYAkHOJlXViUk+kuSoJE9Ick6SMzIbqXNGd39ugccW5GyVIAcAAIBlc74OAGyBIGcLqurZSZ66YtblSU7v7k8vp6IZl1ZbhyAHAACAZXO+DgBsgSBnC6rqhCSfTHJEkiuSnNbdH1luVYKcdQlyAAAAWDbn6wDAFswryDliLtVsA1W1N8nzc8N7PjrJ1WtvAQAAAAAAsFy7IsipWex1UZKzknw2yWVJjkzyzGXWBQAAAAAAsJ5dcWm1qrowyblJrkxynyS3T3JJkuuSnNrdH1hieS6tth6XVgMAAGDZnK8DAFvg0mobVFXnZhbiXJvkId397iQvSfK+JHuSPGuJ5QEAAAAAAKxpRwc5VfWoJBck6ST7uvv1SdKzoS9Pn1Y7u6pOX1KJAAAAAAAAa9qxQU5VPSjJC5JUkid29yUrl3f3q5K8a5o8/zCXBwAAAAAAcFA7MsipqnsneWmSvUnO7+7nrbHq06bn06vqwYelOAAAAAAAgA2qdsO+pauqThLfxSrqkO4BBQAAAIfO+ToAsAU1/X27uw/pD907ckQOAAAAAADATiDIAQAAAAAAGJQgBwAAAAAAYFCCHAAAAAAAgEEJcgAAAAAAAAYlyAEAAAAAABiUIAcAAAAAAGBQghwAAAAAAIBBCXIAAAAAAAAGJcgBAAAAAAAYlCAHAAAAAABgUIIcAAAAAACAQQlyAAAAAAAABiXIAQAAAAAAGJQgBwAAAAAAYFCCHAAAAAAAgEEJcgAAAAAAAAYlyAEAAAAAABiUIAcAAAAAAGBQghwAAAAAAIBBCXIAAAAAAAAGJcgBAAAAAAAYlCAHAAAAAABgUHuXXQCsq3vZFQAAAAAAwNIYkQMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADGrvsgvgBlW17BIAAAAAAICBGJEDAAAAAAAwqOruZdfAQVRVJ0l3G7IDO5A2DjubNg47n3YOO5s2DjubNg47205p40bkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgqruXXQMAAAAAAACrMCIHAAAAAABgUIIcAAAAAACAQQlyAAAAAAAABiXIAQAAAAAAGJQgBwAAAAAAYFCCHAAAAAAAgEEJcgAAAAAAAAYlyAEAAAAAABiUIAcAAAAAAGBQgpxBVNWtqurRVfWiqvpAVX2pqq6pqk9W1Suq6pw5HefYqjqvqi6tqiur6vNV9e6qelJV3XgexwBWV1VHV9UDq+q/VNXLq+rjVdXT47w57P+8Fftb73H7Obwd4ACLbuMrjnObqnpuVX24qq6uqiuq6m1V9diqqnkdB1jdon5P68dhsRZ5LqxvhjEsop3rn2H5Dse59nboy/cuuwD+v7/PP/8+vpzk2iQnTo8HV9Vrkzy0u6/aygGq6qQkb0ly8jTrqiQ3SXKP6fHIqrpvd//TVvYPHNQ9k7zmMBzn2iRXrLP8q4ehBtiNFt7Gq+ruSV6X5FbTrCuTHJvkO6fHw6rq7O6+ZpF1wG51mH5P68dhzhbZdvXNMIbD0Efrn2F5FnquvV36ciNyxrE3yV8k+fEk39zdR3X3TZN8U5IXTOs8MMlvbWXnVbUnyR9n1qH9XZL7d/cxSY5O8vAkX0xytyR/cAjvATi4f0ryxiQXJnlEZiHuvL2zu49f53H5Ao4JzCysjVfVzZK8OrMflx9K8h3dfWySY5L8RGYnlw9I8svzOiZwg8P4e1o/DnO0yLarb4YxHKY+Wv8My7WQc+3t1JcLcsZxn+6+V3f/Rnd/bP/M7r68ux+bGwKcH66q221h//uS3HV6/ZDufsO0/+u7+78n+dFp2QOr6r5bewvAQbytu2/Z3ffr7qd090uS+Jd5sHMsuo2fm+T4JFcneVB3/2WSdPdXuvvXkjxjWu/fV9Ud5nhcYGZf/J6G7WhfFtd29c0whn3RR8NOtshz7W3TlwtyBtHdbz7IKi9Y8foeWzjEj0zPb+7uP19l+UuSXDa9ftQW9g8cRHdft+wagMU5DG18f//8ku6+bJXl/y2zIeB7kjxywbXAbuT3NGxPi2y7+mYYgz4adrAFn2tvm75ckLN9fHnF6z2b2bCqjk5y+jT52tXW6e5O8qfT5AM2XR0AsDBVdUqSb5wm1+rLr0zytmlSXw5z5Pc0bE+LbLv6ZhiDPhrYqu3Wlwtyto8zV7y+dJPb3jE3fNfvX2e9/cuOr6pbbvIYwDjuXFXvr6qrq+rKqvpwVf12Vd1t2YUBW3aXFa830pffaYG1wG50OH9P68dhfhbZdvXNMIbD1Ufrn2Hn2VZ9uSBnG6iqmyf5T9Pk27r7w5vcxW1XvP7UOuutXHbbNdcCRndcZj9mr0pykyR3SPLYJO+pql9YZmHAlm22L/+6qrrpAuuB3eZw/p7Wj8P8LLLt6pthDIerj9Y/w86zrfpyQc7gquqIJL+f5ITMbuL0k1vYzbErXl+1znorlx275lrAqD6S5ClJTklyZHffKskxSb43yXuSVJKnVdWTllcisEX6cliuw9EG9eMwf4tsu/pmGMOi26L+GXaubdWXC3K2qKr2VVUfwuP7NnioX0ly1vT6x7v7vQt6S8ABDmM7n4vu/oPuvrC7/7a7r53mfaW7X5/kO5O8e1r1vKq62eGsDUa03do4sDnbrY3rxwFgPPpnYBSCnIFV1XOS/MQ0+YTu/p0t7uqLK14fvc56K5d9cc21gG2nu7+c5D9PkzdNct8llgNsnr4clmupbVA/Dlu2yLarb4YxLK0t6p9h29tWffneZR14B3hxklcfwvafX29hVV2QZP+wzCd39/MO4VifXvH6xCTvW2O9E9fYBnarhbbzJfjzFa//xdKqgHFspzZ+YF/+hTXW29+Xf6G7r1xsSTC8ebbxEX5P68dh8xbZdvXNMIZl99H6Z9i+tlVfLsjZou6+JrN71sxdVV2Y5Nxp8ind/ZxD3OUHk1yf2QisuyR57Rrr3WV6/vvuvuIQjwnb3iLbObB826yNv3/F67tk1revZn9f/oHFlgPjm3Mb93satqdFtl19M4xBHw1s1bbqy11abTDT5dRWhjgXHuo+u/uqJO+YJle91ndVVWY3akuS1x/qMYEhnbbi9WVLqwLYtO7+cJL/M02u1Zcfk+S7pkl9OczRIL+n9eOwSYtsu/pmGMMAfbT+Gbap7daXC3IGMoU4+y+ndu48QpwVLp6ev6eq7rXK8oflhiGgvzfH4wKHwfTDdL3lN0nyi9Pkl5K8ceFFAfO2v39+eFWdvMryx2d2be7rkvzBYaoJdpOF/Z7Wj8NCLfJcWN8MY1hIO9c/w66wbfpyQc4gqur83BDiPLG7n7vJ7fdVVU+PM1dZ5eIklyapJC+rqvtO2x1RVQ9L8tvTeq/tbh0PLEhV3aKqjtv/yA3/Hz565fyquukq2563op2ffMDiM6rqDVX1w1X1DSu2udHU3t+WZP8P2p/r7s/N/90BC2zjSfKcJH+f2Y0W/6Sq7j5td+Oq+g9Jfn5a7/nd/bfzfm/Aof2e1o/D0my57eqbYdtYVDvXP8MgtnquvZP6cvfIGUBVfWOSp0yT1yd5alU9dZ1NnrPZ++Z091er6uwkb05ycpI3VNVVmf1Hf+S02l8leeRm9gts2l8lOWmV+U+eHvtdnGTfJvZbSe47PVJVV2f2L4JuluRGG0O8CgAACxhJREFU0zrXJ3l2d1+wuZKBTVhUG093f76qzkryuiR3SvKXVfXFzPrx/e389UmesMmagQ1Y8O9p/TgsyCLbrr4ZxrDAdq5/hnEs5Fx7O/XlRuSM4YgDXt/mII+v+Ve8G9Hdlyc5NcnPZXYzp05ybZL3ZHZfntO6+5+29A6AZbs0s3b8siR/m+TqJDefnt+b5FeTfFt3P21pFQKHrLvfk+TOSX45yUcy+2H5pSRvT/K4JA+cbvAOLMACf0/rx2GBFnkurG+GMSyoneufYRfYLn15dfeyawAAAAAAAGAVRuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AAAAAAAAgxLkAAAAAAAADEqQAwAAAAAAMChBDgAAAAAAwKAEOQAAAAAAAIMS5AAAAAAAAAxKkAMAAAAAADAoQQ4AAAAAAMCgBDkAAAAAAACDEuQAAAAAAAAMSpADAAAAAAAwKEEOAAAAAADAoAQ5AADAwlTVeVXVVdXLrmVEVfVt02f008uuBQAAGJMgBwAAYHm+LckzkghyAACAVQlyAAAAAAAABiXIAQAAAAAAGJQgBwAAOOyq6syV986pqlOr6sVV9emqurqqPlhV51bV3hXbnF5Vr6iqv6uqL1fV+6vq8VVVaxzj8ukY+6rq2Kp6VlV9eNr/P077utdB6txTVf+uqt40bXNNVX2qql5aVWeus91bpmOfV1U3qqonVdVfVtXnpvlnTu/9d6dNTtr/eax4nLdif0dV1dlV9dtV9ddV9dmplk9P7+OB69Syb9rf5dP03avqD6fP8Zqq+lhV/VJV3eIgn8UxVfXEqvqzFZ/FJ6fpJ1XVbdbY7viqenZVvbeqPj99dx+rqouq6k7rHRMAAEj2HnwVAACAxZlCiJcnOTLJ55PcJMm3Jrkwyd2TPKKqHpvkNzP7x2hfmNa5c5JfTXK7JD+zziFukeTdSU5J8pUkX05yqyQPTvIDVfW47v6dVeq6WZJXJDlzmnVdki8mOSHJQ5M8tKqe091PXufYRyZ5S5J/leSr0/b7/UOSo5J8XZLrk3z2gG2vXPH6X+eG0CdJrp72d8L0Ph5cVc/t7nPXqSVV9W+SvDDJjTL7rPcm+aYkT0jygKo6rbuvXGW7b8/ss7jdNOv6afvbJjkxyRmZfT7PO2C7s5K8OMlNp1nXZvYdfFOSxyT5t9Pn/3vr1Q0AALuZETkAAMCyXZLklUlO6u6bJ7lZkmdNyx5eVT+T5Nenx/HTOrfMLJBIkidX1R3W2f8zktw6yQ8lOaa7b5bkTkn+LLNzot+agooDvSCzEOcrSf5jkq/r7ltkFl7sD37OraofW+fYj09yapJHT9vfMslxSd7X3ccn+alpvU909/EHPJ6zYj+fS/L8JN+T5LjuPrq7j5lqeUZmAcmTqursdWr5+qnui5N84/Q5HpvkJ6bt75zkKQduVFW3S/K6zEKcTyR5eJJjp/dyVJK7JjkvBwRRVXXPJC/LLMT5rSR3THJUd980yUmZfZ83TvKCqrrHOnUDAMCuVt297BoAAIAdaro82DOSpLtrxfwzk7x5mvyfSb63Dzg5qaq3JvmuafKi7n7cAcv3JPlokpOTPL27f+GA5ZdnFhgkyf26+40HLD8qyXuTfEuS13T3969Yds8k75omf7S7n7/Ke/sfSR6S5B+T3K67v7xi2VuSfPc0eXZ3//GB20/r7ctspM3Hu/vk1dbZiKo6N7MRTG/s7vutcYwkubi7962y/XOTPDHJR7v7Ww5Y9vtJfjjJ/01yt+7+xAZr+osk35Hk57v7Z9dY51cyC8le2d0/uJH9AgDAbmNEDgAAsGznHxjiTF634vWzDlzY3dclecM0eeo6+3/HgSHOtP3VmYUfSfJ906XU9nv49PzJJBetsd+nT8/HJbn/Guv8zVohzpz9yfR87yngWssvrDH/ldPz7avq6P0zq+qYzC7rliTP3kSI8y8zC3GuTfLcdVbdf0m1+x2kbgAA2LXcIwcAAFi2v1hj/j9Mz1d098cOss4t1tn/mzaw7Igk354bRgntv9TXm7v7+tU27O4PVtWnMrtHzD2SrBbYvGOdY29KVd0myY8neUCSO2R2CboDw4+jM/ss/nGVXVzR3R9dY/efXvH6Fkmuml7fI7P76SSrv7+1fOf0fESSD1fVWuvtr/+YzO5b9JlNHAMAAHYFQQ4AALBU3f3FNRZ9dXpea/nKdW60zjqf2uCyW6/yer1tk9mInRMP2HaluQQTVXXvJK9JcvMVs6/MLHDpzAKR46b5x2T1IGcjn2Pyzz/L41e8/vhG683s3j2Z6rrNBrc5+uCrAADA7uPSagAAwE633o1BD3bT0I3eVHSt9a7b4PZrqqq9SV6cWYjz10kelOTruvvY7r5Ndx+f5LSVmxzqMedg/0ibD3V3bfBx+TILBgCAUQlyAACAne4bNrjsM6u8vt0G9/3ZzRa1CfdOclJmodBZ3f3aVUYxHf+1m83F3614/f/au79Qvec4DuDvT/6MEbJETRZJc8OdG5KhdiFKza64WFxQSP7UJIpSRLnYjVpKKRntSopGHUUxJxIRuVgarczs7Gz+Xezr4vd77DTnnG1PO+23x+tVT9/ze37f73k+z+/u6d3n+111DOt29eNl/Tk7AADAmAQ5AADApFtzFPcOJvlizvvTo/tVNe/vpqpanW5btST5bMzaRufvLNZFMwqTfmmtLbTV281jfv6RTCf5u//71mNYNzob6PQktx/XigAA4H9GkAMAAEy666rqhsPfrKozkjzSX77XWts75/Yb/bgyyT0L/N9n+nF3kvfHrG1fP563yJyZfrywqv5z3kxVXZzkwTE/f1Gttd9z6FlsrKojdSiNTOdQMPZsVV2w2OSqOn/MEgEAYOIJcgAAgEk3k2RrVa3rz5sZddO8k2R1ui3Lnpq7oLW2PcnW/nJTVd1fVcv7tRdV1eYkd/T3n2yt/TlmbV/34zlVtX6BOR8lOZCua+fNqrqir+OUqlqbZCpHf5bPOJ5IF1atSPJxVa2vqjP7GpZV1VVV9UJV3TVa0FprSe5N8leSS5J82j//5aM5VbWyqu6sqm1Jnl/C+gEA4KQmyAEAACbd0+nOsHkryf6q2pvk2yQ3pgtA7mutTc+z7u4kH6bbHmxTkpmq2pPk5xzq0nmxtfbyuIW11n5I8kF/uaWq9lXVjv71UD9nJsmj/Zzrk3xXVbNJ9id5N8m5STaMW8NR1LgzydokP6Xb5m1Lktn+WfyR5Mu+vhWHrduebju2X5Ncmu7576uq3VV1IMnOJK9l6baFAwCAiSDIAQAAJt1vSa5J8lySH5MsS7InydtJrm2tbZ5vUR+g3JQu0JlKMpvk7CS70nXrrGmtPXYc6luX5KUk3yc5Lcmq/vXvdmt9WHRLX8f+JKemC1Y2Jbk6yVfHoY4FtdY+T3Jlko1JPkn3LM5KF8ZMJXk4yevzrNuW5PIkj6frLJpJ970OJvkmyStJbkvywFLWDwAAJ7PqOt4BAAAmS1XtSBeIbGitvXpiqwEAABiPjhwAAAAAAICBEuQAAAAAAAAMlCAHAAAAAABgoAQ5AAAAAAAAA1WttRNdAwAAAAAAAPPQkQMAAAAAADBQghwAAAAAAICBEuQAAAAAAAAMlCAHAAAAAABgoAQ5AAAAAAAAAyXIAQAAAAAAGChBDgAAAAAAwEAJcgAAAAAAAAZKkAMAAAAAADBQghwAAAAAAICBEuQAAAAAAAAMlCAHAAAAAABgoAQ5AAAAAAAAAyXIAQAAAAAAGChBDgAAAAAAwEAJcgAAAAAAAAbqH4UuOpf4HN4NAAAAAElFTkSuQmCC\n",
"text/plain": [
" \n",
"- Feature $x^2$ is negative and weights double the feature $x$ \n",
"- Feature $x^3$ is positive and has half of the weight of feature $x$ \n",
"- Features with order higher than three have 0 or very little weight"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Remove unnecessary features, select model complexity"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From the numerical results above, we can safely remove features $x^4, x^5, x^6$ from the model and stick with a polynomial model of order 3. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Can we make this search for model / feature complexity, and, in general, for model's hyperparameters more systematic?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- Check the value of the **weights of the features** in the learned model: most likely, those with little weight can be safely removed \n",
"\n",
"- Check the **correlation matrix:** retain the features that are highly correlated with the target values and that are not mutually correlated \n",
"\n",
"- Perform a **cross-validated search in the parameter space** to select the most appropriate values for the parameters (those that can guarantee a good generalization error)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cross-Validated Grid search "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's use a `Pipeline` object to compact the process of generating polynomial features and performing OLS"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### We already know the good values for the (hyper)parameters \n",
"\n",
"If we already know what degree is good for our polynomial features (e.g., 4), the code in the cell below does the job of generating the features, fitting them to a linear model, and get a cross-validated estimate of generalization performance."
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mean test score: 0.989 (std: 0.001)\n",
"Mean train score: 0.989 (std: 0.000)\n"
]
}
],
"source": [
"from sklearn.preprocessing import PolynomialFeatures\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.model_selection import cross_validate\n",
"\n",
"model = Pipeline([('poly', PolynomialFeatures(degree=4)),\n",
" ('linear', linear_model.LinearRegression())])\n",
"\n",
"cv_results = cross_validate(model, X, Y, cv=3, \n",
" return_train_score=True)\n",
"\n",
"print('Mean test score: {:.3f} (std: {:.3f})'\n",
" '\\nMean train score: {:.3f} (std: {:.3f})'.format(np.mean(cv_results['test_score']),\n",
" np.std(cv_results['test_score']),\n",
" np.mean(cv_results['train_score']),\n",
" np.std(cv_results['train_score'])))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### We don't know the good values: let's search for them!\n",
"\n",
"However, it makes sense to perform a **cross-validated search over a set of candidate values** instead of committing to one specific value, or search manually for it.\n",
"\n",
"`GridSearchCV()` automates the search process!"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Best accuracy score: 0.989\n",
"Best estimator: Pipeline(memory=None,\n",
" steps=[('poly', PolynomialFeatures(degree=4, include_bias=True, interaction_only=False)), ('linear', LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False))])\n",
"\n",
"Best degree for polynomial features: 4\n"
]
}
],
"source": [
"from sklearn import model_selection \n",
"\n",
"model = Pipeline([('poly', PolynomialFeatures()), # this time no degree is passed!!\n",
" ('linear', linear_model.LinearRegression())])\n",
"\n",
"\n",
"# estimator object that will perform a grid search over the\n",
"# set of the given hyperparameters\n",
"\n",
"parameters_grid = {'poly__degree': [1,2,3,4,5,6,7,8] }\n",
" \n",
"estimator = model_selection.GridSearchCV(model, parameters_grid)\n",
" \n",
"# fit the estimator to the training data\n",
"estimator.fit(X, Y)\n",
"\n",
"print('Best accuracy score: {:.3f}'.format(estimator.best_score_))\n",
"\n",
"print('Best estimator: {}'.format(estimator.best_estimator_))\n",
"\n",
"print('\\nBest degree for polynomial features: {}'.format(estimator.best_params_['poly__degree']))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have found what we had already discovered, but this time in a systematic and compact way!\n",
"\n",
"Indeed 3 and 4 provide an equally good result. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Control of model complexity: explicit selection and implicit regularization "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We aim to **control model complexity** in order to favor generalization and at the same time minimize the number of (unnecessary) features that (necessarily) makes our computations heavier.\n",
"\n",
"There are number of different ways are possible to act upon model complexity."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***\n",
"1. Keep the number of features (or feature functions) low. \n",
" \n",
" - This is what we have done above, it can be realized by performing some explicit search in the feature/model space. \n",
" - **This is an explicit design choice when selecting the hypothesis class.**\n",
"***"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***\n",
"2. Keep the magnitude of the weights ${\\bf w}$ small. \n",
"\n",
" - Design choice that can be realized in an implicit way by *modifying* the loss function $\\ell({\\bf w})$ \n",
" - **Regularization**\n",
"***"
]
},
{
"attachments": {
"image.png": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABewAAAEkCAYAAABdSHE7AAAgAElEQVR4AeydBXhU19b+7/f/er127+29321pKV4quLs7BEhCgktwd3cvUKC4l+JOcXd3dydYIEAS4sb6P+8O5/TMZGYyE50J736eec7MmX22/PY+I+9ee60/CBMJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECaE/hDmreADSABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEhAK9pwEJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJOAEBCjYO8EgsAkkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQMGec4AESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEnIAABXsnGAQ2gQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAQo2HMOkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIATEKBg7wSDwCaQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAV7zgESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEScAICFOydYBDYBBIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARKgYM85QAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJOQICCvRMMAptAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAhTsOQdIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIwAkIULB3gkFgE0iABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiAgj3nAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAk4AQEK9k4wCGwCCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACVCw5xwgARIgARIgARIgARIgARIgARIgARIgARIgARKwSSAqOlJ8n92Xa3cvybU7F+WO700JCQu2eQ3fJAEScJwABXvHmfEKEiABEiABEiABEiABEiABEiABEiABEiABEnivCJy/dlI6DmsktdoWl1ptikv9blVk7c6l7xUDdpYEUoMABfvUoMw6SIAESIAESIAESIAESIAESIAESIAESIAESMCFCazZsVTKNMolBd0zSWHPrJK39pcycHJXF+7R702PfRsrx88flIXrZ8qcVZNl9Y4l8uTFo98z8JlOICY2Ro6c3S8L182QOat+lnW7l8vzl8/09/kk6QQo2CedIUsgARIgARIgARIgARIgARIgARIgARIgARJIJIHwyHDZsGeljJ09SEbP6i9jZg2w+Bg/d7BMXjhKiYQ7Dm8U/1fPE1kjL0sMgXW7V0iFZvmkiGdWKeaVQwn3Q6f2TExRTnfNqctHpVrLwlK64fdSssG3amGi+2gfCQoJdLq2pnWDjpzbJ1V8CkqpBmD1nWLV76cOEhz6Jq2blm7qp2CfboaSHSEBEiABEiABEiABEiABEiABEiABEiAB1yNw8PQeKd3wByUCF/f+Rqw9SnjnlBL1v5VSDb6T8k3zSrWWRaTbaB9Zv3u5vKGwmuIDn14F+7dvY2XRhtmSq+YXUrReNilaL7sUdM8sNdoUl3PXTqU4V1eqIDY2RuauniK5DawK1M0k7h3LyqVbZ12pK07dVgr2Tj08bBwJkAAJkAAJkAAJkAAJkAAJkAAJkAAJpG8CK7f+KrlrfaEEe1huJ/zIrkRVCKtFvbJLMe8c0maQt1y5fUHevn2bvmGlYe/Sq2AfFRUpM5dNkLy1v9LnHlz+1GpbQk5fOZaGxFOm6piYGHkZ8EKe+T+RZ/6P5VWgv+CcPSkyKlx+/nW05DOwKuSRRTw6lZPz17m4YQ9De/JQsLeHEvOQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkCIGVWxdKnloZdLEUgn0hj8yS1+1L5ScdvtIhpkIkzF/na4FAaC7qF6ybSar6FBIERn0rFO1TYqDSq2CPRZ4lm+bJD9X/q9z9FPHMJvnrfi3VWxeVSzfPpQTKNC3zwvXT4tPPXWq2Li7VWhWVZn1qy7U7F+1qE3z9L1g7zYRVvjpfSZ0OZeTaXfvKsKui9zwTBfv3fAKw+yRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQlgTMBXu4xPHsXEH6TeggvX5sox49xrSSriObS6sBnlKzTXHJXyejCnxqFO4h6HcY2kiev2IAzJQYz/Qq2IPVhRunpG7Hsso1E1wuVWqeX4ZM6S6hYSEpgTJNy1yxZaFa8MLCBB7fV/uPbDu43u42wd9/nfalpVSj75V7qsotCsiYWf0lPDzU7jKY0TYBCva2+fBdEiABEiABEiABEiABEiABEiABEiABEiCBFCRgFOzh5gaBLGetmGhSI6ygo6KjJPDNa7l5/6os3TRParQuJoXNrO1hgT9j2QQJjwgzuZ4vkk4gPQv2oOP77L6cuXJcTl06KldvX5CQsOCkQ3PCElZvX6zuMW2xC7tbEMTZkfTgyV05c+WYnL50VK7fvSRh4elvYcMRHsmdl4J9chNleSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAnYTMBfsYeE8Z9Vkm9dDwD92/qDUalNcBQrVxEe4y/HsVF7557ZZAN90mEB6F+wdBuKiFySHYO+iXXeZZlOwd5mhYkNJgARIgARIgARIgARIgARIgARIgARIIP0RsCTYz145ya6Ozl09RUrUz2ni076wR1a563vTruuZyX4CFOztZ+XMOVdvX2LBwn6TMzf5vWsbBfv3bsjZYRIgARIgARIgARIgARIgARIgARIgARJwHgJJEeyf+T+R8k3zmgj28GV/9Ox+hzoYGxsjb0KD5FXgS3nxyk/8Xj6VF6/95FWgv7wJCZKY2BiHyrOUOTIqQoJD38jrd3X4v36ungeHBklEZLjgfUuP6OgoS8UJAoCGhYcq1y2h4SEOtzE6Jlq/HuXExERbrEc7mRyCfWRUpOIJruALzs9fPpOXAS/UefTf0YRr4GseD0vXB4UEClirMX3lJ0HBgRZZweUSOIaGBSuXStjFYS2BnaWxSuictbG0Vg9cOwUGB6h5+OLVszher56p13DZExUdae1Sk/OoN65tkbJs84J4gv2W/Wst9sfavEe99rIyaYjZi4jICAnS+/fuvnsVd99hnDBfEpPeGu4NzG1LY4l7LiDolfi/m4c4vg56qe6JxNSZnNdQsE9OmiyLBEiABEiABEiABEiABEiABEiABEiABEjAIQJJEewhtFdtWUiKemXXRXv4sV+/e7lFkc68Ybj+2t1LsmLrQuk+pqXU61xRKjbLJ8W9ckjF5vmlXqcK0m1UC1m+5Re5fvdyogRECI87D2+UKYvGSu9xbcW7W1Wp0CyfVGtZWLy7VpYeY1rKpIUjZdqScRYfi36brQRa87bvObZVRkzrLQMndZUhP3eXdbuW2S02QnD+bfdKGTq1pwyc3EUd1+9eYVMATqxgj4WFx34P1SLKzOUTVfBgj84VpGLzOM6IWVC7fWnpOqq5TF38oyCoaZidMQge+T2U2SsmycBJXWTQpK7qecCbVwpV4JsA2X5og3Qc1kiqtCgoRb1ySIWmeaXdkAayef9aFRNBY4pFmV9/myWDf+6uyhk7e5AcPXdAe9vkiMWGX9bNkKmLx1ocL2vjiL7NWfWz3H982+bchLB+//Ed2Xdih/w4Z5C0HuStAuKWa5JHitXLLqUb5RKPTuWl308dZM7KyXL17iWLCxBao58891X5UD/iO7QdVF8Q2FlzI1XQPbN0H+0j05eMN+kP5uuyzfMFCx7GBK4L1k6TwT93U6zGzR2i/P4b8yT0HAsopy4dkZ9/HaPa49GxnFRolleKe+dUY4T+IYA05svxi4ctzn9rdUCcx9gNm95bBkzsIsOm9pTTl49JbGysugSLBJdunpOJv4yQZr3dBEFzUW/lFgWlYY9qMmJ6H9U2RxdXrLUnMecp2CeGGq8hARIgARIgARIgARIgARIgARIgARIgARJIFgJJEexhFV0eQqZXDv0BC/vdx7baFEXR8GcvHsuv62eq63O7ZZBC7pmliGdWQeBblIcjXuN8XrcMSsiftWKSssK1p+MxMTFy5vIxGTyluyoD7YI4WvhdHUXqZdPLxyJD/joZ4z1wDcTVNTuXmlQJC+Imvd0E1xV0zyTIV8WnkAqcapLRyguIzg17VJdcNT9X1yPwqGfnCgJx11pKjGD/4PEdWbJxrjTtU1u1EX20zDmbzqhMox9k0sJRcuvBNWtN0c9jkaFMo1ySr85Xih1E3+MXDgl2LYyY3lvgHgl8itbLpo9p/rpfS802xZXVvVbQ1TsXlGCc1+3Ldzy/lI7DGmtvmxyPnNkn31b9t2Jvacxsnfuu2n9k8sJRAtHYUrpx97IS1et2LCe5a2WQAnW/FsRlKOKZzWxeZlNzCeNerVURWbRhtmDxwjxBvF67c5nkrPqZPrdQnvF+wXOMiaV2/1Djc7l867xJseevn5ZyjXNLXjWfMwnmTq8fW5vksfYC9+vhM3vUIhj6puaDSf+yv7vvsql+4/0C7pmk149t5Pj5gzYXlLQ6sVOk59hWkq92RjWW6MPIGX0EAvxjP1+ZtmS8lG2US7Uf8yPufo+rF/cm6izd8Hv59bfZEhoeqhWbqkcK9qmKm5WRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkYCSRFsH/49J6UbZxbFyBhaV+wbia5ef+qsYp4z09eOiLe3aooERliqFHAVCI9RMR3Iq/2HsQ8CKSw0L7z8Ea8Mo0nYM07f+20ODG59pcm5aMcCKRKLDTsDNDqMR4hJkLAhnhoTBDsffq76yIu+gAR+pHfA2M2q88h2DfrU1sJwqgP7YF18WMb1zsq2F+5fV7cO5RVzFC+sV/FvLAYggWLbCa7I5AHfc5b+0tlRX7+6imrfcAbG/aulkrN86tFEJRVq20J2XpgvRJoIQhrQr2xbvCHRffL1y/0sq/euShVWxaWwu/EbIxN15HN9feNT3Yd2aT6ZCzT3ucF6mZSuxngvsc8rdq2SKr5FFZlo43GMuMWj+J4Gc/jOfJioaHNoPpy96Fp7AaI14s2zEp0eyHGn71y3KSpF26clkotCqh6UT/Gtu+EDiZ5LL0IDHotI2b0lRLe3wg4mPcDr+PE898X37Q8ENGxcDVu7mAJC4/Pzlgf+txnfDs1t3A95gGs6Xcc3iSNelSX/LUzWpwXWl044t7HwgYWCuAiK7UTBfvUJs76SIAESIAESIAESIAESIAESIAESIAESIAEdAJJEexhrVzC+/egsxDaYGn+2IalOMR8945llSWtUaSD9TvEPbe2JaVFv7pSuXkB9bqIp9EiObu6rs/4thIcEqT3wfzJ6SvHlG99ozUzBOXCHtmUEN1+SANp0L2qcnGiicTGtkCERVuwQACXMdsO/mZShSsI9ks3z5cfan5uEGGzKxEUfUL/qrcuphYZsECCvpovkEAI7jm2rWCngrVkFOwh9sJtTONeNaVUg+/08nAe46DtbkDdtduXEv9Xz/ViHRHsz187Jd9Xx86EzMqCGxb8lh+Z4y1GoJ+jZvVX/t/1ykWUqyUI7rBa1+YB2o06tHOYl3CjhLqwS8DoBgoLE+A1Yf5wY7HyVt6quZOz2r+VSA6hHP3X6tCOmIN4z/QRZ91/64Hp4ldiBHu4HBo2rZdaEMF4a/Vi4QZjAy7YLYJxQz/y182oC+5aXuRDO1fvWCRw6WQtmQv2mFd12peWGq2LqbK18lAWFgIwH1E/Fmm093AEf7BCYOvUThTsU5s46yMBEiABEiABEiABEiABEiABEiABEiABEtAJJFawP3Byl7KKhrCmCW1wg/HTL8Ot+kAPjwyXjsOaKCFUu0YJn/VyyKRfRgiswp++eKTcpcDv+vnrpwTiupbXKOQdPLVb74PxyZvgQGW9bhQAIfw16VVL+cZGoFxYuD9/+VSOnT8oLQd4mpQPwbLd4AbKx/zOw5vk8Jl98XzTO7tgD1cs89ZMUe5SMD54lG+aT4ZM7aF8s8NHO9zvPH3+SB48uaN8ynt1rWwimoIZXNzA37y1ZBTstTEqourTdk1kl0ot8iu/5FOX/ChdRjWXEvVzStPebirgr1auI4J9SFiIbNizUmYu/0nmrJps8TF31c/KJzx85hvnJyzhl29ZqPtT1+oPDnkjPv3clWiN/FjcqdayqHKPc+bycXn45J6al2B279EtWb5lgYoBYBTfIeTXaltS7vqaWtm/DnolG/askkUb56iAs4jJYFzkwnX9J3aUJZvmyZJNc/XHrxtmy76TO1VAZK2dOCZGsAcnjI+xvVhkAJ9BP3dVMSfgV9736X25++iWrN2xVC28aGOqHSHaV2yWX+CWx1oyF+y1erX7Udt10Xd8e9l9dIsqC+OJ+BLG9mnXYScOglGnZqJgn5q0WRcJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIAJAUuCPcRQiNJwLYMHrKwRjDM0PES5qJj86yjllsNolV3QI7OynL9x74pJ+cYXSzfOk1INv9cFcgijcO+xce9qVb4xr/YcAvyE+UN1i20l5HlklVYDPcWSa5P9J3YoVziayAhBtN2g+kqM1Mo0HhGUtkXfurqwC0GxfNO8cvbqcat++J1dsEf/EAQX41O9VREVcPeZ/2OrQXsh8D94fFe5LIFLI40dLKARCNZasiTYa9dCoG0/tJHyhR8VFamssiMiw9VCAdycaEFIUbYjgj3yo72w8oY4bOmB9xZvnKvmgSbYF3LPIl5dK8m9R7fjdQflIfArFhM8OpWVZZsWyOs3L61akqPth0/v0XcoaH2GNT4WsswTyo+JjVF9Xrn1V7VrQ7sGbm+wgwMBmI0P5LeUHBXs4T4KOxqwEKXVifsOgYD3HNum7jvMZ2NCoGK4LIJrm+JevwfIxfXYBQBxPSQs2HiJ/tySYK/VizkBt0nrdi4ziSMAPtgFgM8duN7Rdi9g7BAjYemm+Xr5qfGEgn1qUGYdJEACJEACJEACJEACJEACJEACJEACJEACFgkYBXsIaxDMEPBz456VsmbHYvWA0A53Hz3GtJI67UorNxqaCIcjxHr4eof/cohvllJYeKg06+2mW9FClIP4t37XckvZTc4FvnktTXvVEoiuWr0QEncf32qSDy/mrPxZStb/VuWD+A5xct+JnfHyGU8cPXdAibVa2XDTMXvFJBsCt/P7sH8Z8Fz5DX/y4pGxqzafz18zVUo2+FZfHAGHbqN9rI6pNcEelthtB9e3GUTX2BBHBXvjtZaew+2SR6dy+jyF8AuxeNPe1Zayq3NYaEKwZMw1e9PIGX1NBG0Eql1rFqDYvKzV2xfHE+x3HN5ons3qa0cEeywArNq+yMSHPqzYq7QspKzbrVby7g34qx84sbMKzqzdG7hv4Qff2sKcNcEec8KzUwU5ceGw1WoDgwOU6578dX53TYTPCCymWPtcsVpYEt6gYJ8EeLyUBEiABEiABEiABEiABEiABEiABEiABEggaQTMBXsIc/AvDbE2H3xM18mofE3D8hqim9GqHv6wkc+tfSlZvW2RzYbsOrpFKrcoqPvGhhCHQKt+L5/avA5vwuJ3y/51ypVOUa/fg2LC8t489R7XTreWh3W9Z+cK4vvMdjDY8IhQFTxVEyXR14GTu0hw2Bvz4tVrV7Cwt9jwBE5euX1B6nWuoAvd8GveeqCXhFjhYEmwL+CeSfl6v5VA4GFjU5JTsMdOkP4TO6k+aNb18JHeZqC3BAS9Mlab5OdHzu5XbmW0emBhP2vFRImKirJadmoK9nD71GlYY+V3X5vbaOvgyV2tts/8DbgBKmcILK0+HzyzypxVPysf/eb5LQn2qBNBmU9ctC7Wa+XA6h8LbRpTjF2r/h7KAl/Lk9JHCvYpTZjlkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJWCVgSbDXxD1bRwhqCB4L1yO3H163Wr72xujZA3Tr+mL1ckhh98wyeeFI7e0Ej/C17ta2hF4G6u86qnm86xr1rK4WHNB2CM7wTf4qwD9ePuMJuGpBYExNJFR+7Ic0lAAr1tbpVbD3f/1c7YLAQgf4Iehqg+7V5NmLx0Zc+nNzwR67GRB4dvnWhXoee54kp2APK/ni3jn1hSHsyqjRppicvnzUnqY4lAfudRBkWZs3CEaL4K5w42QtpaZgf/HmWdU2rX04or237l+z1rx456Ojo2XkzL4mu1tQDnZQYCHNPJkL9sgLAf7Q6b3mWS2+9n16TzywaPTOhQ/mYOOeNeTBk7sW86fESQr2KUGVZZIACZAACZAACZAACZAACZAACZAACZAACdhFwJJgD+EVoi3EMnOrek3Eh2uM6q2KyrFzBxKsBxbsnYY3UQI6rodbjorN8inf9Qle/C4DxOTWAzz1gLUQAr26Vol3uU9/DynikVUJzrDib9Sjhvj527bih2BfuXl+3d1OnIV9VwkJteynO70K9vDN3nqQl3JVpAn2Xl0qySMrOxTMBXvMmc7Dm0pwqOWdCfEG692J5BLsnzx/JBh/COdoP+YI/NJPXfyjislgrf7Enn8TEqjuAdSD+mANPmBSZwkIsu5WJ7UE+7fyVrYcWCe53TLo8xpt7DSiqUPdhYer4xcPm7jVQTkQ/sMiQuOVZUmwL1k/Z4L3oFZQ4JtX0rxPHcUS9UC4r9+9ijiyY0MrK7FHCvaJJcfrSIAESIAESIAESIAESIAESIAESIAESIAEkkzAkmAPkXb0zP4yfFpv6TqyudRuV8rETQWENDwgVHp2Li8nLhyy2Y4nfg+leV+IcHGW28oPdv2cSsSfv3qqzFk52eZj7qqfZdzcwVKpeQHdchp112hdLJ6rjME/d9MFysKeWZSrm+t3L9ls34Xrp038isPNz/w10yQ62rJrk/Qg2AeHBMr9x3fk3NUTcuTcAYEffwRM9e5WWXeJgwUbRwR7iKsDJ3WxydrSm8kh2EdEhMuMpeP1OabNz6a93STwTYClah0491YCgl4KArjCUv/Iuf2K1/bDG6VSs/y6hX2cYN/FKQT7yKhImbFsgnJnpd2vOE6YP8yBfsdlffjknlr40BYmUE7ZxrkFLnfMk2XB/luriz7m18NvfuuB9UwEe8zBq7cvmGdNsdcU7FMMLQsmARIgARIgARIgARIgARIgARIgARIgARJIiIBRsIcgV6rBdzJ96TiB1Xl4ZLiEhoVIUHCAXL93WQUgLf5OqNdEQOWyoldNefTsntWqbty/Kg17VDfxpY3rEeAW9dnzQCBZCP1avWhr1ZaF47lrWbBuupR4F3QWeSGiTvxlhFWrb/g87zqqhS664po8tTLInuPbrPbHlQR7BOvEGJ6/dlImLRwpPv09xa1tKanqU0gqtyigdjqUb5pX+WLHERbpGuPECPYDJna2ys3aG8kh2J+8eETNI2OMBYjK8DPvSIqJjVHzHQsYgyZ1lcY9ayr/65hr4FWhWV7ReMH9D+awxsuZBHtYv4+dM1AXvtFGtHXRxjmO4FB54ce+VtsS+mIZygJbLGCYp6QK9hGREcrdDtxZoR4sAkGwR3yF1EoU7FOLNOshARIgARIgARIgARIgARIgARIgARIgARKIR8CSYD975aR4+XAiIjJMFqydroQ7zdoWR7jQGTN7gEDstJTOXzulgr9CANbETRwhriLAbWGPrPY9PLMqdzpwqQMhD4Eszf2F33t0S53XxH20DyL0lMVjBcIjAqhCFAwJfSMPn96XoVN7vBOp4xYDCnlkVpb7tvzyu4pgD6F+64H1Ar/+GnfwMH1kU+OHMTSK3cjvKoJ94JvX0qJfXUEQZK2fcOU0du5gwYKFvQmW+Is3zBG3diXjGHmZs8quGClWFng5k2APd04DJ3Y2WSQr4Z1TsCvA0QRL+kY9qumxIcAYgv2Ne1fiFZVUwR4LaPCPT8E+HlqeIAESIAESIAESIAESIAESIAESIAESIAESeB8IOCLYg0dQcKByZWMU3yFyQ+SEWG4pwY2IR8fyeiBJTVQt0+gHZSVfxaegOPRoUVCJ8j8tGGGpOpm4YISJxTzqgzse766VZcSMPjJ9yTh1hNUwxH+tPRBi0Zc1O5dKrJXFB1ToCoJ9WHiocn9SzBsxA7LofYRYDzE0r9uXksctg+ov+g/ra7xXzLCLwVUEe7hMMhHr3TOLZ6fy4uf/xOL8sHTymf8T6TuhgwquGschzu0T5kf+OhkVKzDT5ktxL41XXL64OQYf9s7hEic4JEj6jGunx3xA+7BwtfvYFkvdt3numf9jqdelot53lAXB/qaF4LUU7G2i5JskQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkYJuAo4I9Sjt4arcS2mHFDPEODwT6XGtF6L5867x4d62ii4cQxuFWBFb52w9tVFbgsAS397HlwHo5dHqPspI3711UdJQMmtw1nmCPNkJshRV0vjoZ1RHt0NqP9+AKp+PQxvI66JV5sSavnV2wB4MNe1Ypy3lNYEY/EUwXffbp567E6eHTesnkhaNk9opJMmfVZLWQoRYx3gXtdQXBHvEJ4K5GE9lxxANz6W1srMm4WXuB4LGDfu6mfPdr5YBXvtoZBW5vYPHdf2InGTWjr0xdPDaO18rJysVQuSa59TnkTBb2oWHBMvjn7iYW9sW9cwqC3jqanrzwFbd2pUwWRSDYP3h8J15RFOzjIeEJEiABEiABEiABEiABEiABEiABEiABEiABErCfQGIEe7gZGTKlhxJGNYGzoHsmadG3rsXgkvce3ZYmvWrqAUGLeGRRIuvuY9b9xNvfA9Oc81ZPNfErDtc5CCIL1ztaWzWRHq81Eb+KTyGZv3a6PPZ7aFqghVfxBPt62aRKi4Li+/S+hdzxT70K9JdmfWrr/sXRxoY9qsljvwfxM787s273CqnQLJ8umjsoBI0AACAASURBVIL30Kk9LeaHqxII74XctQWV7FK4XjZpOcBTjp7dL6jfWmo7pIE+Ts4u2AcEvZI2g711JnEi+1cqZgGCrtqblm6cJ4iRoC1uYF5gYePHOUMEAYkh6FtKkdGRyn2SNq+cSbAPjwiT8fOG6q5ltDmPQLSOpgdP7koRT9PdFxDsEdvCPFGwNyfC1yRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiTgAIHECPYo/uSlIwKR22ilDrczO49sjlf7q8AX0mpgPSnwLpAkfKWXaZRLlm2eHy9vUk5EREUo4Rs+8eHDHoJ1rx/byJodS9RiQskG3ykrfwjksDav0DSvNOntJmNnDxQEPo2OjrKreixYtB3cQF8AgGBbquH3ct+CxbGlAlNSsI99Gytrti+RvLW/1C2/0T4E/U2ofdEx0dJ6kJfLCPazVkyU4t45pGi9uJ0SWGCo07603PW9aQm7xXNR0ZHSY0wrtagDURvzBsI9AhGHhAVbvEY7GRgcINVbFdXngTMJ9pjL89dOU7sENLEe86DXuDZa8+0+nr50VO1KMZbj3a2KYL6YJwr25kT4mgRIgARIgARIgARIgARIgARIgARIgARIgAQcIJBYwR4BZtsNrq+LlRDzIFj2Gd8unuUtLNJxXhPstbwjZ/Z1KChoQt26evuisizHIgJE+yotCsm2gxsEIjYCk/q9fCrX7lyUo+cOqOOL134S8Oa1wBrZkQTBvttoH5O+w4r/4o2zdhXz4PFdkyC8yWlhHxYRJhN/GS756nylC/ZYqFi4fmaCbcOYuopgf/vBdandvrTugx9iNIKqzlz2k0Nz6nXgSxWwFnMX8xJzp3KLArL90IYEeQWFBCZdsHfLIJv2rkmwLi3DhRunpVKLAvpuAMwd+N63lPaf2qncPBmFdgRqfvTM+k4O83KwoDFiel/lLkgrB4yGTeul7ivz/BTszYnwNQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAk4QCCxgj2q+G3PcilR/1tdGIZoWtwrh1y5fSFeCxAYtFSD73SRGy5dPDqVE98n9rmRiVeghRPrlduYvMriGoJ9tZaFZdvB3yzkTNopCPZwR4OdApqICcF3wdppEpOA33QIxMOm99at2HF9cgr2EJHhw18ToFE+djMcPrMvwU6HhoeIT393vW3O6hIHixIT5g9TwWA1/mDYaVgTtTCTYEcNGR77+Ur9boivkEmNJeZN3Q5l5NrdS4Zclp9iAQhzDPMe7QDzhILOIrYAFlC0diOQ7ZKN82wGOTbW7ohgD9dI2EWi7UBAO7ETZP6aacYibT6///iumj9ae3EEoy0H1lm8joK9RSw8SQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAL2EUiKYI/grDVaFdXFR4h5BetmVsE4Ya1tTBeun5GarYsrsQ/54Hokf52MsnQTxEr7goMay7P0/Le9q6RCMwiUcQIq2tKkdy05cHq3cpPy/OVTeRnwQgWVhbAdGhairOsTU/8va2fofVH9qZddPDqWEwjy1tLLAH8ZO2egidCMa5NTsEew0dGz+5sI9qUafC+b9q+11ix1HuM1f81UKd8kj74QoQT7rpWs+tbfsHe1VGqe38Tae8DEzjbrsfQm3BEhcCziDIAHBOGuI5tbyqqsuncd2Wyy+ANBunqrInLiwmGL19g6+fzVMzVH4M5J1e2ZVWCFfvKi7bKCggNl3NzByvc95jKuhWA/cHIXtWvDWp2HzuyV0g2/1+8ZXDN6Vn8Jj7Rvl4cjgj3mIqzvcZ+hfXFss0j9bpXlru8ta03Uz78JCVJt0/qH64t4ZlW7WPxfv9DzGZ9QsDfS4HMSIAESIAESIAESIAESIAESIAESIAESIAEScJBAUgR7VDV21gBdsIWgB7EcgieEcfMENzJGn/eFPbNJ9dZFZfmWXyQ49I159niv4drm6u0LsmX/OuUr39yH9sOn95SLEk341QTKvLW/Ur7Nu4xsKr3Ht1VW0COm95Fx84bIlF9Hy4K105XF8JGz++Xmvavx6rV04vTlo2rRAXVoDwjNCOppyfc5BNKBk7ua+BTXrktOwR7CO3jmqZVBbxfq6fVjawmPDLfUFQkLD5XV25dImca5dBczuMYZLeyfvHgkTXu7qbZp/LDLY/aKSRb7ltBJBI7F4oDm8x/zt7h3TvlpwTCrlyLY7ehZA6S41zcm89keC/vrdy5JmUY/6GOD+6FW25Jyx/eG1fqMbzgi2OM6WMKjXdoiVtF3C0SNe9WSh0/uGos2ee738olakMBiiFGwh6ulOSsnC1zlWEoU7C1R4TkSIAESIAESIAESIAESIAESIAESIAESIAESsJNAUgX763cvS3GvnLoACREVIiREY/N07e5lZUmtiYdxebMqy+oOwxoJ2gLXLfcf3VYCvv8rP7n98LrsP7VLZiwdr/zGwxJbiav1ssub0CDzKlSgTbTHKDKiHgQSRaBZiJd4wOoYfufxgFsSCNxod43WRZWwfvjM3nhlG0/A733Psa1MhGPUU8gjq3Qe0VRWbFkoR8/ul/0nd8mE+UPFvWM5yf8u6C76b3Snk5yCPdp47PxB1Ue0B484ETqHiiNw8uIRvRtvQgKVy6AuI5urfLCe1q7B0dkEeyzQLNowW42XsZ2lG/4gkxeOlDmrJtt8wC0T5mVIWIjOAE9GzeynB51FuZgrZRr+INOWjJN7j27rebFDY/W2xSqAMthorma0ttgj2CNmgnJT884qH9cW8sgiPv085LfdK+XUpaNqMWr49N4q8O3j5w/1+vHEUcEeOwFa9vcwsbJHndhR4Nm5gkxdNEawUHX7wTXlymrr/vUy6ZeR0qhnDdUu472Ke6XbqBYWF+O0RlKw10jwSAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAKJIJBUwT4k7I10HNbEJCglRD64orHkambFtoW66xNN6ER+iJ3lGudW7jYadK8qLfq5K0tq726VpUabYlKsXg4l1GvW8yW8v4kX3BbdhxX5zGUTdItirQ57jmhHIY/Mqi1wsbLj8EarROHH/uCpPVKgbkaTulAGFgbQF7e2JaVG62LKjQgEXrQBojgEW7gSQpBUnEtuwd7/9XPpOba1iUiLBQKwQ6DWtoPrS4ehjVSw1So+BVV/tQWEONH+nUsh98zi1aWS1SClqe0SB4skAyZ1NtkFoI0r4iOAp81H/ZxSssG3csLM3Q1Ecrd2JU0WX8AKvuYxF9sNaSDthzaSJr1qKZdBELsxzsW8sqvx1Npgj2CPe2Lo1B4mu1JwPeZHxeb5pU77MsovPubQd9X+K5fMAhk7KthjAh84uUuq+BQyuUdRJ9pbrF52dc95d62sBPzKLQqqeRLnIihuHsS1L5NUaVk4XnvMbxAK9uZE+JoESIAESIAESIAESIAESIAESIAESIAESIAEHCCQVMEewvXmfWslr9tXunU2xEyI0mevnYjXkoioCPl1/UwpWf87ZdEeJ3zGWYLDwh1uZSBgIwgoREw8xzktH47IBwESPujN04Ond6V5n9p6fk1MLVn/W+VvHEe4UClRP6d6wP1Jce9vVH6jVT6snhFQ9NzV+H3Q6gwJfSNj5wxSArLWPq2+uL5k0duOspXldqNcsmDdDPlx7mAp6pld1Zvcgj3ad/76KdV+9OP3fmV/J8bG7TIAY7RJYwr/9XAPU6FZPnUO/J1NsO8zvl084RnM0Qd7HvlrZ5R9x3doQ6iOsbExsmTjXCnbJLeaW9oYojyMDYRtPMAD46rVU6VFQWUFj/mDa+wR7FHhtTuX1GIAytLqwhGLJVgowJjgNXaSXLx+2qStiRHsY2JiZO+J7crPv3Jx8y7GA+pAX7R7DnMFbcA5rV2KgUcWqdOhtCoDbqlsJQr2tujwPRIgARIgARIgARIgARIgARIgARIgARIgARJIgAAE+++r/58SnSFIQqiDaxFH0sMn98SjUznJVyejElMLemRWYvjq7YstFgNRb9+JHUpYL9XweyVQQiyEUIkHhEwleCsBM6sqE+9DGMVCAKzutx78TQUgNVYQ8OaVtB7orbub0cTI4VN7KTc7T54/UsFn4Zrn4o0zcvLCYdl6cL3yf964Vw0VDFSzNAcHPIcLEFsJVt/j5w+Vso1zSyF3CPRx/dD7gAUIzVq7WzUlesLP/MRfRrwTgTNJvtpfqkCgT8zcnxjrXb97paqjgGKcWYm5Q6f2NGYxeY6FlN/2rBTPTuXVWEB41hjHtS1OHMY5LF54di4vh8/uUy58INhDzIerII9O5eWxn6lbFq2ijXvXKItzuBfCzgS4TElM0FkI2JVaFJD8tb9SbYTrIEtBZ6OiIuWn+cPUPNMWdDBnHXmgjXtPmAr26A/GZN7qKWpHBOYZysRYQsDW5qLih7Gs/620HdJALlw/LSu3/qry4b3ctTJI/4mdJTAoQENk8RgdHSUrtyyUqi3jrN61RSlt/scJ6JmkuPe3csf3pkkZmLflm+ZVuyc05ggsm1DCfLh447R0HNZYjZkmxKOu+PdcFjUO4FCpeQG1q+HOwxuCMhJKmmBfoM7XqgzsFEA5j549SOhS9T5847ce5KVYgmm+d3MQgYlTK/0htSpiPSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRgTgDuQeC+pmGPatKoR3VpN7SB8mltns/W6+iYKOV/G+5DGvaoLo16VpfWA73k8Ll9ti6TiMgwWb19kXQf01K5HqnTvrQSTGE9X9WnkApeW7dDGfHuWklaDfBSgT7hbzvCQvBUiInwvY1AoJqFMAQ/+GeHH++EEtoye+UkJcZq10Owr92ulIRHhNq+/O1b2bR3tbQb0lD5qq/ZppjA+hr+9ut0KKNcz8xbM1Vevv49EO+WA2vFp7+76je4jZrZV0LD4+8Y0Co+f+20WjyIY1xNmvetI2t3LtPetnp8HfhSBcJt1sdNvLpWUgFO0bbqrYqqtvn0qyvw7f70ua8qA/EDuoxsJg16VFMLI0Om9LDK7+L1M9J9dEupr8a9mjTvU0dWbVtktS3W3vDzf6L869fvVkXNwaZ93NQuDEv5L908q9oHdq0GeDr0gC/3zsObyjP/x5aKVucQiHX0zH7KhzsWK+DSCLxwrNuxrHIntHTTPMFCDdLpK8elWd/aqt3YjbB003yL89NShVdunZNOw5sK+g1XOLXallD14D4Ag+VbFuj1aNc/8XsoPce0kvrdq6h7tlmfOrLCQrwILb/5Edb2u49ulUGTu8Xdcx3KiJqvPoXUrhUEjEa8haZ9asvYOQPlxMVD5kXYfA2XP8s3/6L44bMA86j3uHbyOtDf5nXGN6cu/lEadK+mPksw34dN62XTb77x2uR4TsE+OSiyDBIgARIgARIgARIgARIgARIgARIgARIggUQTeBsbK4HBAfImJH4QV0cKjYyOlICg13Hl2GGNayz7ZcALZfWOQK07D2+WXUe2yPHzB1UgzGf+j4xZLT5/+uKx8jGu/HK/8wkOsRyCqr3pVYC/dBnRTAXkjHMXEud659LNM/YWIbceXJdj5w7IjkMbZc+xbXL51nmB1bClBEtrBCENC09gQcBwcXBIkBorBGB1JMHy+bHfAzl9+ahsP7RR+d+/cvuCoA3m6a3EqvgAIWHB5m9ZfK21KcpCWRYvsHIyOPSNBAa/lsgoy7ysXJYip7EohIDHCIIMXpiXtx/esFgXxiIQ45jQwo7Fq0XNgUs3z8mpS0fkyJl9cvn2ecEimK0UHAJWAZIU5q+DXsrlW+fkKObr4U3qnjtx4ZDcvHc1yWMQGRWh+mUe4NdWn4zvhUeEO3xvGK9PynMK9kmhx2tJgARIgARIgARIgARIgARIgARIgARIgARIQERZDcNqHO49ILbDZcqASV0cYhMUHKCseeGSRRPs4bbkyu3zDpXDzCRAAq5LgIK9644dW04CJEACJEACJEACJEACJEACJEACJEACJOAkBNbtWq7828PnOMR2WNr3ndDeodY9ee6rXIHAlQ7KUC5x2pe228WJQ5UxMwmQgFMSoGDvlMPCRpEACZAACZAACZAACZAACZAACZAACZAACbgSgf0ndymf95rYjqChnp0qyPmrp+zqBtzSjJ83VAUYhVivLOy9skuXUc3tup6ZSIAE0gcBCvbpYxzZCxIgARIgARIgARIgARIgARIgARIgARIggTQk8OjZA+XDHq5wNMG9iGc2qde5ouw9vkMC3wSoAJ7wrQ2/3/CTDp/j8Jt+8uJh6T7aR4p759QD1qKMEvVzypqdS9OwV6yaBEggtQlQsE9t4qyPBEiABEiABEiABEiABEiABEiABEiABEggXRIYMqW7ChhbtF52XbQv6pVd+bWv2aaY9BnfXn6cM0imLRkn4+cNkR5jWkqDblWleP1vTIT6ovWySWGPLNJ1VAu6w0mXM4WdIgHrBCjYW2fDd0iABEiABEiABEiABEiABEiABEiABEiABEjAbgJ3HtyQtoO8JF/tjHrwWc3aHiI+3OXAVU6BupnUEaI8rPCNeQrU+VrgB7/T8Cby9MVju+tmRhIggfRBgIJ9+hhH9oIESIAESIAESIAESIAESIAESIAESIAESMAJCNy4e1n6/dRRKjXPL3lqZVDBZyHUI4CsJsxrR4j4OF/IPbPkq/2VEvG9u1aRqYvHyjN/ivVOMJxsAgmkOgEK9qmOnBWSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkZwIxMTFy5fYFWbNjqQye0l0a96wh5Zvkkfx1vpbctTIoIT+P25fKur5Ss/zi099DxsweKLsOb5anLx6lZzTsGwmQQAIEKNgnAIhvkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEBiCQQFB8iT575y5+FNuX73sly+eV7OXT0pl26dkxv3rspd35vyzP+JhIQFJ7YKXkcCJJCOCFCwT0eDya6QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAm4LgEK9q47dmw5CZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAOiJAwT4dDSa7QgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4LoEKNi77tix5SRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAumIAAX7dDSY7AoJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIDrEqBg77pjx5aTAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkIwIU7NPRYLIrJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACrkuAgr3rjh1bTgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkI4IULBPR4PJrpAACZAACZAACZAACZAACZAACZAACZAACZAACZAACbguAQr2rjt2bDkJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEA6IkDBPh0NJrtCAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiTgugQo2Lvu2LHlJEACJEACJEACJEACJEACJEACJEACJEACJEACJEAC6YgABft0NJjsCgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgOsSoGDvumPHlpMACZAACZAACZAACZAACZAACZAACZAACZAACZAACaQjAhTs09FgsiskQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALxCUREhsvtB9fF7+UTiX0bGz8Dz5CAkxCgYO8kA8FmkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJpAyBG/euSKkG38uI6b0lNCw4ZSphqSSQDAQo2CcDRBZBAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiTgvASu3r4gRetlk/4TO0tA0CvnbShb9t4ToGD/3k8BAiABEiABEiABEiABEiABEiABEiABEiABEiCB9E3g4Ok98kONz6VF37ry2O9h+u4se+fSBCjYu/TwsfEkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAK2CERFR8m8NVMkj1sGKdXgO7l654Kt7HyPBNKUAAX7NMXPykmABEiABEiABEiABEiABEiABEiABEiABEiABFKSwKtAf2net44U8cwqBep+LYs3zpGYmOiUrJJlk0CiCVCwTzQ6XkgCJEACJEACJEACJEACJEACJEACJEACJEACJODsBA6d2Sv5a38tnUc0kya93MSra2Xxf/3c2ZvN9r2nBCjYv6cDz26TAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQHonEBwaJM371pXqrYrK2SsnZMqisZLX7UtZtml+eu86++eiBCjYu+jAsdkkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAK2CSxYO00KumeSMTP7q4x3Ht4U726VpapPIbl486zti/kuCaQBAQr2aQCdVZIACZAACZAACZAACZAACZAACZAACZAACZAACaQcgfCIMJm6+Ecp6plN2g9tJK8DX+qVHTm7X8o2zi1u7UvJ/pO79PN8QgLOQICCvTOMAttAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQZAKhYcFy9NwB6TKyuRLrm/SuJfce3zYp9+3bt7J532op2eA7qdayiIybO0Tu+t6Ut29jTfLxBQmkBQEK9mlBnXWSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgBmBmNgYJRyPnz9UmvetI27tSolb25J8OMCgZptiUql5ASleP6cM+rmbPHnxyIxy3MvY2Bg5em6/eHetLCUbfCvVWhaWWm1LkLUF1g17VJfh03qphZDIqEiLPHky+QhQsE8+liyJBEiABEiABEiABEiABEiABEiABEiABEiABBJFAC5bpi4eJ6Ubfi8VmuWV2u1KiXvHcuLRqTwfDjBo3qe2jJjRRy7dPCvR0dEJjkVwyBvZvH+ddB/tI/W7VSHreKzLSZ32paVyiwJS3Psb6TS8qTz2e5AgV2ZIPAEK9olnxytJgARIgARIgARIgARIgARIgARIgARIgARIIMkEXgX4S+9x7SRf7a+kZX932X5ogwS8eZ3kclkACSQHgdDwUDlydp/0+6mDlKifU5r1qS23HlxLjqJZhgUCFOwtQOEpEiABEiABEiABEiABEiABEiABEiABEiABEkgNArACHzWrn+Sv87UMmNRFnlpx4ZIabWEdJGCLAObqko3zpEDdTNJ2sLe8MgTytXUd33OMAAV7x3gxNwmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkkG4EVW36R4t45ZNDkbhISFpxs5bIgEkgJAgjYO2v5RCnimU1Gz+qfElW892VSsH/vpwABkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJpAWBR34PpVHP6lLVp7A8evYwLZrAOknAYQJvQoKk9SAvKdckj1y+dd7h63mBbQIU7G3z4bskQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkCIElmycIyW8c8q8NVNTpHwWSgIpRWD3sS1SvkkeGTOTVvbJzZiCfXITZXkkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkACBmNgY6TKimRT3yiG+T+8nkJtvk4BzEYiKjhKvrpXFvUNZeU1f9sk6OBTskxUnCyMBEiABEiABEiABEiABEiABEiABEiABEiCBhAk8ee4rHh3LSbdRLei7PmFczOGEBCYvHCVVfArKwdN7nbB1rtskCvauO3ZsOQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgIsSOH/tlJRs8J3MXfWzRMdEuWgv2Oz3mcCuo1ukTKNcMnf1lPcZQ7L3nYJ9siNlgSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRgm8C+Ezvk++r/lT3Ht9nOyHdJwEkJ3H10S4rWyy6DJndx0ha6ZrMo2LvmuLHVJEACJEACJEACJEACJEACJEACJEACJEACLkxgy4F18kXJP8nxi4dduBds+vtMwP/1c/mhxufSYWij9xlDsvedgn2yI02eAmNjY2X9+vUyevRoiY6OTp5CWQoJkAAJkIDTELh69ar07NlT/Pz8nKZNbAgJkAAJkAAJkAAJkAAJkEDqEXgTEiQ37l2RsIiw1KuUNZFAMhJA4OTbD2/Ik+ePkrFUFkXB3gnngK+vrzRt2lT++te/SsaMGeXatWtO2Eo2iQRIgARIICkEevfuLf/zP/8jWbNmlfnz50tUFH1WJoUnryUBEiABEiABEiABEiABEiABEiCB9ECAgr0TjWJMTIzs3r1bvv32W/nDH/6gHnnz5hVYYTKRAAmQQHojEBISIoGBgQkK1RCyg4KCJDg4OEEE2J2EfPaUm2BhKZxh8ODB8umnn6rP+v/93/+VgQMHir+/fwrXyuJJgARIgARIgARIgARIgARIgARIgAScmQAFeycZHYhMsLDUxBtYXXp6esqNGzecpIVsBgmQAAkkD4Hbt2/L7NmzpXPnztK8eXMZOXKkxYXJZ8+eyYYNG2T48OHi4+MjnTp1kqlTp8rly5fjNSQ0NFSOHDkiEydOlA4dOujl7tmzRyIiIuLld5YTixcvlkyZMumLtN7e3nLv3j1naR7bQQIkQAIkQAIkQAIkQAIkQAIkQAIkkMoEKNinMnBL1cGyfuXKlfLxxx/rok2rVq3k5cuXlrLzHAmQAAm4JIG3b9/KunXrpGTJkvpnnbabqFSpUvL48WO9X3v37hUPD494+ZC/YMGCcunSJT3vzZs3Be5lPvvss3j5sQg6c+ZMPa8zPtm1a5f88MMPettr1qwpd+/edcamsk0kQAIkQAIkQAIkQAIkQAIkQAIkQAIpTICCfQoDTqh4BJSdMmWKfPLJJ7pYM3To0ARdRCRULt8nARIgAWciEBkZKe3bt5e//OUv+medJtbjCJcwY8aMUU3G0fiZaMynPa9YsaLKe/LkSfnmm28slqnl/fDDq3c0WwAAIABJREFUD+XKlSvOhCNeW7CbKkeOHHo/Chcu7PRtjtcJniABEiABEiABEiABEiABEiABEiABEkgyAQr2SUaY+AJgbbp8+XLdDQ7EpY4dO9rlpznxtfJKEiABEkhdAmFhYdKyZUv5f//v/ylBGi5gfvzxRylQoIAuUOPzDzuLtm7dqgJu4zXiefz0008yYsQIyZkzp0nezJkzy9GjRyV//vzqPAT/Fi1aqAXQqlWrmuRFWUuXLk3dTieith07dsjnn3+utx2LEvfv309ESbyEBEiABEiABEiABEiABEiABEiABEjAVQlQsE/DkTt16pT8+9//1sWZKlWqyKNHj9KwRayaBEiABJKfwJMnT3SXL3CHA2t37C6C7/o///nP6jMQYn6WLFmUMI8YHm5ubvLw4UOVD0FnEeMD5yG+4/GnP/1JMmTIoJ5nz55dNm/eLPBjDxdjp0+f1t9DXlynWe8nf++Sr0Qs4k6bNk3+9re/qX6h3Y0aNVJ9Sr5aWBIJkAAJkAAJkAAJkAAJkAAJkAAJkIAzE6Bgn0aj4+/vr1uGQlD617/+pUSmNGoOqyUBEiCBFCVw7tw5ZWXv6+ur1wPLeU2w14R4iNSwlDeP4XHgwAH56KOPdMFey//FF1/I8ePH9TLxBAsElSpV0vOiTASrdZWEALta/7CQgcC0CEzORAIkQAIkQAIkQAIkQAIkQAIkQAIkkP4JULBPgzGG8NK5c2fdPcQf//hH6datWxq0hFWSAAmQQNoRaNiwoS5MawJ1rly5lOBu3qrdu3frrnK0vLBEnzVrlnlW5UamePHietkQ7Lds2RIvn7OeQPDdrFmz6u2HayBjkF1nbTfbRQIkQAIkQAIkQAIkQAIkQAIkQAIkkHQCFOyTztDhErZt22bit75gwYJy69Yth8vhBSRgL4E3b97IkSNHBG6Ykpr27t0rFy5coJuOJIIMCAiQffv2yYMHD5JUEvzD79+/Xy5evJikclL7YrivKVGihC5KQ4T/+OOPZc6cORabsmrVKpO88FnftGlTi/Pw8uXLateSJuxjUTSpnC02KgVP/vrrryYugGB1HxERkYI1smgSIAESIAESIAESIAESIAESIAESIAFnIEDBPpVH4e7du1KoUCFdePrkk09k5cqVqdwKVpdYApqP7MRen9rXwfXS2LFjlTAK1yOwOrYl+sENyY0bN9Tj2rVryoe4sc1+fn7KLQliL1SrVk1+++0349t8bgeBp0+fypAhQ6RIkSLqc6BPnz4SGRlp9Urk18bk6tWr8uzZM5O88AcPtyn/+c9/pF69erJhwwaT9x15AR/q4eHhjlyS6LyHDx82sSKHFXyzZs0E/urNE3YljRo1Sv/chBAPf/fWYn5s3LjRJC+s9rGw4UopJCREvL29TfqxZMkSV+oC25pOCGBxkYkESCDpBPD7C9+zTCSQEIGokBCJjYlJKBvfJwESsJNAZGCgnTmZjQRIgASchwAF+1Qei0GDBgmsPTXLT4ieqSWQpXJX0011CGK5Zs0acXd3l1atWll01+GMnYU1PQJ8Yr5B0O3SpYuKk4D+WEuYn998843+QODP4OBgPTtET+wQwXnMYYjEEFkRHJQpYQLr1q2TwoULq/H4y1/+IhDrb9++bdM/OdzGaGOSI0cO6dChg0lFEHZRbtWqVdWY/N///Z+0adNGXrx4YZLPnhcoa/jw4VKxYkWZOXOmBAUF2XNZovLMmDFDPvzwQ/2zEHE8rC0AvXr1SgVf1T43YV3fvXt3i/Vi8WPw4MF6ubgGPGwtilgsyAlOYufEp59+qvflu+++k0D+4XCCkUn/TcBnwezZs6V8+fIq9gRjKKT/MWcPU54AvuPwGwCL9vfv30/5ClmDaxGIjZWHW7bKDre6sqOOu4T5+blW+9laEnBSAq9vXJeNJcvKgVZt5fHefU7aSjaLBEiABOITSBeCPQRIWGVGR0cn+EDetPrjiR/nEFw00envf/+7bN68Of6o8IxTEMB8Wrt2rbKEhqsOjBsExpMnTzpF+6w1AvN7xYoV8uWXX6o2Q7RHUM6ELIxxb1SuXFmfn+hv6dKlLd4vEA0hEkMchmU0LJiTw92OtT65+nlY1A0bNkz+8Y9/KL7gDBc2tnY7oM/YIWH0ZY4xwaKRpQQrWARW/ec//6nGBO5m4BrGkYSFl9y5c6s2wj88FgomT56c4NxxpA4tb7t27UzmWv78+a2K6tevX5d8+fLp+f/6179anW+vX79WIqP2OYvjokWLXNKqEa6sWrdurfcb99r48eM1hDy6IAF8FtjzWwV50uL3CnaRTZ8+Xf1WwWcA7p9s2bLJvXv3XJA2m0wCzkMAn+ft27dX9xQMKRAwvWvXroJddLS6d55xSouWvI2OlgebNsuGEmVk4b8+l9kffCiz/viRPD9zJi2awzpJIN0RuDx1msz946cy54OP5dd/fy67verLi3Pn5G1sbLrrKztEAiSQvgi4vGAPkQo/eKtXry516tSx+oB1NCxV27ZtK+PGjZOdO3cqS2n8KU6NBBF14cKFJj6JIaTyR3pq0He8DsQUaNCggcCNjCb8ffXVV8oqCiKqsybMJ/i+hvU2xL3mzZsL3NjYk+BeRBNr0ecPPvhAevfubfNSWABr12TKlMmqiGqzkHT+JkQ3WJPDKhw7HWDtbdy1YKv7CLSKRRFtDmLBCGKatYTxP3jwoBLYcE2ePHnk7Nmz1rLHOw+rWgRxhVCP9qIMHEuVKqUWfdCX5Eiwdq9SpYreL9TRo0cPq0WjT5jTGgfsNLDkOgcFwO2YMS/mMdwGuWrasWOH/OlPf9L7nj17dsGiBJPrEcDvgPXr1yt3YrZ+r+A9Ly8vQdyCvn37yuLFi1XQYYjpKZkQ2Bi/S4z3fs6cOWXChAmCzwYmEiCBxBPA9yf+exQtWlQPoI7faViUX7p0qaT0/Z34lvPKlCQQ4usr+5r7yPy/f6aE+tkffCTLs+aU43360sI+JcGz7PeKwMvLl2W/T2tZ9J8vZc4HHyrhfuE//iunhwyT8Jcv3ysW7CwJkIBrEXB5wR7ijOb2QxNz7D3ij+hPP/2kBJ6UHrYnT54o0cvYNlhBMzkfgdOnT5vshICVYePGjQU+3Z097dmzR3czApHVEbcosMLXLCoxTyHarF69OsEuI5itZgUO8Z7bvH9HBgEd7pQ++ugjJbhiHtkr1qOUMWPG6EItxgQWeRCvE0rIgzgDuKZYsWIOC7yw+MNizWeffabXj4WDuXPnWgzymlB7zN83322EeWctlgcYzp8/X28H+oTFNGuLB8uXLzfJW6BAgXh+/83b48yv4Q5Ii3eAvmMxAovOTK5HAItMcIUB908YS0ceWLTp2LGjHDp0yOrcTywR3GNYSIAlvdYm3Ps9e/YUxDVhIgESSD4C+ByAyzn8B9HuN9zf3bp148JY8mF2iZKeHTosa/MXeicgfijzPvyX7PL0kuAHdDPpEgPIRrocgWdHjsrWqjVkzh8/frdA9qHsrOshQXfuuFxf2GASIIH3g4DLC/ZwKXHhwgVliWa0QsSP4IwZM6pgmwi0CdEGP44R5FX7gawdYe2Sktu9YVUHv5VafThmyJCBf4Sd8B47cOCAskrWxgruRVxFHIM4r1m7Y37BOtuRBPcpCFoK//R4QFy21zf9ggUL9NgM2MniiCjtSBtdLS/803/77bfq3ofLlwcPHjjUBbhyqVu3rj4msEKHgGtPmjJliv6ZAwvZxPhwh4gOi27tfoAbL1j74jMtKQmLQ9oiBsrG5zJYWUqYS+buc9AfiIzmCSJ+p06d9PaibPj8d3XLRQg52CmgjQN8IDMQqPnoO/9rzFnsZMJ9jV0i2njiCBcZCEgPV1Y4ws2Y5tbMmA/uoKwtbiWWwLJly0x+G0G4h8UvEwmQQMoRwO43xIgw3t/9+/enaJ9yyJ2q5BdnzsryLN/IzA/+LnM++Ehg7Xtu9FiJjYpyqnayMSSQ3ggg+Oy+pj4y92//UPceXFBtLFlOAm7cSG9dZX9IgATSAQGXF+y1MYA/aM2iVPvxi4Bp8BmJwInPnz9Xovzhw4eVCx1jsEPkR/BX/JFOiQTBqVy5ciY/ykeNGpXsVnIp0fb3qUwI3BC6tfnz9ddfy9atW10GAXybo+0QdDC/UjvB6lmrHztX3vcEUdvb21sxgQX5li1bUhUJPnfgWgNjgoUnuC9KTIKbDCx6avcFPjunTZtmUTC3t3yIgVp5OCK2hyUBHuXhc/n77783yQ/B31KC5SKETmPZ6WEnExalM2fOrPcL8wnxCphckwBc8WHxzThP4YYK1uz4zYIj5j1+10DcxwKNMS9iYcDSPjkSXGzhO0MrH79VUC8TCZBAyhPAArz22027B+HKMDw8POUrZw1pRuDp4SOyLFtOmfXONceSzzPKg82p+xsxzTrPiknACQjEhIfLpclTZMEn/9ZF+7V5CorfsWNO0Do2gQRIgAR+J5BuBHu4gIAopf3ghSWoNdcR8MUKq0tYtGn5//vf/8rGjRt/J5OMz86cOWPigxiuRnCOyXkIwLWSMSAwrH/hWsNVEgK+wl0K5jPc08ClSWonuMbR7ie4YXFmX/+pwebo0aO6L/WCBQs67JYmqW2EAI6g1tqYNGnSJNE7HyCQa26PUB5ceji6g0PrD4SIfv366e1CeY0aNdLejneEeGj8rIY1PlyMWUqwpDcuxuL5McOPb1g09urVy+Ws07FzAIvK2ljiiF0wqRWDxRJrnks8ARgRIJaFNp7wY43FPWsJO7+MCza4DvdQUhP8aWvfGygTC9bWFsOSWhevJwESsEwAv9fwea59HuA/AtzhMaVPAsEPHsi6fIWVZf3cDz6RuX/6VG4uWpI+O8tekYATE4iJiJATffvJvL/8Q+Z+8LFaQNtauZpE0BWgE48am0YC7x+BdCPYw+LT6H8bbhwQONRawh9gYzBHBBeFm4XkThDNIBBpP8RxLF26tN2BQJO7PSwvPgGMkWaJrI3Tjz/+6FI7ICD+IKAp/ui1b98+fietnIHgp+1AgbuWq1evqiClEDat+Qi3UpQSgxFPAgwhsCZW0LVWvqudh2sgsIAYB1/Q9ia4roG7E4jSd+7cEbgqQlwFjI2jydfXV4+dgc84RwLQmteFeAZYCNXukR9++MGhGAlaeRAnKleurJeD8n7++WftbZMjdikgiLJWJ46YY9bcwcAq2RgoGgux586dU2WeP39eWerjHhk4cKDLuR2YPHmyvgAEDgiC7crBdE0G+j17ARd8iDGizWu4O8L4WkswMjC3wq1evbq17Hadx2eDMTYC7u2xY8da3eliV6HMlGIEsHvoxIkTgoVxppQlgIVf7K7E94m1nV/J3QJ8N+fNm1f/TMAuGvxPYUpfBGIjI2Vvk+bKdzbEerjDOTV4sOA8k/MRwP3//NRp8Tt+XCDuMqUsAbiDenHqtDw7dlzeJtH1pr0tjQoOlq1VayrBfs4HH8vsP38sV6bPSLX67W0n85EACby/BNKNYI8tpNqfXxzLli1r028xxHz4uDdeA9+RyZ1gTWq0TEV9EINpGZncpBNfHlxLGF0CQMSACyVXSTdu3ND97kN0sfdPHlwvYG7iGuwogDUynuOBP4t+fn4OIYDAD5baPQWROiwszKEy0ktm+P7//PPPFQsIqwgGbE+C+xksPGIsjGOCc/Br7ah4gPzjx4/XxwSfcY4uxGjtxkLCgAED1AKENsZYKHK0PIjM5u7LjFbwWn04IkZJ69at9faj3s6dO1udV1jkQFBWrX1YxEKgzokTJ+r+wCGOzpo1y2GWxnalxXMs3mABQusbFoKS25d5WvTrfawTO6KMOwIRfwdirLWEew/BarWxxxFxeRKbcM+2bdtWv5cxl7Bozd8liSWaMtdhPLCwgsUcuAXDYiQWOyHeM6UcAYj12HmC72FPT0/BThQYNqRkwnc13LdhQVm7zxFfK6XrTck+sez4BG4uXirz//pPgVgPv9lbKleTYF/f+Bl5Jk0JwML61tKlsqlcRZn74T/lt6IlJTiF3OamaUedrPIwPz/ZXLGKzPn7P2VjybJy45dfJezFCxELMauSs+mvrlyVRf/31TvR/iNZ9N+vxO/EyeSsgmWRgFUCb98mLS6c1YJT6A1HtYgUasZ7VazTCPYQtmF5CdcksD579uyZ3YEN8efFaCmGH7vNmjWzOZB79+6V//znP/oPY4iUsNJP7gShzigg4Y856mZyDgKYb8bgf/iDNmfOHOdonJ2tmDFjhh7AEy4N7PV9CgEQ1spwb6L9QdSOYGJvOcZmwtWTFhwTwVbB931MGBNtEQhCuzWLcHM28DMPX9bGgKzamNSuXds8u12vt2/fro8JAm8nJQDr9evXBbEdtDZBdNyxY4dd7dAyQQzRrscRLm6sBdKFH35Y8hvzL1y40KrYDmETATON+Y3PP/74Yxk0aJDWFJc7GmMJoF8IxouFN6bUJwCXX9iVhM9RiKqOLE6uXbvWZI5iAQtW9NYSPj98fHxMrvHw8LCWPcHz2LFj3GGIxUWcY3IeAggiD7co2sIv7nfME4z7/fv3naeh6bAl+I7B9w5+r2vfHwgOi90NKblYAnEexkZanVigGTp0aDok7FpdCn/hL8EPHkrQnbsS4usrMYk0RAl/+UpW5vheYMWLx7y//1MebN3mWjDSeWsjAgLkzspVymURFlQQY+DXzz6XdQWLStCdO+m892nfPdxfG0uXk1//k0GxB/9VP+RTLqMiXr5KsQa+jYmRC+N/UnViMQ317vLwEljfMyUfgdi3b8XP/4nce3RLbj+8Ib5P70nAm9fJV4GLlRQWHip3fG/Kup3LxPepa/yue/j0nmzet1au370sge/x2KX2VEtzwR4WlBC14Y8VP4ghKOGHMqyIYFUE4T6hBB/HRpEGAnlCQS/hgkET1PDjGEIn/D0nd4J1p9FiBsHjYBHN5BwEunXrpouZmAeVKlWyKZw4R6tNW2EUcmAl6UjCH0QENTS6kwIH+DtPzB9TCFfGAKHW4kg40kZXzFuvXj31pxuWq7b8s1vqG3Y2DBs2zORzAy6GEhtIGBbt2m4iWJzDxU5SEkRibVEGc6VGjRp2+8bHnDK3FEa8A2tiJVwSoA7jw5o1PvoEFzoIoml0i6Ndi3k5b968pHQ9za/FYgPmlNYn7JC5du1amrfrfWoAfm9gJxGEU1i5Y3ET3+u9e/cWWM4nlPCbBztVtDHEEb93bFm3Y+cI4mAYr0nswhMWYvv06WNSFqztmZyHAD7jsECrjTcWGvEacZZszRPn6YHrtwS/ZfCdmydPHn0cPv30Uxk9erTVBebk6PWCBQtMXM/h84X/GZKDrONlvLxwUS5NmSo73espwXZVzlyyoWhJOdanr7xIRByyU4OHyry/wbr+Y+UKZ1O5ShIZEOB4w3hFihB4dfWq7GvuoxZT4Kpo7p8/lU1lKsqtJcskmkGgU4S5pULhFufuqjWyuWJVdb9gLOZ88KHsrt9Q/C9csHRJspzDDorV3+aS2R98pHbAYFHNd+fuZCmbhYjcf3xHlmycJz793KVis3xSqsF3Urt9Kekzvr2cvHjYqiFWemT34tUzOXxmr0xYMFwqNc8vuWp+LlMWj7XbUDktmcxcPlEKeWSRMo1yyYBJnWTL/nVq4SUt2/Q+1J2mgj0sutzd3U3EH+0PinZEoL2E3JPMnTtX8IdGuwbi1KFDh6yOH9xOmP/5RT3WrDytFpTAG7C4g5Wx1i4c4SYEf9iZ0p4A/gR9+eWX+vjA0jclFm1SsqewrkVMBG2O4c+kownz3hhwF2VB2EzMlidYgmq+21EO3LE46jLF0fY7W/7Xr19Lrly51JhgUTChxUNL7Yc/W+z20MYVz219plkqQzv38uVLfQcSBHuIjUlJt2/fNnHzhcWemTNn2lUk5sLJkycFooT2gNWitTmC+aTlw3HZsmUJ7laAoLVp0ybp0aOHNG7cWLp37y6LFy8WuCly9QS3KcbFEswPWGszpTwBfG/j88xo8azdn9oRLot27dplszH4PVOmTBn93sa18B2PxSZLCfcGPteN444dOFpsBkvX2DqHXTz4rtPa/Nlnn6WLe8NWn13pvXHjxpm4DMNv04TmlLF/WIDHomrXrl3tenTp0kW5GXv8+LGxGGUsM3z4cOVSzFZZcFGGBaD06lsfC+iTJk0y+a2I+xe7CVMiYUGtYsWK+v2J72zEr2BKPQKwoL8w7idZ9EVGmfHB35W1LY4QDmF1jeeLM2SSJ3v32d2ol5cvy/Is36jr53zwkSz81+dyff4vdl/PjClLwHfbdln6ddbfrbq/yy23V6ySKBs734wtOj18hBzp0k2Oduth1+NI1+5ydsToeP+znh0+Isd69UmwjCOdusjF8T+l6+CoMeHhcv+3jWq3Ayze8ViU4Wu5t269EX2yPYeV/Y1fFqp6YGUPwX5dgSISw/gSSWIcFR0lC9bNkNrtS0ueWhmkkEdmKVIvmxStl10Ke2aVvLW/VOLv2avW3UIm1IDIqAhZvuUXmbhguExaONKux8+/jpaZy3+SBWuny4qtv8iuw5vlUQpbucfExsjancukae9aUtgji+Sr/ZUUcs+suLQa6CWR0c4dywS6UK8f20iuml9IQffMkr/O15KvTkap076MLN4wR4JDUtZ1YELzID2/n2aCPUQb8+39sBbs0KGDiRiEH6sQXGwl/GEwWh0icJM1NwH4MQzLOJSr/WGFv25H3TrYao/2HsQVo9sd1Dd//nztbR7TmMDs2bNN5gGsJBPjBiYtu4Gt8cZFoeXLlzvcHFgxm7vFSeyfUfDDbhnt3oL1f1JcsDjcGSe4AOwyZ86sGEAYW7NmjcOt2rdvn4lAB1HN2mdaQoVD8KtSpYo+JhBzkpoQM8T4GYoAmI64BElq/fZcj7kItyXO1i572m4tD+aA0fc57jMENXe1zy1r/XPW89gZAtcUcJ2nfbZhJx8WJ80DlmMnB9yZWEtw+Wfu8gr3u7X022+/qZgiWr04YuHfmsBvrRycx04W/F4yltWiRQtbl/C9VCSABSHjQm3Lli0dWkzBopLRpYpxnBN6br7zCgs7RneOtq7HwrSr715KaJi3bNlisliH34sIZJ4SCUZIxh3AcJOXHhacU4JVcpeJ4K+whJ//yWdKuINot+Cjf8vexs1kZ20PJeJpLjPW5i0g4S9f2tWE4737yNy/fKqs6yE8ri9cQiIDAu26lplSlsDD7TtkaeZsuli/vmgJee6A//Lghw9l4T+/UAs6mrCc0BGLP8uz5ozXsSOdu6pFnYSux6LRuvxFJPg9cI+GnS6bK1TRx2fxV5nlbgqJ9q+vX5c1uQvoVvbz//YvebCFbqviTVQ7T0CshxV5qYbfSwH3TFLEM5sUqJtJib0Q7It55VCPPG4ZZMKCYRIabt01pK0qA4JeKYv9XLW+kAJ1v7brURDtqZdNStTPKWUb55LqLYtIsz61ZdjUHrLn2DaJjk7eWEH3H9+WYdN6S/kmeVT70H+0tW7HsjJ75WS5fOt8vAU8W31Oi/cg2N9+cE0Wrp8p3t0qS4G6GdXCS/66X0vphj9IlxFN5ertlNsFkxZ9dpY600Swh8UnXI8Y/wDAigi+YOGzeN26dSZCN7adWwuAickDschYFqz2zRP+yPzyyy9SqlQpgXsJLT9cJ0yYMMGqhad5OY68hqWU8Q8PfoA7YinlSF3M6xgBiNRVq1bV5wGsFxEM2NXShQsXTHwR23IXYq1v+NOp3Q84IkiqubWdtWvNz+N+hP92rTyIB4GB79efEuPnFxbsbAWTNOenvV66dKnOECwRayApydvbWy8P7jeSmrDAaRQdsaCQ2EWepLblfboewnG5cuX0scTcQIyEhHahvU+MUqKv2N1hFNBgSb9hwwbBbhoIacb7C2NiK8g03tM+H3HEop6lz1u414FrMvNF/5o1awpc5CQmYXeM0boe9UOYZUp7AgiEbRwbLLI6+t2J/MYdd8Z5Zus5gpuau59EoFVLrsUslQNXltgVlt4TFt+Ngb/BGv9bkjthZxl+h2ms4VZz1apVyV0NyzMjgN+v1+bNl/kf/Uu54IAl/JIMWeTB5i0S8fq1BN9/ILu9GhgscD+UJ/sPmJUS/2W4v7+sL1T83XUfC0TAE/0GxM/IM6lO4PmpU7L0qyxKJMfuCQSXfXnpkkPteHH6tCz6PKNgvsDdkT0P5D3UvkO8eg60bJPg9VhEguB/uFNniXpPYhgF3LwlWypVVfcQxmnRfzPK0wMH4/FL6onY6Gg5OXCI2kWjWdlvr+WYq9mktiG9XB8aHiojZvSREt45pbBHVilaL4fU61pJpiwaK0On9ZQKzfLqgj1crNTrUkkePElc3LvIqEhZv2uFcq+DRQCI4UW9DA+8rpdNLRhg0eD3R1Yp4plVWfrD4h2LCThWbJZfRs7oK6FhiVtAMB/D6/cuS+OeNZUrmTgW2aRk/ZwyfFov8X12X6Kc3LLevD8xMdHy+PlDWbBmmtodAd5gCqt7r84V5czlY+aX8HUSCaS6YI8fRHCfYLTOhDWqMYgWLHKNVsPwT29tuy0C1Rp9TOIHLizcYKnUt29f5RIB21czZcpk8ocbwaTwgxjuBBLjq9se7p6envoPbrQLbaC/YXvIpXwe/Bk1dzGAAIKulo4ePWpi9eno/ML9CDFK+2OIIyxG8YcxsWnJkiV6eXC1gwW69ykhaLHmogvuMxCo1ZFkvksBYwIr6qQkWNFqY5w7d+6kFKWuhdW+uRsl+I7HfGJKOQLgju81bSxxxOfYrVu3Uq7S97xkuE4zusGBeIbFf2OCdbFxTBB/x1LC+CGQqDEvRFH4v4f7kfbt20utWrXUvQV/2drOQRxh3Y/dS9g1kpgEi3y4wzLWjd9OXOxJDM3kvQaLP0aBFkYqifk9gs9ffHdjHhl/3xjH3PgcBiWI54SFJ/PPbgTwxu8JWHcbrzGzb7FCAAAgAElEQVQ+xyIW3OHAoCYxOz6Sl2LKl4Y+4vvduAsCBkIp4eYSuyuMrJs1a6bGKeV7+f7WAB/mS5TwGie6zvnzJ3Jz0WITIFdnzdXFPAh6l6dON3nf0otHe/bKgk/+owRdiK1LvsgkEHmZ0pZA6NOnsjZPQTUuEIFXfptL/I4fd7hREHkDbt6UjSXLvhPtP1E+0DE/zB8Q6pdn/kYebNoi0aGh8eqCAA+L7rl/in9tnID8oSz7OrtcmTXb4vXxCkxHJ15evKR2FWCs4NN+VY7v5U0K7DB4uG27zP/7Z2o3De7XpV9mkVdXrjgVSfyWhDW69oiIjIj3HZ7WDX7+6pk07llDWZFDnJ++dIIEvHmlxOnwyHBZtW2Rsm7XBHa4x4GVeWJT7NtYeRXoL+2GNpR8tTPqiwEQ6ss2yiUDJ3WR33avlE37VsuGPatk9bbFMm3JOGk3pMG7xYM4gR/tgYhfyD2LDJ/eW14HJU3DuHzznDTpXUu5vtGEbbf2JWXLwfUSERme2O46xXXRMdFy6tJRadHPXS16oH+FPbOIW9uSsvfEjvfid2FqDUSqC/bYdqu5i9B+jMI/pHmCWxvtfVhvwnexpQQrNLyv5U3oiD+9sFZFnba2rVuqy5FzCOaJLbPG9sBvPv4YMaUtASwIwSercWxgteqKfzj37t1rsvjl6LZp+Ptu06aNCQsEWkvKIhYszDW2X3zxRYreZ2k7kyzXjh07mjUuglk7OiawdDS6sAHLpPoph6sxbUwQ4yM5ElyVaWXiCMv9xFr+Jkd73ocyIKrhu9DIHc8h+DElPwF8J5hbz0OgM9/xt379epMxgWBqKUHYc3NzM8lrPpbmr7Nnzy5YcMPibFISXEPBktpYfv/+/VNEbExKO9+3a/Gb0DgucHm1e3fSAt3h+7tChQr/n73zjpKi6Nr4P5/v62tAQQUVkWBCQcmgIIigguScBQURFBFUVEQFA4qYMKFIzjkjOUhQkkiQIDkjOed4v/Pr3eqtrumendCzia1z5nRPT1e6Vd1T9dx7n+sYa33c1XnevHkFb8NgyascFEp4BVyNCU55JUMUeLyT/V4/Ek9JKeyo67bbbos4bsXVOEbh9vnK5csyo1bdeOvmmywL5hk168qZffscRW0eOVp+JCBpPBj7+2ttHL+bX+DFXvZRZxvkB7AdW7S4eVv69ySWAIFN5zZ9UXpec7MFzPa6LqNsHh6dF8vhdf/IoKw5bToVNUf0I1Q3v7d9Q4iT4JXOHjgo/TPdYc9FlR+geuTDBWTP3MS9OrzKTu3Xt0+aLL2vv8WW8Yza9eSSz3EBT2zbLiMeymd5XeAtAXj/Z6ePUpToAEkbvlFBGr9VRRq8UUG+6vOxnDx9IkW1kcb8uXqhFWR24uxAatgzZ8/IC29XsyzfAckfqZxV5i+dFXUfOn73usUJT5l8sN6v+eqTsmLdEs+y12xcIW07v2CD/HF5oazJIRPnjIr4/33j9n+k9mtlLat91RYocKJRTHh2Ihl/2LVvuzR5p5qtlEDmFV8qLnMWT0/GVqWtqpMUsAcc/Pjjj+2FrlqEmq64WAjpVj24hHu5g5obZehusCBlI8JGV+ecpT4syiLlgg5n6Nlc58qVy9FXQLj0lPwS2Llzp+C1oTZcHAFZTQuz5G9p4i2AYknvR7hKKKzoVIBUVQ5crdGkyZMn222CG/9qs+AkQKSiEsBqMtwxwaI3S5YstgyxlIT3OppEAFY1vgRa9iOhLNIBBd61kdD/+NGWq6kMqCfUWKrj+++/HxNat6tJrm59XbRokSNmAOAcdFV64n8D7xI1FhwJ5OmWWHvo1vrcyzqBNQseKyg49XLwRIwkBoZb3VhL035VPmXHInaPW93p19wlgJUcfOVqTDh6zR33EryvsjZQ/0N6+fo5lvzBPDbwDsuePbujfeRHqZDWOeu9JSuWYpr/USXLAgUKyIYNG4JlCfu3w4cPO9491IXM/VYMhN2wNJph7x9/SP9b7rStanv89ybZPNQJ4PKu//vbH2zwHSB14RtvBpUIHOMTn3w6Hvy7SXpdm1EWv/te0DzpP8ZeAltGj5F+GbNY4w2I/utT5eXCyZNRVUz8g+WfdrEpkxTQrh+hsiFGwuUgIPOWUWMCLPUtD4DcD8v+JUujamNqz4zciCXR4/9utMauz42ZZX3f/r52i+d8SsWqltKOsUP2E0s/5btiIJpGT543zgKToSEh8GerTo0EHveUmLD+d0sEYP156NcWjQpgdv4qd8nYmcOixmI6fNNa4MSPA93vl0LVskuzDjXl2Ing8kHh0fKDBnY+BbA3fKOiHDjiVNy69ce8duLUCXn906YCVz5lQbVTsfljsmjlfPPWNPGdoMF125a3qHHob8Fqd8tz7SrLkWPReSikCeH40IkkBeyxvjQX/40bNw6w5l2+fLlgBaoWw1jku/GsstmB+kbdx5GNLzytbDQIbPvdd9856oQK54cffoh5kD5c5rFA0tuWHtzNhxnrQxFz5851jAtjxFxJjckE7E3lV2J9gjtZj7MAwB5tIDUsw9S8Z2NvWqMm1qbU/jseCgooYVMf7piYY4ryEo+daFLbtm3tMfELsMcy1HzHAVzyXk5PsZMAFrGKckk9Z9CooHxLT/5KgP9sHeTGY+Zvg98Wy3Uoq9RYcPSKh4KHoa7k4t0LIM+aZdWqVZanBBb9+j1YX6NkjjbhVaiXC0VfuHRd0bYhPb9TAlu2bHFQOvL/yzU/Eu9h6CD1eWme819gBptVdZMfTxE95hP5+c66OxovPFVHaj6aew8U9X7KBG8cYnvpY8a7ISkMjlLzuETa9jlNXpCe/4kLCgtAN+Tu++TwmrWO4qAw+eONN20gDzBv1ZeBHuJ6Jjju+8QDw9zf+4ZbZee0dKtDXUZJfX7u8GGZVPopC4jF46FfxjtkQ38n9VGkbTq0Zo0MyXG/bQGug/WcoxyYVr2WnD/q7m1P28YXL2WB0Sov83FQ1hwCVUt6Etk2brwMuC2bJWNkM67Y43Jmf/iAajBZLnq7vR0kmjqG3feQ7Fu8OFiWJP1tyvzxluU4wCi84a0/apxiAXtPwVwRmf77rxZlDv3IX/UuGT65X1RK6bPnzkibT56XAlWz2cA78mn/ZWC8CLd2zVs6Sx6v/6Cd12pXlbtk1YbwY/T0H9fDotWhDPj0OULFk5bTnCXT5cnn8slj8f3FQ+HnYd+keuqflDBmSQbYo7Hs16+fY/HJQnTq1KkB2rQBAwY4gm8VLFjQ1W0Xy93atWvbZbIZxZLUTCNHjnRsOggaFS0oadZhfodnWOfpB8BjQZ+eklcCbKjgC9Y3QSiEglmZJW+Lg9c+Z84cB6AE8BNOwpVbB6QI4OwWADGcMocPH27LF0AgXAvzcOpKifd+9dVXNiUOFrPhBKVjfn7wwQe2/JinUBbBax9N0mmPAOr8SG70HgRyTqf98kO63mXwPBUrVswxR1BwRztHvGu8On8BzMZLT/+vgPbJVIywDuG6fp+XlxIc8jpozjiaYDwehmZcHiitok0lS5Z0tLFRo0aCFW96Sh4JMI+IW6DPGzxQWSv7lYjVo5dvnrNGZb3tlvBeVdRuKh9rhVatWgU8A2750/o1DJB0T2ACBq/xkecYS/qvv/7aMX5w55vvi7Qu56To3+G162TYvQ/ZVvBYQU95tpJcvuBUgp/+d68V+BIADzAVfusdQcB3aFdWdOmqWeRnkIG3Z7tqAoUmxdhFUsfyLp9Lr+szWeMHYD+5XEXfrKcZ8+WduziUOgp4V3Om9023BSiD6MelixdldqPGFj+7yoMl+cA7AeunRdLVNJkHmqkZtetKz2vg+c8gPf+XUZa894Gvfd0+cZIVa4L5YdHiXJdJlnf+zNc6oiksTQD2IrJuyyobXAdkHzjuZ4EXPdL074FdUv/18pb3gQWU177P4q8fNKFnSEUC+D/TtLAVtJb8fACdJ8wZEdbabOnqP+SpJgVsoD5/1WzyZe+PUl1w2ZCEZtz0w+CutpV9XPDf+wUg38elrVHj1fE1yQB7rHVMXmZoH0xrIhapgPA62F2/fn1XjdvatWsld+7c9oIW6gg36hws4O655x77PjYfbJxjaQnaoEEDR31YonptjK6OqZYyennq1CkrhoHagHIkOHBqtVpauHChIwDaypUrwxI07vc6gISiyQSkwipQxKGYg27nags6i9s6m3fmFvQXpkVuMHliSQ/orc9PyosWxMGTSZWJ+74fyY3ijPdctAofP9qWlss4duyY9c5S48kRhTAB2NOTfxJA8aZ7H7EmefPNQPqDefPmyXXXXWc/X1hJe40FILk+bi1atHD97wEU1e/jPRpNfAjewSYVT9euXV3XVf5JML2kYBJgPHUKJCjFvKzdg5UT7DeUe7zv9blknsPHzjtFT9Bu6WC0ylOnTp10JU+8oFCud+zY0SHbDh06CP+LfiXeLUr26ogHXnryVwIru34pfW64LR7AzSA9/3uzLHqnfUAlu2fPkV4ZbrUAPMD6gXdkl7P79wfcpy5gLT2jRm1bEUCeiU+UjXo9p8pPP4YvgXNHj1pjgKU7QGzfDJllXY/QwLxQa/t3/gLpd8sdQa3sV3/3gxA3QU8rPu0qvf+XKQ6EjlcI9b4+k6zvPzB9zuiCEpHNw0danhE8UyjYxhZ7XM4eOGDcFflXgtmOyP2w/exSx6z6jSIv0OecaQWw3/HvVilW814L2C5Q7W7pPeoHuXDxQsTSWrflb3n6+UJWAFTAdiiDnn3xUVm8ckFIZaIsqNe2vAOwL1Ijp/w09Gu5FIYi4c0uL0qx2vdagH+Rmjml0kslZMO2dSG1IbXfdOjoAanX9hl5tFacV0Gh6tnllQ8byclT0TEFpHa5RNv+JAPsocW48cYbHYtP3PhNCy/oNHA7V4tTXP/793fnJ4MmR7cOxhrILcAjYFezZs3sMikbV9NYWVVjeWpa3LExg/M5mkQ/AFMT+4TCcclmw62cYEoMrzyUw2+pITEPTauxDz/8MCbtRyYoi6hz27Zt1nzDCjaU8UGWzCMUCVhUYXXplhcaBR2IwaIunGQGRh44MDq3UOYPQJB6fnkOoqVzCac/KeHeCRMm2Bz0gHezZoUeRAdrXWiElPxQphBYO9pUvXp1u8yKFStGW5ydn76qtqqjG32ZnSH9JGoJ8E7RYxIgd/4HAXfSkz8S4L+2Zs2ajrnNszxs2DBHBQQwN0H4hg0buno7UKYJghK0k+tmGjRokOM9kDFjRuFapAmuepNGKdJA1rQ32FpArStCAS69yknr6xDG0fQ45R3tt3cSY0B8HvVudjsSZ2XZsmX21GK9Ubp06YA8ZcqUueqU77ZQPE6IVaXo75AtHoWs1fxKGDSZ+ybWq6GuIf1qR5ou58oVmV69lm0RjUXtwNvvls0jnEESL548KbMaPmfzk2NlP+f5pnIpCBXdia1bZUj2e20+csr+vW1b13d+YjIG3IUjPbFPKGaMrmVcuBAAINttunIleL0+KqnsOmN0svf336VfpjusMQHsHXxXLjl3yF+O5fPHj8mEEqXtOaWs5dWResc/VkouaoFnNw4cbM27XzTvDSzIF7RqLZdTiHyZ67T5zP79cnzLFkH5QcBXU/HgNnRYxbvOu/g5ze/hpItnzlo0NciST58bbpXdM6PDWPT66dO4Rx+3AXsUPONLPCHnj7hTGel5k+I8rQD2u/fvtChUsMQGsO816vuoAPv5y2ZZ3OnKOr5orXukVuunQqYLunDxvNR6tawDsIdSp8/oH+Xy5dDm6G9Lpkv5pkVtK3NiDLzfra1cvuJU0CXFPEmuOoZP7m97OSjFyayF6ZRe0YxHkgH2bA5NLkyT85FFqGmZXrhw4QDrHzrMphEuen0DkidPHk/rYJ2mgzxYgm7cuDEa2XnmxarJBEKx8CfoWzQJGh8snLAI9/qgBEkMMGMThwIDQEIvh+9eoACW6QAT+v3qvEaNGoKVFrEHUnqCQkafM5z7FdRP9R0Qh40cVs3Q7bChY+4TPyF//vzSpUuXoDQxyHrcuHEW/yyW2uRl08azAP++nthc60FjAYBCTYADuoUfVqKJzZ3Eyj558qTlMq9k3LJlS0tpkVi+WPzOxhn58JxDFYRFYzAgSG8DyhLkQxnmhz66gWwqPxb1yqMHF/Y+ffqonxI9mgFFKSfagLPMRwXAoACAz96vBG2I7g3FuOPGH0w+ftV9tZbD+9ukSghGbXG1yimafqNkhYpPvcc4ArabHoE8r3j2qft413tZwBJMGtBf3YuSxeteaLQIQqvu5YjVfaTps88+s/5/VHlYc8+fH1ngK555r7WAWhOwDsGLMVhivffqq68GrENYT+BV5Pau5prb2oV6Wb88//zzqSLwNf146qmnHOP7yy+/xOS9yboMhY8ae7cjsZ54Z2MggAzNe4gNhdFBcif+l/Hg4v+cIK/8v/N/HErivYkngfl/zneuu823xMolngiKDCUvnulIFWFudfEeYt2nyufIs5VaDGTc+pTSrp3Zu1fGFCjqAOJH5skvgO16Ithnz2vhuI+jwul1QybZNXuOfkvA+YE/lzlAW8DYf3qFvh5UBQIe7vh1ikytWl1m1K7n+ZlatZoc27RZZXM9nty5U6bVqOUso1Zdmd2oieBB4JaOrt8g06rVcOaJb8e06jVl4ZtvylmfQW+3dkR7DTmu+vJrB0XRjJp1oi3WNf/id9pLz//GU7b8H0fnp9e1mWxO9CP//CMjHnzEnoNY/v9yzY0y+7kmKYI+6dyRI7J9wiSZXKGypeDofV0m4YPig2CsK7/4SrgnWNo0eJjMqFNPZtSqGzCPpteoZVFHBQvE61b2b02b23Lt/n/Xy7IPO0u4wL9bueoa8rcod+IDzw6950FhrFJCSiuA/b5De+SZpoUsa3QA+z6jf5CLEVrY8x/ef+zPVvBaBdhjYY91d6jpzNnTUsbiYI+jw6GcgtXvllkLp4RUBIF0sa6HRoe8RWrmkvLNisj03yeFlJ+bzl84LydOHZeTp50frp05e0quSKCRj1vhp86ctMsgb2JUQwTdNeuM+34iLO8C2rJ73w55tlkx28sAb4Nm79aQ8xfcAxC7tT/9mlMCSQbYs9nUqTcAGCZPnuxoDYE/dQCRzS/8826JBbZp2dakSRNPd1Q2wKbCAOvQWABLbOp1qh4W2Q8++GBQkNatj+a1Tz75xLFw1xfx+jmbr2AJt2uARD2POmcz7CYTqFfUPV5HAvSxKUrJCdno7WdOLvYxkAybP2gTdBBHr0+dAzBgKWsmrOihqfHKbz4zgLH6xt+NssGsQ33//fffHQAS4DCgkkoonsINSkgeLLhVP7t37x7RRli1IZIjm1k4pAF+MmfObLclV65cQlBUN7nr9ZAfrx42xoBA+qdatWqWcipYkGIULoqGgHfOe++9pxcf9Jx6lew40gedUmj79u1hA/gAHIoTm/cuAbH9Sng06R4etJn3QCTgh19tuhrKgV5NnyeMa3qMFP9GnudbB9eRdalSpRwV8B4hCKQ+DiiuvTyKeLZ16hyscYPRZT399NOOsp988smIgTrWSvr6C6vqSOlXvv32W0e79P7r57w3gyXWZPr7Wc+LYQLgrJlos36f2zmUiom9481yk/o772R9DYYCZdGiRTFpBmsSNxBel12JEiWs4OhmIFXuYZ764eUVbeeg+3v33Xcle/bs9hwgHhXPnKlIc6sLBRVzQ/8/V+c8x+wHwk3M0ffff99uD8/Yc889F24xnvczdnqcLsaDdYzbs+FZSPoPQSWwb9FiGXDbXbYlLZbzk8o+48hz4dQpC2jEkhfgFXqM+S1fEazuPdOVK7Jh0BAHYE/ZewyjG8/82g8Eu53VsLH88H/Xx1uG3+h6/PH/rpddM4J7dG4dNcZqE9b+CZ8bpNd1t7gG0GU/uK5nb/nu/663ZJSQJy4/fUIuW8eMc907at1I9tPT//4rUytWtYHxXv/JKOt+6hGTdu1buEiGWsFn4+IdmIC9ZT3f+jU5f+yYzKzXIGCeTHm2YlC6pZg02qXQoxs2yrSq1e2xVwC26o+aD9OqVbes7l2KsC7NqF7Lcw6hyOr1v0yyP0xv4k3DhguKD9piPbeln5aTO3Z4NSHs6392/FB6X3dLPAXWjdL3pizy74LQqFXCrizMDGkFsF+xbomUapDHsmiHw75/FBz2x04ckQ5ft5ZCNeLAcgDzEvUelO8HdglZuqs3rpCSDfJYYLsC/QHfQ6Wz2bZrk1R/5Qk72Gzh6jnl5U4NLCA8lEZg4T9+1nBp93lzeffrVo7PW11fku5DvhB49hNLp8+elk7fv2HnR4mwan2CJ6WZ/8jxw/Jet9bS/qtX7Dyq/g7ftJYp88aZWYJ+p43d+nW24xMgy8frPyTINz1FJoEkA+xNKxGAed0iG+tXaGr0TUTVqlU9FwBwxLJw1e/v1q2b5/1Q7ygQTeVp3rx5TIAlaEp0Wh/qw7I6WquYnj172sCb6oPbEWDfDXRXU2Tw4MEBtDCqHABJt7xs2Bgfxc2t7tePxYsXd2yUUaqMGTMm4BMrzwbVv2BHLL71NgPKRApcmPUwx7AY1Mv3Oge4MelrmB+AIYBvbvnYOLtx1Ot0T2XLljWb5fkdrxPd3ZpnVFFUYdmFtwuKJ7wSQk0AyoBBtB9rs0itOEOtz7wPhQeeN6ZyTpcngHUwxRJKED1Iq55XnScWBJJNtgLIAN1DTQQdVHVwhPoEigkSY//EE0/Io48+6hqE26sO3rMKGEMufgbGY5489thjjjbTPtVmrzalX49OAlOmTHHInLkWjQV2dK1Je7nxutKfQ97J5jMPuKmece4FSMTi3iux3tDf7bxveX68EvFEeIeqdhBYOFwFqirbfEbxysI6OJLE+qFIkSKOvqs26sdKlSoFpe7Ai8xrPcH/mBvojoID6hidNkyvk3PWWiiOVVIea/pahPElBpLbWkfli+URGer/Uaydwg0YH077hg4d6ph7psyYl+3atXOsB7jn1ltv9d0DMZx2q3uhyrz33nvtZ8FsP8r1xCztMR4w6RD1chiDSBI0WXo5tNMvQJ1ngHHRy8eQKdh7I5I+XM15Ng8fZQG4CozvdW1G+aNNghcitowrPvvcAqUBBqHGGJrrATmYSLwogo8SCDOOKz3OuvqX/2SQE1uclvuhyB4akqUfdJKh9z1ogewKLDWPKBI2GVQ+evlYH//5QSdbOZGQP4NlMb3k3UDjEvJsGzdBxpZ8wgIvlZwS8t4kKApWfPq5XDEMto5t2mRxjQPm89kyaozsnDLNV65xvX+JnR9csVIGZMlmy7DXfzPKwRUxApCuXJHJz1b05LEH+B6cLZf80fYNxxwBeB6Vr7AcWZf8ltyndu+WccVLxrcvTlmlj3vCeRyP/PSatT2C916RlV2+kJEFCscD7IFlEVx3TffQPcQZa2h5et9ATIk4r5c+GbPIPh8V3+v79pO+GbLEA/Zxz/7WseMTm2ZJ8ntaAOyPnzwmrT58TorWvMcCyAHsB03EuzIyw889+3dJndZP2fz1gMRPNHxYZi50GgcHG6Av+3SS4nUfsAF7iwO/WVHZe3BPsGz2b7MXTbOUD1D8PFbnPnm83oPyw6Cu9u+JnZw+c1I6ffeG5SVAoFroeArXyGF9Hql8pzR441k5fOxgYsXI2k2rBO59lTdPhSwyevpgzzWv4v5/pHJWS+Gh8nFkXJ5rV1nOnT+baL36DX8snyuFq+ew6YWQaziy0MtKPxdJEsAeSgfTCrNKlSp2YDasSMyAtIDDwYKsTZw40bGIZUGLVa1XYgHdvn17Rx4snPwEr1TdWC7rQChte/zxx9XPUR1xS8b6TF/Am+eAfG6bXVUxGwAdCNDzA7Z58WNiNfvRRx+51s3mE4BBT1iu62WrcwJ1JVfS3ZdpD0qcaClH6AuyMZUBqr9eR90aU9Fc6BaYZj4UWHv37g0QHZabyuUdBUSomzmAayz7VD0A7WyMx48f7wjM+9ZbbwXU6XUBigdVHqCOW0wJr7zRXgdoh+5FB0JUW/Qj4DWu9F6J+Y/1J949biAB5SdmNQ+1lJItVF3B6tPbYb6jAK6gQYIi4r777rNkC7gSjhKFQNwKWCxUqJBvYALt5t1dr149e8yRM2AaipP0FDsJQLmlz2nOAa1ilQCiiW+BZX9yfIYMGeLrvA0mJ5RNZjBJ/s8BPVUiIC0UZ2oMeO8Sq8ILAOadzHtA3c+RNU8wxeHMmTMDrPxR6Iab8NAx6XVKlizpGuw21LIxmMCTRu+PeY5HQDAQFS5uXYZ6/rx58wpAu1f65ptvXOvGMw2luZ6gItTLVudt2rQJKn+9DL/PmzZtar+TaQ9rh1gGvmeNc//997vKQcnDPLIWQanvNaf9lolXeVDKeSl2VJuZR6b3oVkec5Y4UljVq3zqyP8je5JIEut93VsCuk08Uv1IyN6k/mT9EUtDCOIZJOe7HgVIUin84dRe8n5HmyIFMLp/pjsc/PUru35hWf/yG+B7/yx3xVHHuMQe0ccckH1mnfo2OE5+uPGDBanV87udH/zrLxmeO68D4E0ATeMs/9d0/8mTUxwO8qmVq9mAtZ6X87nNXnKr1rp24cQJmViqrMMSPA4ovVH63JxZdv/mpOsk0/LPPresqpEbH2hLBma+S3b8GjqA5tmgCH4gUCltiGt3Bhl0Zw65eOp0BCWFlmXjkKHS7+bbbWWPKW+s01GyqOuA9SPz5JNDf68OrYIY3nV6716ZVrVmfPviAPm4tgaC7bQfwL3vzVlkb5B33+k9e2T4/Q+5zr9e12UKm26G+Tz8gTy2fBlbi3IqkWczVLFBedX/ljvt8lFMrfkxPKVCqHWFe19aAOw//bmDbYkOuA5APXxyP08MKjEZ/b3hLwsgBiinPEDzsk0KyIHD3oYxepkEwK3S8nEbYLbaVOUuKxAuNDWJJcD2L3p1tCl5AH3/MjIAACAASURBVPsrvFhMlqz6PbGs9u/w5G/fs8WyaK/cooQFutMOPoD3dds8I/D+J5b6jeluKx3IW5D4ACO/84wPcOrMKVm9cbn8OOgLKVozl0MGxWrdIy071g8bsN++Z7PUf/1ZixaINkCLU7dtOTl7NnEPgcT6dzX+niSAPZyO5oK7Q4cOFsgJ0GlasxYrViwokA6YZlqMsfCGDsQLqGbhC6CvFujqSDkE64vW+l2fPGzcTUqT8uXL67dEdc5G3gtwp19YXAOkeSWdskTJQR2hRfEC7CmPvql79SPWhab1txeNzgcffODVtJhfV6Cnajt0MsEUQ6E2iAByupIGOgOs6JjLqi7ziMyUxSQArALdzfvUd0BiN4AH93qAWO679tprBYA2lEQgQv25BAjGihM3c1UnQIKbksCtfJ4hnmuVN1bBfN3q5vlmDOg/9RNgEUDJC1QCUA8FiDDBaMqGy1oP0ufWHjwV8IjgfqwUzWCVbnm4BmWPkh9HrOmIgwAIwHdAFJRmwcAsvWzeh2+//bZdJlzWwZ5vPW8o5yhJWrdubZev2sycTE+xkwAeT8wNfa74pRR2azX/rYDSKGOS48M7KVKLcLf+BLsGuI5XjC5blHzKMwwwC1mo37Ha/fzzz4M+Vyg9TXAaABUrb6/Es2V6EWL4ADe8TpPllV9dx+PPLAeDiGjfAyjkzT4pmXBE+R+snXhwKUWino9zxjsY2P/nn3/a8tfzMk4mfQsedOZ6jDzJCdib3p4Eag/l/0iNabhH1tkmfZMuN/Oc9SUeO36ui8NtM/czzqxJaB9zBQ8zDFL050+1HUMUnpnEEqC9yqOOrBvw+IgksYbTny/+o3/66adIinLNY8bfYi6jwIxVev3115P1XY93MsqVpEjw1xNwVlnBA6oPyppTjm+O44Hf0H+ADLg1ji4HcLXPTZll5Zdfy5XLiXMIXzh5UsYVL2WDk9B+jHqkUNQBTue/3Cq+vYHAKf3465NPBet+t4QSYdi9D9q83AooVoDrtGrBaczmNGlmA94qLyDuhOKlLWoXs048E+IActpKcNAbZHDWnLJ9Yuh8zmaZkX4nOOqSDu/bADnjOan0Mx4W4ZHW4szHHBh2fwKgrGTmdkQ2A2/PJjtnzHQWkgzfkNWqL7+RX6yYDYzbjbLwjTdl9fc/WsFdeU7c+sBcWPZRZ7l0PpDOTnVj8rOVAuafNRZlnhGon8JJzPNpVWvYzxjz//fWbcIux6vOQ6tXy8DMeGTE9Zf+LenwgRU81ytPUl1P7YA97X/yuXzyaDy4DqCbv+pdMnr6kIjWQgR0HTtjqBSoepcNVAPYN3yjQkjlXbhwXj74tq0DqAYgf/6d6rLj39Di92zZuUEatatkg+wEvK3duqzAix9J+qJnRwvkjrPWj+PDr/7yE7JlZ+LxN9t88ryjL4WqZ5cve3eSs+eCG9Pt2LNFUBQorwfqLtUwrwybHD6V7vFTx+Tj7m/bQYAp65kXCsmyNf4YNEQi09ScJ0kAe3gndatXFt4sOHFbxr1Z30xh+RXMrZzAXDqHpVpwc2TRzSYYi2O3xIbbBGzJx+Kfdig6ELe84VzD0kdvF+dwlvuV4BkPZi2FBZGXlTUbN6zXzPap74AxwTZpgNDqXnUE6EXpYgIAcLKqe/RjclnYs5m77bbbHG0CkA0GKoQyZlgT4/6v+sjmTYFLgDvqunnkOQCo5zkwrS8Be6FQAFDnPj5eAYFpI5tYNtncB61RKAkwVwH9Ztt4lqBnCcfqDyWR2rhiXW4GyA2lTZHew6ZZ0b4AoLHJpe2MLe8Us3+AF27KD7N++GjNvPAB8xwllpTHBWNCAOJQEoH03MAI2gBYx7stHOt15IKCgfxYAQYDCENpn3kP7wqTxgcQLxjHv1lG+vfwJUAAct7V+tyE5iRWCW8gva6kPufd5ocnVCjy4Rkx1wm8n3lf4OmiKzkB51CCeT2TtJm1hRewnSVLFus97/WeJS6PKWveb3hDmcC0V9/wetJjA1GeH+sRvIaCrSUIVKr+B93aBgWJ2Tf1HWVUMKMDNw9L3rP8n5vrELwo9fWnqgNvrFD+A9zaHs01gpkrEFq1hXVCrFPv3r1txa+q1+uIHL3mZKzbqcpHKa08IlljYohy8OBByygHLwp930A/8OgLhcvezZCEeRypVTcGDXqAat5VxCHyK2Ggo48T5UPHFavkZeSgtyGW57wrk8oz8/Dq1RagimUzACTA3Kj8ReTyxYuyrmcvK6gmlsNch7965edfyqUQvQfhJh+S4z4b7LM4tsuWcwW2wxlLaEOwZAbkNEFTAEuAVQBXt4SFc594ChG3vBNKlXHLZl1DoTi9Rh0HYI9coCRZ8Zk75cOKLl2N+wHsc8n2Sd7e8J4NiPIHxmNGrTq2xwPjQdBSL+VGlNXZ2X9v87r0+k9csGJT5uq7Nb9uziIbBw8R8ck63G5ABCcnt22TEbnzWrJiTs198SU5f/y4XDp3Vv54ra2t9FDtV0funVK+opwOYrAzvuSTAXMXIHzDgIFh9x26JiiF1PPLcXL5Cr4FQD6zf78MujOn/QzTzrnNW0b9DEcwJAFZUjNgv3nHBqn/enkbFAastwD7KnfJhNkjQw6qqgvl3Plz0rl7e8sKXZUHQPzJT07mBz2POr9y5bL8MuJbKdngIcEqnvyP1r7X+kyeN15QBoSSlq1ZZPPxqza8+XnzULK63jNr0VSp8OKjlsU75WH5XvHFR2XdplWu96uLJ0+flMovlXAA9igf4PcnEG2wtHXXJqvOBDncJ1VaPC5Hjx8Ols31N/4zRkzpL9DsxMn0PouiaPCk3q73p18MLoGYA/YMmMlNz4YXgFG3MmLxjeV3YtbOnTt3tjY7AJrmB8sMwCloPdwSgC3W3WY+NrMNGzYMSQvnVq55Da5UfUHLRpJFsF+JTbAeaFSvi3N+81rwLliwwGFBbebFStwL7IdWCOWLmQfQwS14XkoD7JGbCXK1aNHCM0hgqOPFHIeqCItyPBTYGKvEBtKNVkXJELDHtHwDRMeyDDAUd3Cohpi3ysJTla0fAZmwxKZc5ndiFuAqL1aSbDaRC88lCg02yWwSwwUzoIxQ/WIOJuWGn/lOu7GsZ0wZE5UA2VS71BHAy8sbR+UD+MFNXuXhiFIAACyUBFCkXOV5L4UCOFInygZlVY9lPc9X/fr1rWdM71dibeBe4l6o9gNyhGKBmFi5+u+01wzkDDgGx3p6ip0EeN8yh9XYckSRHaukx8nQ60zKc96xSZFQNPKfrfrGOdRUcNjrwC/yHzt2bFDlHe9lPB9Ym5jrDr6z9sADxutdxLsGJaieV5WV2FpJyQqPK7x8VH84+hEYE0WzrqjWy+ccpYcXLzvKBvV/ZebjO6CkF/iKspQAy2Y+3v1uisKUBthjkKJ7sTG/Igl4qsY31CPAspeCXsmStvDf7ZfxSqhtc7uP9Sb/WaxLsKzXgzkzf8y1HM9mKIF7eR5Uf9URiqVIE/+ppUuXdpTJc+FXgv5Gfx+hvDDpJ/2qi3ISC1CsZBarI89+qBSC0fZ796zZ0uMagO84C1o4zSeXqyDzX3lVev7vZgtYBEwdmvN+2T5hogAQhprOHz1qAeuqbMDE6dVrC9Qy0aRt4yfI4Lty2SClAks5UsecJk09LYwJgksf9TzqnLxjixT37OPZQ4dkfPFSDrAWgHb8Y6XkpAfFZEoC7AFfxxQsZsuN/i794EPP/kYzRnre/cuWSZ8bbnOVeZzsM0jP/2WUNT/+5Ni36GUk9fmVy5ctWp75L70sIx7OL1iaq7R79hzpGW95r+aOOqJEGpQ1lxxa5Q4osicZ8VA+y9NCzzPs/ofkxJYtqoqQj7Rz5Vfd7DGl/uEP5BUUU34kFF8omHgH0F7m+4xadZMtBoPep9QK2F+8dFHe/qKlFK2Ry7aEV+B2/ip3yeR5Y/Vuhnx+8vRxafhmRYG+RZUHBcvEOaM9yzh7/qzsObBLvu77sZSo+4ANcGNdXrL+Q/JF705y4ZK7t5JboVPnj7fBadpQol5u+bb/Z263hnRtw9a1UrdNOYfF/lPPF5Dl65YEzb945Xwp2yS/3R/aUqRmLnmlU0MhbkCwtHL9MilULSFoL0qPb/p1DpYl6G9zFk8TgvZSjhqXUJQoQQu9Sn+MOWAP+JsvXz7HYtZc6EEFghtmqDQPKX2s8B7Q+8gC28+AgGymsNjV69DPsTTyAndZ6Ougg56PcyyjvXj9GUus5sw8XtZEbpZM5H3//feTZQhxjVfUIqoPifH9h9tQM9gYCxTocVR95pHNqL4Zw4o6VMtJs23IlfKVx0MwTwk9L9ahjBUgK3RT4YDCqhw2rYr+B+AkKSwGVd3qCIUClpcEvtUToJFJH8Iz4AUmqby4ZeuWc4wTG/NQE8AS80uNOeC5af3pVRbWpShNcN8PZqXqlZ/r0NIopSggn0lZFSxvOL+hVFJ95Bhrl/1w2pZW74WX2/SyYoxDfebDlQuAFvRxRYsWTZZPqVKlHIFEw21/qPfzfJq0VPrcVvMbrx28HFJDwiuRd7LeD7x/ok0oZE06Q70O5qObIp968cox38l6Xv7DvMBX6lX/NXoeL6MI/vcpT7+Xc9Yt4Sqlo5UZ+TEo0cFmPCagGkyKBLUVgKgpC/UdjxEMTlJSQmnltiZ1W4uy9g62fmF9Bj2V6i9HxiLS/1jkRH0VKlRwlMn89CvxHDBHVJtZh/DcxSp9+eWXFp1Vcr3rWWNF6/UaimwA+1Z/94PDAhxQDnAO4A9At9f/MsnE0k/Job//DqVIxz3Q7ShQUoF9cxq/IBdOesfmcBTg8WXfksUyIvfDNkip10Gbp1WpJlCxuKVp1WrYygk9H+fkHZ2vsCcYuX/JEul/W1YtiGoGC4he292b/mn5p12sgLTIU8l00B3Zk4US5/Su3TLwDqyl4zwT6O/q77t78v27yS+SawTinVAKq3J3GhlA4JF5CngqPSKp0888l6BX0gygCCQ8rtjjrvMP5RT92TPnN9cmHN+6VYbmuN8eA+YdVut/ffKZp1eIa0Hq4pUrsmHAILstyLjvTZnl5Fb/jDuGZKe9CYD9r08/K8yl5E7Tfp9kc4NjPf3ax03kRCJgbHK3GUv2Gb9Pksfra5bsde6zwdx8VbLKjD8i877598AuKVH3QRsUBhzGSvyPv36TfYf+tYLG7t63Q7bt2iQbt6+TuUtnSNeeHaV6q9K2VT73Ay5XbP6Y9B71vWPeJya78xfPy8/DvrYCtCpgumT9PDJ66uDEsnr+fvzEUWn6bs14Xv64/pSqn0cWrZjnmYcfvh3wmZSohywSQHLoeeCTP3L8kGde1jKTfhttc/DTjzKN88v23XEUcZ4Zg/zw5+qF8kSjh23PBebqyx0bhIyFBCn6qvsp5oD9b7/9FmAJqBaeHOE5TQ5wL5YjDW2F3kc2SLhf+5WwxtOBQL0uzgFy2KSaCUAT4MO8X//OxsCNyoQHGc5z/V7OsRQzAVJVL1belGd+sCpPjkSgRgByvQ+A3JG6QofaB6zE3AADvR2cY42NNXikCUUOyho1Llh/JlUiCCMgOJtJAurFCjiMpD9YgpoxLwCVEwMmsITU4wrQP3jyw0lY/ufOndsaEwAGLwArnDJDvVcFiGbuYQUfK3DKjWP3559TRmCmUGWV2u6DFs2k0cJaO60ovZNrPHhGgtH/IGO8zHinpJaEsgUgVv+/wUAi2sT/plIS62Wrc96dbspn8hHTR93nduSd5eUp6WYIQF14M7glnhX+9/V1CJRvjGMo1GZuZUZzjfWhrkCh7QQuTYqEh6VJC6jLn/9FP+ZGUvQF0Fo3dqAfxPkxjSb0tqDsMdcCxGCJdg1oxrzInz9/0HbobUrsnHW0SZOHV2Z6ik4CUKFAiQLAqIPXALpcG5Qtp8V5fvbQwYgqOrpxo6NcylzwSmtP6/dQK4Fff3SBogHtVqD7+MdLy4VjgVaUZ/bus4KsKvBR77PKOyL3I3J0w4aApkAR9He37wzlxo0yoeSTciFIcPC/v/lWfrkuo/S5MbP16X3DLTL8vodk5/TQvFQDGhLFhZPbtwuBTZXHA+OxYeDgsEC5SKtf8/2PNqhsyp351v/WO+Xf+QsiLT5J86EMWtCqtcPTQu8TMQvW9+nnqjjler+Md9gAOHRTw3LllkMr3S3yQ+nY9vETHc8Cipij6wPncChlud0z4sGHtfbeYMWlgDLIr3T+wjmB6/v4yaNhfUZOG2RTpRSpmVNavF9XduzZGnZZJ09H5/ETjhw271gvz7WrLIVrJFhwYwVfqkEeC2gHsAdIjySRT9G4KMAcq+4XO9SSFh/Uk+bv1bEs8KGKeaLhwxawDq87eQCz81XOal1/7ePnZd7S8ONIMH4dvmltAf6q/tKNHpGFiYDrQft6RSyreNpJmfSH9v62eLpnthOnT0ijdhVtZY5qC/nKNysqB4/u98x79twZaf9VK1uBUbB6dvmsx3tRrZPXb10jlV8qbrcHwL7Rm5Xk4BHvdng28Cr/IaaA/fLlyy1KCTeL7hIlSlhAfTCe0tQ6NiYFB5sgrHr8SoDncFjqGy39nA0ZlCpmGjBggAOA1POoc6zeAODMhOVhuXLlAurU6V/MPIBHWI7pH6yGveh6zPx+f4cvXg8MS58BNWMFZKr2wz2vA79K1voRAAFLyGgTgLCi4MmRI4dgiRvr1LdvX1uu0Frt35+yXsR4EBCQTpc3gFCw4Mc8Y4yHngdqi2BggJecURQpa2h4m70UXF75I7kOQK94swETYklPhGJIlxMKym7dukXS7PQ8IUoADyrTwhTlaVr8Pw1RJFHfhgfZt99+66ArUfMaZSrWyaxpUlvq0qWLHYxb9QcaHj8SwTVVmeaRtYSb8h/PhGCgMeUAxHopr+HfN+tCKeHlvcT7n/9+fR2C1TYUZbznkzrxbtYVKG6BcmPVJhQsKC5M+enf+a9KKkqSaPqJNb3pLQCFHTECvBLgt74fgWrKDyW6SWuIMtWvdRDvHJ1CibEKNU6Rlxyu9utYvwMmD7wzhw3GKdC6b8Yssuid9nIwSg8qaER0IBOAGL7tUDnwvcbo4qlTMuHxJx0gpaoHMB6A8ZzLM0Aw2t7X3epok8qn+j40xwPyr4vyEMqbkXkLOKzr4dHf63Kv3u5Tu3bJzmkzZNes2XGfGbOsPOdd2qfni8U5ig7GQPWZ861jx8eiKkeZ548dlamVqjrmmWqDOgJyL/2gU2RW5o7akubL+r4DPAF75Lrwzbfk0pkzAY2ZXqOWNofiKGZWfvF1VHEEmFv6uGKxf/Av/9Zpo/IVsscOZcCYQsXsoNQBHYzgwoBxP8tL79cN81NHarR60rZMB8gt81w+eaF9jbDLadP5hSSxzD964rC8+lFjKVD1btsKvkTd3PL+t22kSsvHLSAarvOFK+ZGIEWRbv062/JQIDVAPIFsodopUDWbAHxzTdGzcCxe9wGp0+YZ6TniW1m8aoEQfDaSBADdsmMDm76GYLplG+eXrbs3RVKcneftL162y6Rf9GXKvHH27+bJsF/7Sel4i3ZocJQsOEIX9O/BXWYW+/vaTSstGp9Ha98vj9a6V8o1LSybdqy3f4/kZPf+nVKvbTlbSUObCMQL3U96Ck8CvgP2bIDGjx9vccJjWWpaFrNYbtCggUW9EV5TU8/dWJfqGyAA+/bt2/vaAUBSvQ79HBmbFlsAjQSj1e9zOwfkgxLATJRnbvRwXSUIWGpJ06dPtznFVd/hwo21lR0bLq9AybQDcALKpGitvNQ4QG0DHQFloxhz87ZQ90Z7BFRRwV7xlkmMZiba+iLJzzsJpYkac3UMFniReU2wSHUvx0g9FgCSxo0bZ3t3QJEUSz5uQDRFuQD3dqwVBPAv63ICRIllULxI5kBaywN1lU7XhPwBdfwCidKavIL1B8CO/2doLEwPLOQK+MY71e/4D8Ha5Odv0M/oICX/Nx06dPClilGjRjmeff09QD145ekJz6vPP//cM4/KT14UDWZyC7aMxXRqAJhVX6Ac0ddSPLd4c8U6sa5TMVWUnN2O0CJ279491s2JunwCtJuAPbFioLLzSljg633mux/egOxp9HLZ+0RDs6O3Hyo7tZ5TdWAYkZ7Cl8ChVX/LonfetSg9+mXC0jchcCtg96h8hWXn9Jly8czZ8As3chz46y8bHAaYtYHMs+4BYY3sQb/++nR5D8A0gwzMkk3OHnTSHpzeu9fip8eiWYHE5hFZDMqaM4CuBt7+f3r1jef6vyk+fwaZ+2KLoG1MaT8eWbfOAewyHjsmRka/EU7f5rV8xQZ8TZmr77QFfv2jGzaGU3Sy3QuPfe8MtzmeH9UXQO0ZtesGBGZFYTLy4YL2GKj5dnDlyqj68e+8eXaZtAFZ7lu4MKoy9cyjCxa1x4++jc5XRKAF8iu9362NFKx2d9gfrOp1MJYgqQDS4ZWVTR6v96AcOLzPr+64lnPp8mXpNfJ70dtMe5u+W0PWbf5bnn6+kAWiA9j/uSayscOKXgHxCpwmsG3rjxpbigIs7Ku0LGlZemPVzz3cz/kn3RMPTOvaMe3ivoP/SpN3qtmW5BZg36SA7D0UXTyFz395P66t8fQ2yGjM9CFazQmnZ86esfrLPHi83kPyQvvqDq+DQjVyyIZt7kA5OMm3/T6VIvGxBfA46D7kSyHmQDRp/6G9lkU9VEPInMC5NVqVlpXrA42Ko6nnasjrG2BPADSsKtn0mu6bapHJEZdyeJnTcmKzo/eZzbJfG2QlN9OqVa+Pc1PGWNy7gRFmPjZAnTp1UtXYR5Ojkw3n1KlTk8VCzW5UmCe019ywAgp4WeaFWbzn7WwIH374Ycec0OX+0EMP+c7ZiUVh4cKFrToJhAvtlJ/9JAAcQJDyWGADmRLBejUoWLkri3Ml+7x586qfA448L3g9qHvhrI7GSh3ZDx482N54Yx0NiO9nwrIQmgAAF9pdp06doOCFX3VDXaHkxJF3CKBceoqdBADs1fOtZA/wh5V4ekpcAnhVYXFNLBiCx6JUV3I0jx07dky8wBR8B8HQTcAeoNKPhKU64LopM/XdfMdBW0MQXfV7sCO0f2YyLZnJj9IgOSzlzbaF+p13o/7fwnMbapD4UOsw7yNwabB1uTkO/J/H2vPQbGO431GgmYG3eY55N7oljFaUpxv95dwvRYkbYO+XJymAvdnPZ5991q2L6ddcJAD1za6Zs2R24+dl8N33SK9rM1mgng7WA/QBxv31ceTB9cyqD/z5pwMcB0hc9NY7vlhRz6zXwJNihaCyZ/Y5vVwJ/tr7eqzr3XnU6T/y6H9rVtnQf4CjKwRrHf5AHtsyGsUGngnHN4cfJNRRcBJ/OfT36gBgd3uMAful73eU3tfdElTucUB3Bvn5vzfJ5mEjklgqkVV3dP16GXbvQ65zkOdobNHiwrzR06qvu0mfGwH5mYPEibhBZjdqInD8R5P2uAD2/y7wj2JuTOFHHYD9qEcKCXRXfqWPfnjTAo4Bj8P56GC9Og8nf9y991qW+bGmJ1m2ZqFVDyC9AspLNsgjy9Yskj37dwngNnzrj1S6U1ZEAORC61O+WREHYI9l/W9LZsjhYwetD33cs3+nDJrQS555vpAdnBbA/tkXiwlc69Ekyq7z2tOWBb/Vxzr3yVNNCsix494ef6HU98uIb6Vkg4fsvkEbNGCcOxvDX2sWyZPP5ROC5lL39AUTBZnHyfd+y1J/0cr5rtUePXFEKr1UwgbVa7/2lGz0APddC/C4iPyff6eapUxCLrStSovHxasdHsWkXxaRqAF7FqUE72LToQNiWNbj9mta2ANcBnNZTQujYlJpsIkg2KufiY2yvgk3N1x4OajkxnnvFfCN8XrllVdUVuvIhljnXKUueE5Tm8UhAI0CmJW8Pvnkk5hb2CNEXLVVneaRYHmxAByw8AK05TkEIICOZfRo74jpjkH3+AK9ABaC9913nxU0kOe+a9euKZ6KAx5jk0IE5aGbRTKeDnqMCABorMijTYD2AFbMBRRefIgpsXjx4qiKRpEAKAcVEu9gAhd///33SfZ88q7R5zTyIqZBeoqdBFCOqYDCSvY8i0kRrC92vYp9yXhToVAvVKiQrdhS8uM96fafimdWak54kZn/9355/OF5p7x5lBz1ox6fiPcqNGT672a79N8aNWrkEPuvv/4aQKVTpkyZqBSpjgqS6Av0PbqFfawpcQClUU7rsk3s/O6775aUPu+ZT1WrVg3ol2msooYVLzs131Ayde7c2Tcjhnr16jnagRFGMEt/1aZQjniVsFbRx6xy5cqhZL2q7wEIXP1Dd8tyuc9NmS3wHNAcYLpvhszxQKqyGI8D7HfP8s+YDMvhODA2rg7qXvhGu6gpcRjUP9q0lZ7XUG4gAE//sGZW6eyBAzK2yGM2WN3rvzfHg/cJfY8D7DNYcoEqSE8EjtWVGz3+c6Ml11jsWfR6/T4/8s96Wwb0l/GIFSUOwTVXdv1KoA1KkF1cMGN9TujntGdmnfpy7uhRv7vue3nw2AejZRp4+91yaudOu97zJ07IpCefsb1CAOuH5swt+5cute+J9ARrf2SnZMn5/iXRl6vaMzp/EQdgP7qAvxb2WFADrob7eaJhXgtcVWB9iXq5LQqWcMup3KKEHD4aO6YEgpw+91Zlh6U3POY9hsXRGG7bvdkO1Apdzt8bwqczAvgHqFZBVuFrL9e0iOz4d6saRvt46fIl6T64q+VZoGRXuGZOi1vf7X47YyInO/duk0ovFbf7CUj+9PMF5ez56Ly1Rk0bFK/siAsgCyVOnOX7BUeLzpw9LV/1/tDysKD/Hb5+VXb+u80KGotyhr5CRzN5rntsw19GdLPogbivYLXsMmRSH19wqWMnjkqzd2taZVI2lEQVXnxU5ixyet86OpP+xVUCUQP2JlgDMIhFb5s2bSyLe9OiuVKlSq4NSUsXTboaAHv4b/1MBF4LxouugOJmMAAAIABJREFUB8dcsmSJ3HzzzfaCH+Dy+eeft7/rGwHOAXlVIlAttCr6PWzm1qxZo25JNcd58+YFKB4AOv1wiU5MCCg4TOWVkinc6LGk5UFRAR0StDy1a9dOrKlBfycuwYMPPmhZp7Vo0SLZ4hEEbaTLj1Dc1K9f3zGPAZqYE2basmWLA4TC2tBv6icUAGy6sZzDMymazQ/0OrxzsRjEk2f37t1ml2L63aTFALBHYZCeYicB6CBMrx0UNXi+pCdvCaBkNsEv5EZ8FjxgTCUIwGos6au8W+rfL9BT6Rbd/O/4FVMHMBEaEvVfZh719wDKSp27HtoQAvy6KUkoh8C0KvG/YwaqRUFlWvCr+1PyEYWRzmGP5TvruVgkrM2hqjPHBUBZN7Axf+c7a/iUnFCAq8DqevuZc+b/Kdb1rLPUfbwD/OCuV/Ix4yrwbj58+LD6OaojChdFO6jaz3ouPQWXAMFQB94OR/0NFqAHHQyUL1OerSQbBg2x6G/irH3jgO++N2UWONf9SofXrbNBRAUQ//5aW18A++Wdu0ifG261gUQFVnIEIN6/ZElcN65ckU3DRkjP/9xs3zup7DMyo2adAOtoZIH3AVbhKp3csUMG3ZnTVgwAhk6pWEXOpKKg66ovJ7ZuDQB2Nw0NjNem7o/muGvaDOmf+S5bxsi2782ZZXjuh6XnNTfb8nSOWwbpk+FWORhFANZo2hxu3hl16jvkqfcFK/uj/yRwX6MI65Mhsz0HkQHeJn6kHZOnONphcdivijyIrdmmUXkL2O1W3gMntvjnXQKVyuoNf8nf65eF8flTfhj0uW3NDQja8I0K8vuyObJ6w/Iwylkm/2xeFfB/acog0u8XLp6Xzj+/awPBALaFq2e3AqkqGp51m1dKgWrw2t9nBWyNBLAfOO4Xywqd8q06auSU1h83kUNHD7g2nQCxVV8uaVutkwfL9bEzhsrlK5dd8yR2cfueLXGW+5oXAVQ/0Xoqzl48VZ55obBlKU874eLv2qujnDpz0tGkJasWSNkm+S3PgRL1HpQV65bIvoN7LBogAHzyQkczaELPgPFGaYLVO/cRELhOm6dl597tjvIj/WJa2MOjjzJl6vzojSAjbVNqzRc1YL9q1SohcNOtt94qTzzxhHz22WcC4EUyeaPZmAUL9JhahWi2G6sytbDmCIDl9+YHXnLTTVavUwVhwyJat/4BNB46dGiApZueF256lbCm1pUubPIAuVNjwpLZ9BR49913IwokGk7/AXvdAvYqmQNi4AUR6wTIh3t1tAlwwc0yPdpyY5mfP028KZTMOUId07Nnz4BqdStQ5r4f1vUBlcRfADSIluuWubN06VI5kEybKIBOXa6877wCRnrJIf16eBLAYwTFmS53QKhYvUeYp2PGjLE8dPDSSeoPhgH8l/mRsMplLQKo9txzz8lvv/1mFXvs2LEAq3u8kpLrufKjr5RBkFNFk6Xmi1/rEYIfmwp9VQdHaNNQRgOgNm/e3J6vrEP69OljeWd50RERo0GlH374wUHpxzvGr8C5qo6kOhIsVV+HMDZQ2PmdmLdunn2s01FCEd9EHyvzHHrLlO6xg9eF2e6XX345wAiDd5eihGTuNWzY0Fdxo3zX24Hizy9DEP7bdYMb6vG7/bow2NMl57ue9RYKFj/S1IpVpfd1mYTAkXOaNJU9v8UFNDx3+LD0viEhACtA3IRSZYTrfqUT27YFAPbzW7wiF0+fjrqKf3r3lf4WB7+7hf2OqXHWiwDuE0s/ZQOaUN7snv2bzG7Y2L6WALRmsGhv5rdqbbWPd/b8lq0Ei3zusRQed+aQvb//EXX7k6MAZIGSQ3kloHxY26OniM+Bx/cvXmIpgyg/TrZY1meQJe+9LwdXrpBBd2S36YUSZJ/ghfFX5y5C3ICUnv7s+JH0/l8mW556X+j7rhmzrC4QZHnBK68KgXWVPIbe86Cc3hMdt7eSz6ahw2zFCOX3+E8GObYpwcNE3Rfpcdh9DzkA+wkln5QT2/0BMyNtE/mm/T7J5kvHYv21j5skSfDYcNqMNXeZxoDIcYAxFt6lGuSRpasT3iHLVi+0rMKxAocuZfXGFeFUYd3b/qtWFiANKK1A7e8Hfi7nznv/j7zz5SuOPMjwjS4vyslTkRk9YWFfsfljdl+Vhb0JrIfbuRXrlkqF5o9aXPv0jRgFH3z3hhDEVyUogdp/+bIUrJ7dCur7Xrc2grIEGqBG7SpZcrUA+1r3yPcDuggeQCqxPv/kp3csWTBOeGr0Gf2D+jnqI1Q7TV0s7Gcvmhp12VdbAVED9tDb9OjRw7JOwwpKJTbXWHHpi1g2KTpVi7o3rR2HDx/u6DcbBKyR/Uxbt24NAGx0WQM68iBOnDjRYdmNCzljxiZev18/xwKfhEuvaT335JNPyt69e/3sSpKVBWBteiVA56TPW78bwxjwHASzZsNNe926dX5XnV6eIQEUVfo8B/QxLU2xTseDRN3XpEmTFA9aGN1M0q9s6twowLC6T0+xkwDvCyiQ1DzlSGBC3jexSM2aNXPUpdebVOd+cUITy4TYJaaXGDRzvBP0/hAMPLVRv5njj7edCfhh2e5H4n3pBgorGUItBnCJUkTRkfAbID9KX9rmBdjjEUZC4Z0vXz7HuBQpUiTJPYn8kBdlEIhX55On/wQ19jMxZ1999VWHzJA7Xlgo7d3e22rM1BH6QCiPUnJiTWeurVjj6oAvlHE6oI6BUbQ0dLpMoOZ56qmnHLJG0edXwkBC7yN0PryXYpVY86g5kFxHv7wEsb5d0eULObLWub7eOXVavKVzAlD6e5vX5ZKPhjMEfu11bUYbtAfEnN2osVw86bSMjGQct02cZAWXTfAQSKC3wcIey3EogVZ+/oUNzFP/PBQGZ87IvJat7Os60Ip18uwGz1lN2jljpvS/RQXmzSA9rskgK7t84QsHfyR9jjbP6d17ZEj2e22KGpQ0cPv7CY5DRTSxdFmb+sUCkP/vBplWrZZcOHHCkv2vZcs5ftflz3iOfKSgnE8FnpKbR4yKn4OBgYyZa+t69haRK0JQ2P63Z7NBb+bnqm++i3Y44/JfuSJruv9kA/bIjzl7cts2X8rnf3JwtnvsttOvqRWq+KZsiKaRU+aPdwD2BFc9ejwBxI2mbD/ybty+Tgj6isU2YDGAfJEaOeW9b9o4gPQFf82xAftite6TNZvCMyoEmMa7AC8D6uGTv0pWmTzPnfpF9W3U1EEOy3+47J95oYjsizBILBz2tVuXtdsBYA890aFj0dENbd+9Raq2LGUrAggo+2aX5kIwVytduSJzl86wLPCL1b5HoEpavjbOw+rIsUPySqdGdrBfrNs//OEtBxXg0r9/t6h8UKbw+0vv15XDHp4JSnbhHA8d3S+N366SwGFf6x6p3OJxWbgikN0gnHKvxnujBuy9hLZ9+3aLn1lf8GXJksU3N1GvelPCdSxE9H5zTlAqPxOWT1hAmfWo7yzoscLUA7xhya34PU3wUuXjCEiPOy+8+/p1XNCxvkmtCZnpG2X6Bn/80RhyBqK8MekIdJlyjrVn//79U6tYU027AR90y0Zkb3LB6ptVLJb98EhINQKKoKEAxHjh6HMacEFZLUdQZHqWECTAvOR9rMuduBKxSgQzDhZcVG9HLM6ZU7GmpsHbCuW63v5hw4YFuI/GSsaxKhcjCZNSA3owPxJeCbrlvC47zps2bWoFAdUBd2iGMCQgEbBaByP1/FAVAdbj0adfx1J60aJFfjQ/WcpgXWbSMjHP/EoYy2AgosuMc2hwCL6uEt4RptLPzAPFml+eLapeP48offLnz+/oK+9Fvc1ff/21vQZjrcV3PxNztGjRoo424NXqV4K2Tx8X3lGdOnXyq/iAclDOJue7nvfDTo3/OqCBPlxY9E57G0gHMMX6d8vI0b5aW58/dkwGZE4AKgGIp1aq6gsYe2DZn/FAYiBYCmi5+vsfZc+8+dInIxzqcdzpQ+/JbVkGX7pwQZZ2/NAVNAawn16jjhzfskXGFi1hA6EAleOKlvCl7T4MX0RFnD140PKiYBwUkL6gVWshKLEfCc72sUUTYgVQB3KbXK6iEEdApZVffCW9M6jgqwmKFgXcA2hvHZcQg07lS2nHYxs3yfAHH7HniGq/ki2UN6f37ROCtiIHdR2e/os+eUuibFncvoPdBsZ2dMEictono8LzJ0/KoKy5bMDeUmg1bCJnDx1K9uFIyYD9iVPHpPUnTSyKGwWiF66eUxq/VcUK/KoLb+bCyRaYawXBrXVv2ID92s2rrGCpyoqfY7kXisjf6//Sqwk43757s5So94AN8tNOuNuXrIrMSAFqI4KrAnxTFoB92cb5Zde+HQF1h3Ph9NlTUktTBOAJAKi+6984Lw/AdfU7gXZ/HvaNXLwY907DW+D9bm1ssJwAtK9+3FguXYoL9IxlfuuPG1vjhPyfalJQVq1fFk7zEr1378Hd0uCNCrbiBvnUaFXa93oSbUgauCFmgD3cpmYwMgDmqyERrMtc8GKF5mfCgiiYSzMc9SZnNzzqWAORcMHWNwH6OZs4ePh1cBPLQ7hwU3OC8xQQQO9r9erVY0bvsmDBAoe1tl6vfs4GjLFJT7GVAAAFoKYuezbazAvS3LlzbWCL5xfQI1YWy7HtadKVznsIoFOXKZa08FWnp9hJAF5j/f2M/LE6jlUKBsrqYx+rc6yQYw3YP/300455DM+4n5a4sRqbxMrlf8ikz6tWrVpi2UL6Het58/nX5wCGCijFdSt6KFkUddOff/7psLzX86JkgF5QUZmo31I7rSJrsJw5czrmGpQ/fiXGA2BayYsj1G7QnGAxqBKgdrt27Rz36Xk4xyIfb86UmrCeh9ZKbzcKoD3xdAv79u1zgOnw+fvtUUmcAN0TFdmj6PArmbQ/rMWJgxCrhJJNl2dSn7N+iDVgD4+7okYB0CYo7YE//QUqsKgekSefDfYBJo4rXkrOHTkS9dABDg+750GLn18HSjmnPwvfbCeTyjxtA6UAjWu+/zFOIXHliqz+8SeNoiQBNLYA5vKVLAqTntfGca1T3oAs2WTrqOAWq1F3KsYFMB6/NWlqywRgfGrlar54DGARP6VCZRs4VuD0iIcLyGFjLXzkn39kZJ78jnudY5hBplVL+TEq8OAY92iCUkfvA7KdXrOOpRhSChKuDcqaQwjG7FdC2TKr4XO21wTzd0bN2r4F7j2xY4cMvCO7/QzzHP3xWlshPkZyp5QK2LPGmDh7lEXDgtU64DUg+lPPF5RpC5y85dz769zRNmAPx/qaMClxxswYagHjAM7UBaD9cqcGsisRDvYzZ09ZluUqH3kBkwdN6BURjz30M9RL/ZQFJz+BcP/ZsjqqqcKKrcHrz9qW+7SxwZsVZPPOuBgRPw392vqN6wS93bj9H7u+s+fOyNd9P7Y8GGgTfW3UrqIN2E9fMMm6psbph4Gf23n9Otm+Z6vUav2ULRfaWfu1p2TD9nSMIFwZxwywx8VXX+gBgHm5cbJpw4ok2uAM4XY+VvcD/GElovcfN12/E1y8eh36OfXr7v14N8CFqdI///zjmZfNtelCDxVOaqcGoO+FChVy9JtAZLHYHEBZoVsVAsqbwIM+XrQjPcVWAmzu9cBzyB+rQ9yvefdgba8UbfCDq1gcsW1V6i4dmUKvoc9lgE4sb9NT7CQAkKy/35E/gHOsEpz1r7zyirRs2TJZPnCuxzKgLsAzFCz6POa/AjDOTHgPTp48OdV4CwK4ArzqfYPCQ6cNMfsYzncslvWy9XO8y3SwHiOOAQMG2MXz7vXyQGN+m0YfKFhTOq+63bkgJ6yndDm9+eabthIjSLagP7H5HTFiRIACBPkDzLspn6HnMb1K9Hbxf4iXYEpN/G+bHl70FyUV8sBzUb0nAdKhvfI7sa7WPTdRjuDB6leCNkofE/qBZ0qs0siRI5P1Xd+2bVs56QNtjJd8Lp0756C5AFAcU+QxISipmeChh1bnfAQgO1z1k8tVsIFZAMth9z7osLY26wv1++Xz52XEQ/nssnWwlPO+GTLblD/0D97tkxrv9tZRY1wBe/L2ueE26wNQz3c47Be80tpX6phQ++nnfZehCOr6pe1ZQP+GP5An6pgCl86dlTmNn5ee1yQoPgh0TIDjPXPi4uM4+nHlisxp/IL8ck1g/IG4ccwgA27LJsc2bXJkS4lfZj/XxFZ8xbU9QQbEC+ib4Tb79x7/zSBrfvzJVy8WnuUxhYo5AHWCJnPdj7R/6VIZcNtddvl44qz4rKtIvJGXH3VEWkZKBezXbFphca4XrRVnaR4HXt8vn3R/2waKVZ/5jx43c4RtiQ8/+98bglvGq7zq2OWX9+KDx8YB9gRl/aJXJzl9JrhS5fyF8xZnvU6lAyXMe93aysV4C3RVRyjHYyeOSPuvXrH7Qr+faPiwzFkcF08klDK87nm5YwM76CztrdqypGzctk627too5ZsWsfjtUXbQbz1oLv3oN7a75K+azbb6r9D8MWttRN76bctbNEX0u8nbVeXYiaNeTYj4+pqNK6V8s6JWwFtkAi1SwzcrCh4J6Sk8CcQEsGdj8NVXXzkWmWwK3AIRsvm95557BL7MTz/91LdNZHhi8PducwHPYrtw4cL+ViISYFmkL+r1c2RvctYSkMy0wtLz6OeA9yhVwk28jAFZcFvWP8mpmMGiXu8bQAaW15Em+shHT3Atm8Bw3bp1raCnChDW28A5vKpmbABk5heoorcvJZ0zF/S5wTlgrylTv9pcq1Ytx/jDV8/z+v3339vBlbHwiqUFm199SQnlQJ2l8wMzl7EeTevzNrllD+WQ+Q6JZSBC+qvedcl1jKXMoXq79dZbHTJt1KhRACjP+wrvNd7jFSpUiLnVvx99xppdVx4zb7A09gv4NgFFc16q78gMqhDl0UTfaFswRbbKy5E1YqRUWygW9f8ZLK+Vt6EfMg63DALm6kA5xhfEDIomAeJimKHLjHMs0L3exxgr5M2bNyCPXkb58uXDtkpnbuny5n/CTWEQTX9VXpRnensB6FEKYTShB+aG6iUWY079+rqO9wjc+n4k3jeff/65o3+s2wkCHsuUXO94VW8s+3Zg+V8y4NYEEA6rXALSmpbvALxYZPe45kaZVqW6YG0bTgI0nNu8hQaqZ5C+N2WWM1E+56oNYwo9qpWdAJQq0JejBbr/L6NsHe20jif47k92UFQzb8J3As2OeqSQnNEoXVT9oRyRIfQhZ/bvl7P791tHS87GnimUsvy4Z+e0GfLTNQk0QgQkPh3FeGDhDa1Or2sz2aAuipne12eSLSO84zhtGTtO+t9yp53HCXZnkF7XZRKA53DTpfPn5cy+fZaskTcfPAtilaD3QcGjvFWc/WAexSkleMZm1WsoZ/bu87Up544dk34Zs9j0VljAbzHmejQVbp/4q/TLdIfdjx//73rZ0H9QNEX6ljclAvZwpr/csaFNCwNAi3V9zVZlZf/hwNiHBD8dM32IDXI/UjmrLFsTOt0hgDRW7VDZKMVA/ip3ycipAxOVM+uRniO+tQBklRcL9Jqtysi582cTzW/ecP7COek+5CtBYaDKK1k/jwyeQCyH6NL73V6zy7S8FZoUkOXrlkqHr1tbygriBEDHs213oIHR+NkjJF+VrHZ+rP73HfpXPun+juXZgHV9qQZ5HYGAo2utM/eilfOlRP3cNgd/4eo5pMUH/lByOmtK+99iAti7BbzC6sV0L2cTBYCmFrtYu+7atSvVSx3rddPl+eGHH/bdQp2Abkp2+obFPIfj07QUhLfddJM38/GdzQEBaiMB2XE9po2lSpWS0qVLWx/c4ZOTF5yNst7P66+/PmJefoDlH3/80QJ74eRlU4wCygQwUQps2rTJsvrS69bPASMGDUpYCEApghXee++9J9BL6Zysqf4B0TpA30qWLGnPD+YKcyYWG2uqbd++vQMoge/2o48+cgBayD2S+a5166o5BWQywcBnnnkmXX4xngFjx451vMf4H+Ddlp4ikwA87ybFEO8F8z3Afbyr1btbtxaPrOakyWXS5+XOnds3qhO8L0JZh0BHxtpIT7znaYuSp9eR9WOkBh2MIf+j+joEhTrBPJMrQXNCn1R/WS9GEx9o/vz5AR4ilA0NJcoJrwRAWqdOHbsdqj36EQB8+fLlXkUEXGdtWbt2bVveyB3lV6yodaAHy5gxo90HFCEE3NV5/KFCNOdeQMMjuID8oDPS5cVa36/EGhrPJr183j/pHmyRS3jLmHHS7+bbbRAOkG9558+sIK16qVvHjpe+N2cWQGuAyI2Dw/OagF9bD/pKGVi7H1nnfAfqdYZzPqViZQ/AVwHuGay2T61SXS4YHgv7lyy1rPCVFX0g0BoH9ve9+XbZOXV6OM1y3AsdDPVPfKKMTHryaZlQ6kmZ17ylwO+fHOnwmjUyJPv99pgSFHh7hN4qjO8/vfpI7+tvsSlZkOcv/8soc19sEdQjAaXFiNx57Xym/LHQH5WvcHhg+5UrQqDgcSVKWrJG3nyWf+Y/zYUaux1Tpkn/W7Laz5LZDzXn+2W8Q/bFIO4MAW17/y+T9XyiKBmQ+S45EMZ/leqH1xGPgL43Zo7vXwb55T8ZZOeUqV63J+n1lAbYW/+Fg7o6AHCA6+J1H5BffxvjKhsA+9EaYJ+vclaZsyT09826LX9L3bbPSJEa8bzxUPDUvV/m/TnLtT7z4vxls6VAtbttMJv2lqz/kGzZFZnC/de5YwWlgwLsS9TLbVm9m/WG+/2b/p2lRN3cVrkoFUo2eEje++Y1efbFYpbleumGD8vYGe7/T8hCbxPg/E9Dv7KAfsoqVD2H9R2FQyzSjD8mWRb+1IVcOH70w1uxqCrNlxkTwB6rapM/HeBXX7ADQHbs2NF234XC5ZdffkkTAkfp8MgjjzgW2XBc+q2M6NKliy0/fUGvnyPXwYMHB8gVZQmcx/q9budYhh+JwB2UCtm4FShQIKCOUaO8LQ8CGurzBQAWs59sdiNJM2fOtMuCb5f5bLq6Qw+i+ovFGe7SZv18B/BQgYkBGBo3bmzfxwZQcbJG0s6UnGfcuHF2P5VcUNwpjmO/246LvL65Z3ygwlCAE94kBKdNT6FJAAWVaSGLS3usrClDa1XavouFcc+ePR3PDSDVt99+m7Y7HsPe9enTR1DeqncQR5NXfMmSJY7/M4wNYvWe8rurgH66RTeKynBA2GDtIWaPSQGoy5Fz6u7Ro0dAMVARocw37ze/w7kfDHgOKFi7gCLd9HijfMacZyk5EhbnpkcHltqRpDVr1gQEXqV/UA3NmpX4xpUApoo2xpS7+k4Mi1ATxiFm31CG6ZSMoZYVyn3sKx577DF7DvFfjgJEeZDCaY/HnKl8C6XsxO5hjUuMBiUnjq+99lpi2UL+nXlSsWJFR/kY4MTKoCHkhqXiG9f17B1HGRNv/QvNxdqfnHtPwMVR+YtYADuA/sz6DSMKlLlj0q8O6hkA++2Tp/givbkvvmTT3ngBpUOy3ydY05vp0N+rZWiu3J6AMZbRtHXJu++ZWcP6DiVM7xtutXjjKQ9ZDn8grxz1yQMlrMaIyLnDhy3Oc9qBzHr952YraGm45XA/QYoH3ZXL4eVAH0fnKxJS/1BkeClMuN43YxZZ16NnyE3jv4w4BT/83/VWm2gLn1+feTbkMsK98eSOnTJI43gPnIcZpMd/b5K5zZoL4KzfacVnn0uv/2a0xhIr/mlVa8gZnwLO0tZFb71teU/wPFgKgduyyf4lS/zuRkTlpTTA/rclM+SJBnmsYKsKsAYMf7PLi+IFBjNnJ84ZaVvY56+STYZN7u/wwjx09IDMXTpTzpw7HSCnsTOGSdkm+W3rbahdyr1QSFauD40RYvu/Wywg/NHacM7HfQDZh07qE1BXKBeWrl4YD0rHcfcDTrf+uEkoWYPeM2D8L/J4/YfsNhLQVrUXi/s2nzzvKeO/1iwWAv6q+zkq8BzPhBc71JJ9B/cErT/SH/GmHTShp6CIUfU+0TCvDBgXuBeItI6rKV9MAHsAXoKs6otYNgRq88DvWNyoBTW/wYOaVhL8i1gV6f0HFPR7w4Irug4+6vWp83feecdVrHhB1KhRw9FGlUcdsQyPht8dpQBcuao8dezWrZtrm5LiIm7Sqh3qiKJId9MPpR380RD8TpXhdmRet27d2t4ooqSCRsHtXq6xqWVjzLhAy8I1nhECmAFspMVEvAdTHoDmfgeGU7KD2gkKLrNO9T2tKA1Vf2N9xGtKyU4dURAmFxAW6/6mhPIBawDZlLw58q6ZMMEZ0CkltDW1tAFKLBN01j0WUPTq7w1AtEgB5OSQSe/evQXlpJozWHcDtPuReAfcdtttdtmqDv348ssvu74TUOzpymk9jzrPkSNHgIdgOO3meXGL94MHRXIqFs3gnpHw2GNsgIJbyUo/oqQIJeElqM8NvQx1jjIr1Ply8OBBi+JP5eWIwob/+lgkrM3NOCp63azBYhV/CWXJnXfeacuf9/CyZf4FL8XIx/TWZY0YC+VDLMYmJZb5d7dvHTQeAPaLNWB6fZ/+MuTeByyQmd+mVq4aMSUM1vQA1gqYBfRb+dkXvvB4L+30oW1dbAKl1Ecg3fV9+rkOwYktW2T8YyUdYLNeBv2e3aixXDwZnAfatXDtIoqPAZmz2fUAIA/NmVv+nReZkZRWdMSnGwYNtsYWGfEZ9XDBsMdj7U8/S//b7rT7FSe7DILF/sK3QvN0nNfi5aAKFwDo0fmLyJF160Lu68aBgx0KIvo38uECIecP+8YrV2TUIwXt+a3PIc4Z77FFi/sKouttHPfY43bdKGFQcFzxkV9+8rMVbaUW44HXAwGfU0JKSYD9klULpNJLJWzgHHCW4KI1Wj0pW3ZtDCquGX/8alGzqDwvvFNNTp05aeVZu3mlRZ9SuGYu6fT9m3L8ZIJnzqXLl+Tdr191WMjD4165RQnZsHVN0DrVj0eOH5JZ/7UwAAAgAElEQVQW79eTIjUTAG0oYhq+UUFOng6fSgpe+MZvVbHLg2+++iulXemAVBtCOU6dP15KNczrAN0VAA4n/bZd3vEu1m5aJc+8UNgxNpasa+SUck2LyOqNoXtPhtJW/Z5DRw/K21+8bI8vsqUt4dAe6eVd7ecxAewBrFlU6otmrF7YWDRp0sTiT9V/i2SjkpIHDrAKizC9j2xosSb2M+FWjauvXo9+jnU7Vt1uCasz09VWz4siIFrwknlgKm6ow0uJ4NZOv6+xuTOpgNjQhWspCcAPt6suM/O8UqVKwuZVJeaFaRlr5jG/wzWclt2fAdDNPgMmxQoMw/vHzeuDNkANEMvAlmoepJUj8xkrVXP8ADHCTevXr7fiZDAfAAAj9eoJt97UeD/vVRPsAyhCGZmeIpMAwTp1qhvmNP/ZvBOgONODSqKMh7IsNSWox8wArn379vWlC8gCUN18D6jvUN5s27bNtS7+R1kPqHvNI2MCJV80CWU33mtm2ax/khP4nD17tqNN4XhhIreff/5ZoBky+6W+45nnxV2vyxMLcd37QuU3j1CfheKVwVrKDOBMWdAGxiIhi65du7rKIVeuXL7xybu1HeW0LieCIoe7lnQrV13j2eLdrtfBGjJdIa4kFP5x09Dh0vdmeK/j+LUBNQfcnk1m1atvgfMEmQSc4zPhyafCAkzN1pzes0fGalzz1DW7YWNfQMW1P/UQAnuaIKn1/ZqbZGbdBnLprDsXM7ztWHjTRzM/10YXKiaHfYiTcOCvv6zgqwC31IPCYuCdOWTrWH/3wqbcg30/tHq1FXQ4rk0ZpH+mO2VviPRocMIvfvsd6X+rCdbH0xD95ybB8yGxdPHUKSEGAfPBlH/C9wzyy7U3y/TqNeXCydDAw61jxgUA9lAAwbUfqzSzTn3XPtA3nrNtE2Lz3j+06m8ZePvdlgwt6/fb75YDf/qnLGWMUJiouYtCYHL5ikJchpSQUgpgv3XXJstKG4AeIFgByQQXHTV9sCMIqpvcVvzzpwN0J3+7z1+S97q9ZgH+RWveY/HCP/d2FTl87IBdxPqta+TZZkVtOhzyYWFf5rl8snztYvu+YCdnz5+Vbv06C8Fu7bbXuU+wsv9xUNew/2fPnD0tX/b+0OaxfzQeoJ69KDoapaV//y6lGz1it1G1FdkMnhicI3/zzvVS+7WnnXEFat9reRZ81/8zQfERq0Rg3CotHhcV2Bd51GtbLqIYAbFqY2oqNyaAPQtok9dRX3Cqc6yH3333XcESO60lLMpUPzlChWK62EfbZyz22ZDo9ahzLLRnzJjhWQUb1U8++cQ1L5u3li1bhrTZ86xARACW3CzboI5JroSVO/yqSk4c4dXHtTmcxEYYWgG9HP28ePHirt4JW7ZsCQpu6GXkyZNHVq9eHU6zUt29WKPpfeacuetXQEQ3gZQrVy6gTrxJ4MJNT6FLACAMrmB9/Ajy56Uk9CoZK1coxABI+UCngPdQenKXADQJpucSXilp8X/UXQL+X4XfGlozfS6b5xgdEDw+tYH1SItn7N5773X0D6Dcj9goWAF7WXkDNo4Z485fSrsAHqFyMmXNd+QdLGBqqLOA9xQBmc06Xn/99WQF7HmOS5QoYbeL/obiJYMRAOvLxKzikT0g+8iRI11FRWBUqGSgzjFl4/Wd93Pnzp1dy1MXmVNugP2UKf5Qgah69CMKN7PNeMx89tlnYW+69XKDnWNIUb16dUe9eLL4Cabz7Oj9Yo7EOuBssD6nhd+OrF1rWX3rYCmAn6KBAaD75ZoMMqZYcTlixNwIt/8XT560gpIqChbqGJk3f1B+81Dr2DpugoPaRwd6h+S4X05s3epZ1PmjRy2e9YR2xQHOyAElAMCv+EAXZgL2yHZw1lyyY2Jk9F+eHQrjhysXL8r0GnUseh5LafOfjLKgdZtES/h3wQIZXaCo9PpfRtvqOkHmCXEDeme4VX59uryc2OIu/9Xf/yjD7n1Qev73ZlegWy/TmqP/vVlG5s0nh1atSrSNxF3AO0KVQX6oj/wYS6/K/+z0sU1Lo+q1jtfcJAvbtfNlrrvVvaTDB1ZwXsaQeTzl2Uq+gukHlv0lQ3M9GA/Yx1FELXjVP7oztz6Fcy0lAPbnLpyTd79uLQQ9VTQrgMmFqmeXt79oKQePuBuM6v3cvW+HlGmcXwBzyUs5fLDGLlwjp8WJ37JjA/ln6xqLCeHU6RMyYfZIada+hg0EKwCbI+Bwqw8bycw/Jsue/buC/h9DiDhr4WTJX/UuBxgO5cwTDfJKu8+bW3z4APGhpukLJglAuuoH3PMoBaJJeCmgiHD0s2YuK+DuCc3rwK2OXfu2S/P36liyVPlp36sfNZbE8rqVF861uUtmOGRLPIOv+nwUThHp92oSiAlgT/kE2cQ6WF9s6udYE7EYTU6XZE0Ovp9+8cUXjo0Qm6e33vI30AJWa24B21jUQ9cSzLqKTQWbC31M1DmbyHABbDcBYq1sUgNRh9cG0q0Mv68x3+AzVX3liDIl3PgCKEv0oHGqPMBmeOzh9nZLyH3gwIFBqYxwPycQayyCpLm1KTmv6XEAlAzz5s0bMxd2+tqqVSuHRSHjmFqCRybnWJl1Y0lYqFAhx7P00ksvhU1nBABq8ofHEtwx++HHdygXgr1v/ahDlbF3794Ay1rikfgBvqo6rrYj72W4p93e6byXsPTGazBcZVRKkiPgt3rHckTps3v37qibCHBpvgdUPQQQT4zejPWAul8/osTzw9MKShw3Kjq/wdVIBImFNmtD1W/amRh9C15IAOcqT7Aja0EvCkI8LILl9fqtWbNmQbtKIPKsWbM6ysZDxW9KSL0R0O2YigeMRWJJJUhMC90zAaWVn7GGMKrh+dHHgTr8eCZ02V1151euCMBbr/9lssA4QGT90y/THTKv5Sty9kCCNWc0MtowcLD8pFmy970pixz38DgKp559ixdbATEJUKo+9ANalo2DhgQt6tL58xZ3+4//d70jL9b1cxq/4BvAu/f336X/LXdadQDi0r4RefLL0Q3rg7Yv1j9uHjlKBmbJZrXLatODjwRVcNCexe07WO0HHEZOXh8A84G3Z3f1UMDS/dcy5eT7RMowy6bO/X8mzssNBZIO2ANmYxUey4S3RK9r4wK/KsAemRJgOFbBhc/s22fFCqAelEz9M90h6/v197Wb637pJQTLRelhWfDfmlU2+FxHNA1OCYD9ui2rpWyTApKvSlaLh54ApgWqZZNSDfLI4pWh0V5BPfPxj28LfOpY6QO4c+Tz5HOPSPuvWsnBownv4uFT+kuhGjkspQD1uX0KV89hKRGef7uaAPAHS5t2rJeqL5eygGVnWdntOpavDT1uARbtVVuWtAFyymzWoZYcO3EkWDOC/nbs5BFLFkVrxckHRcaTjR6RFf8sDZqPHw8c3mfFEchf5a542eaUai+XknWb/040bzQ3oOT4pPs71rgqRUHJBnnkrxC9H6KpO63mjRlgj8Bwny1btqxl2QXPI1Y3gHFsHLE0Tstp7NixARbYWHb7mdgIP/vssxaHJhskPlDkQMUSCvc8MQUYF5WXIwoAKCn8SGzk3SzvkhuIXrVqlc0RrzZD4QKEc+bMkYIFC1rW8sgQTweoVuDFDcUlmvqw1oRKgPzQ9GCdjGV+r169rhrwzc0yrl69ejELqobCBnoEgAw19lAbpVPhhP/EA/YR0E/JkSPjGW7Cml4HW7B0XrlyZbjFJMv9WLUDOOJp8M033ySJxS5BHU1gGVqLWIJTySLcJK6UsWzXrp3g2cT7+K677hI8b55++mkhWHVqTyYwDogKVU60iXcqAXj1tQTnKJE2bgzOX0rdAJ96XtYh8HZDGeNHArCnLfp7inPqTe6E8o35pdoGAMzaIljC6+6ZZ56xAunCUx/sw/rQrZ94wfKuDpbX7TeMEVAyBEsoYE3vw2LFikUVhyBYffw2fvx4OyYWsmT+RELNllg96ne1jlDjxvsYBRBy9SuhgIViR9XBkYDuoawv/WpDWi0HIHHhG+1kRN58AmXIkLvvkxG588rkchVk46Dg8ztcmWCpi1V5nBX/TdLn+lsTBdRDqePUrl0y4qF8Fr3L4Gz3WMeBd+WQuc1e8qTC0csFkOyfNYedf1C2nPJr2fJyfLN/e/PdM2dL7+tvsfsOED2+eClfLaH1PoV6Ds/5jJp1rHYByNLGJe99EDT7392+kwkln4z/lJEJJd0/40o+YY0BAW7NdPH0aUtZNLbkE575zXLHlywtM+rUk9OJKNevXLokq77+Jt5zIN7i/5qbQ+bUN9sa6vftk36V3hpg3+P/bpQB0NP8FTtu7OWfdpHeGTLHj9+NAtf8pXPu9E+h9sO8b36Ll4W+oPRg3o58uKAc9/CaMPMmxffJ88ZJwerZLRCW4K6tOjWSo8cD51ws27J55wYr4OlL79eRlh/Utz7NOtSUr/p8KBcvhU4dtH33FmnXpblUe6WUxUFf89Uy0urD52TqvPFy+XJCORjWTJw9Uppr9al67WPHuHY071Bbeo741jMYq5LLiVPHrPtot11GfF/o11tdW8jOf929ZVQZ+vHixQvy+qdNBaUBQDVBYZ9+vqCMnx3+3liVe/nKZWn4ZkWp9FJxqfxScSnXtLD0H/tTon0j/4nTJ+Sbfp/IMy8UsvKiTBgzPbhCV9UbzXHb7s1S1vKciAuQixwatqsUUpujqTct540pYI/gsDoEIJ02bZr88ccfgvXN1ZDYqJpgNdQrfoMqWC0hW+hv+AAE79ixIyQRY0XP/SovQcX8tILCah2qBn3DgdImuTnZsVAyLf+xZOLPIJxEOQsXLpSpU6dadCrhgr5QBi1atMgaAyzEUGIlJ6duOH33417kjYJDnx+cQ5Hg58ZXbysb+yxZsth1Mh/nzZun35J+HqIEAG50xQcgTSR0IVjl63MAwDSlWxEyPwn4CA+2kgH0E0lhZQ+gp8uLc+jWYvXMhDgd0sxtKLt5H6PQjmQ+p1RBAA4T2FyfO8OGDQv7f8+tf9CJ8T+o1hKsK1j3hZIwPNDXMKxD+F/0KxEPw4z1g1LQD+8CP9o4adIkR8DjMmXKJGpl70e9sSqD/1hz3Yd3Srjro1DbxzjqNHdQbQKexzKhTKIe9SyhGOH58jPhQasrsqkL2aYn/yRwcudO2TN3ruyePUeOrI1NDJizBw/KzHoNE4DU/9wkvz3fNOpOQO2ye85vsnPGTPuzY8o0OXfoUEhln9qzW3ZMmWrn3TVjVtQUQGbFG4cMs8BOi9oFDvtrMshvLwT30DHLiNX3fX8slEGWIiUOkB1+f145lQgoHqu2+FEuyoD5LVtZ8laW7hy3QG8Uo3Rm/wGZVKacIx5Er+szydqfe8aMCgfPFwIFx9E5ZZABt2WTXbP8Ue4rMRH7YWKpsvYz2+OaG2V6DX8NLlVdkR7hRX+i4cMWKFqqQV55u2tLOXYiPGrfSOuORT72L2s2LpdFK+bJhm1rU/V+Ztr8Cda4AFI/Vuc+y+ugwzevyqUwlBi6jMFKsEz/46/f4j7L54YcFBeO+q07N8qCZbOtvItWzvdlza+3z+184ISelkJJWdcT0+DX38bIFQkPZ3Mr+2q9FnPA/moVLC8fk2cYAD9UMD0tyM2Nm5aAWf/f3nmHR1V8b/yfgAWS0HsvIh0VFPgiFuzYQOwKKipYsKNYENCfClZAVNJJgITeew099N4CoQQIvSUhhYSc3/PO5t7crdkku8nu5p3n2Wd375075TNzb7LvnDkH1kklmVD/2LFj9R9b+CEEi6ziENtKst+eVjeEGssYDBBr7bkTKmr7EdjUGHAYrpAgljAVjgB28miCBd4//vjjQln/QYBGAEXtBbHPk8VnCJM9e/a0Ej+xCOjuZwi4/P7772bcwZ7xFwo3h0vTVVgMtgxW/OKLL/p87AO4ftEW1bTn1R9//OFy44nCziU8M9544w39nkZbEV/AWxMCNRtdxcCdFFzfuSPB6AHPYm1c8f7DDz+4oyq9zCNHjqhdOFqdWKh2JhivXoCTH7BjyzhvsUvEXf8bOdkkZiskgYORUcpaV3OvMalJC6eF9UJWWeKXpV+8KMteeV0XPdH38bUauG1hpDAd3h8Spvt7hxX1mvcHSObVq4UpqsSvwc6IiKomFy4Q6uEmac793eR6Sopb2pZx+bIsff6lXCt01Gfy877puyFO7fAoTKMQCHbDF18q10SwfIcF/K6/RhamKIfXYFfM+JoNVD3oV0SlWpIwearDa4r75JWUy0rE3bZvo3o/ciK+0IJwcbfd1+vD7gL48Nf8+sPND6zNdxxwXVBkT2Z4POmIdH+nk95/xDgYMKy3pKQ6dk/kyX3yhLZRsHfjKMAnrtE/KYIputJyzI1NL3LR8MMKFzHajxq8I0AXAq15QoLAVa9ePb19cO2R31Z0T2i3L7Vh0qRJZj/sESQOFp/uEGsRqA+udozzcciQIb6Es1j7gt0zRqtVCDS+bv23b98+5cccrlKM80j7DPdvcL/hzgTR1TKAJlyIFDQGhzvbyLI9l4BlzJDAwECBJa+vJtwvlrvp4Cfe03Z6Qog1xnzCuCDWjbcl+NeH8YP2TMQ7XNC5K77G0KFDzf6HePbZZ90asB5GBljk0vqH/1mwQOCO/1kQx0irB+8I9uvqHbreNr+8tb0Xdu2SiXUb6wIgfG4fnmQ7GLS39tGy3adWxkpExRpKyDUJyAGy8/e/LLOV6PfsjAxZpVyfwBd6gIQEVhUEhYV7GW9LO3/7U7euV37dK9eUU27cPRz39bcSfHMFfXyx4DGz4/8k41LhfXU7Yg4r4/1hERJWsbqqE/VhQeh6aqqjywp17kBEpPxXNkDtHMC8gOspdy18FKqBvMjjCWzZu0H5mddEe/joHzLqM7ma4r27IJyFPmzMQBV4V7Oux4JF7KYlxWLZ72wbvTEfBXs3jhp8xhq3BkPUmjZtmhtr9Iyi8YcVvoCNixUIZLtrl3uDXBSk91hQgN9p7QcRLJlgfchUPAQQxwCBpzX+eP/pp5/c8oMUW/H79+9v5vf7ueee83nLUneOJFywGLfr+/LuIbjwgrUj4k0Y56vlZ7hlcLdgD2tc+FU31g2L1pJ2M+bOucayXUcArqYs/WIHBQX55D/S+D8Egq4xzgYW6bds8UwrJ8QTMP5NxELc2rVrXTf4bi4J1u5PP/202f99EJ3d5Xron3/+MQtWjsDH7vwfE89euPbR/q/FO/6vgIjv6oS5gBgT2nMerqzWrFnj6mpYXjERuJGVJQuffDpPUC0TIEtefLmYai/+auBqaFaX+3VLaIiesW/3k6y0tOJvTD41Xks6LQuefEq1FRbb4RWryYGwcK8S7ZPWrJXIanV0gTnk1kqyLzik8H/Xc3IEfv7xEhuuYo/OmiNh/lVzx9cUTDi68e1yarVzgUbzGRKr0zk5N9QCV0TlmrnjVF7mPNBNUp10/2tVoIMDcGG1/LU++s4QBHHeOOhrB1fwFAlYE8Ai/ujI4cqPPYRrCPdwkbNw9SzxZa8wsZuXykN97tCt6+98tp78Gvq9pGVcs4bEIwUiQMG+QLgKlhlWXJYizy+//FL4P6IFq77Ecv/4449mPlkh5jnrz7Y4Gw1fuUbREf7MS5PLouJkbazL0poQvmDhx7woYid+NEO0hGgAoUZL+D5w4ED9RzZ+ACNYMLeWa4QK/g4rP6P1Hxa7PvjgAzPujkrFOOM+g8U6XAlAiIDl75w5c1waQ8NRG5w9h8CFcNOkBXmFRWWbNm3UfEWAbk1QwTuCFxdlDjvTJrhjuOmmm8zqhXDlDgtPZ9rDPN5FAM9GuKUzutqAgO8uC+iSpAPXUXB7pt2jjRs3ltmzZzv9nCqJtuN5iODzWpthrT516lS3u9oqal8hZiMejdEVDmI2FWXnD+Yk/qZjwd34fMPfH+w+qFixos4JOxLc5XYHbE6dOiXYMav1D89giPXuet4juKy2MIC5APeaMDJh8l4C8VHjZVzlWso6eKxfeYlp2kLObtzkvR2y03JYIs9/5AnVTwj1QbdUlFXv9Be4UPHUlHL8uCzq0UvgqxxjE1a+imz/ZYRXWFVj90ZM0+bKPQwWHMLKVxa4+lFieyGAwxf+it5vyORmLSW6cTO1K+JG7o4DLDwlzJgpE2o3VC53tJ0TkVXryMFx422K+4VogtklcIOze9TfEl6hur6oguDQVw4dMsvnqi+nVq2WiEp5roUiq9SSlGPHXFU8yylFBJJTr8qHw16XDs811APQPvJWe9m4y3sMMQoyXDsPbJFeA7rp1vXte9aXlz59VBKTfHcXb0H4FDUvBfuiEszneks/9rCGPHv2bD5Xeffp9957T/8h1aVLF4mLi/PIDiHoLtqn/TjGj7Dvv//eI9vqS41CoF5N7MQP7W+++abIP3zffPNNJSLjHT+ukSAKwyJOG1+8N2nSxGMtLL1ljOG2qFKlSjpXxCHAmDqbsPPIOCbGzxC9PSlhUUET/eDiKyIiQsXggPA5fPhws34g8KC7BByNSWRkpJmQg2dWQdhr5fC99BI4fPiwwBpZu++wGOWLsTywy08TWNu3b+81wcUPHjwoDzzwgL5IiAXtzz77THDcuBjtSTP4woUL+t9aCM3PPPNMkYOw/vrrrwLRHzuXNB/xEO9HjBgh+L9Bm794BsIQxh0JCwYIiGx0V1S1alXlBsddsZiwKNu0aVO9f1gkxqIsk3cTgHX57PseFLgrUUK2X4Cs++Rzt4icJUkKFspTWrZVFsoh/pVl4zffeYXwnX7hgix94SUJKV9Ztxxf/NwLcnbLFskpZLDI4hiHxIWLlL91uIiJqllfdv7+Z5GqxfhFVqmtu52Z99Bjcn77dkk+elR2DP9VCeeYv5pYH+5fRXb8+nuR6rR1MRYcLmzfIctf6y3BZSqYxuTWirLomR6SduaMrUuKfCwrPU3WfDBAt67H4s2ajz722L+7Re4wC3A7gYTEg9Lzg/vlrh4NlGgPS/un+3WRXQe3ur3u4qzgeFKCvPpZd2mf288OzzWSx/veLfNipxdnM3y6Lgr2bh7ev/76S//hhR8Y2JKN7a6+nOCnHv7C4euzKBZWxcEIgS6NVvatWrWi9XUxgIfoCzdJ4F/UBP/0muspbB0fPHiwTJw40cr1Ayzy3GmFV9R+eMP1sHqED2hNLIE4M2DAAKebDsEJVq6dO3eWW2+9VS8H5UFcQ+BaRwn1Y9cEdlS48mVPaE9LS1PCPPzGw52IMYWGhpq1vzgE+9dff93MOvrBBx+UxMREY7P4mQTyJYCg60YL3ocfftjjrbjz7ZRFBoi7WMCFmxYsUnhTwv9QX375pUAc1p61cJeDXQMQr2HR7mkpISFB8DyCJTqe0UVJEMOxaKH1He4KsahkuQCPOYwddEYL/KLUq12LZz2EetRrvE/wd2vGjBlaNre8Dxo0yGwXFThccpNfaLd0gIXaJZAwdZpA4ETATAisk5u3kdQTJ+zm99YTSWvXyswuXWXzkGFetSABa+4dv/wqk5q1VuPzj185QbyBbT/9IqfXrXNbMNWijvPukX/L7HsflIRpRX82nd24Uc1PCPJ4QbSe2q6DTGvXIVfI1sR6fwkuEygbBn5Z1OabXY+4Amfi4mTHiN8ksnpdwRjgXolp0lw2D/tBMq9cMcvvyi/nNm+WiCqmXTBYlBhXtbZcOnDAlVWwrFJIYMue9fLSJ48ZRPsm0vPDB2T5hoWSkZnu9UQ2714nHwx9Tdr3qK8WJdr3bKjE+jnLPStQs7eDpmDv5hGEWxzj1l38AIGY6OsJPyg91RrMyB4C4PPPP6+LYPhx1rdvX69ou7Ef3vjZVX638QO6XLly+o977Ue+8R0LZXC5wlQ0AggsC4s/jW27du0KtWMI2/v79etnJobAan/y5Ml2G4hnaZ8+fZQohACvrnzBgrWgKSQkROcAHu4W7CGCWQZ0xIKwuyw9C8qD+b2HAHaXGX3Zw4obcRp8LeH/EFeLucXJCLsTsQMNO8O0Zy7ckXmqe5SiCvUaW+yOM7oG0vpufMfOEMxZdzz/sAvMuKCMReqwsDDlnkdrozvesaPLGMwdfxNXu8kvtDvazzLzJwB3I7Cy10T7zUN/9FghOP/e2M+R7YH+6u231vzM1cOHZddfo2RGh85KLB7lV04m395aUo4dN8/oQd9cJWTDih5zUxPsNdEewr12LAhugwKryY4Rvwvc5LgyXTt1SqbfdY+AOcR6LBSgnstuFs6xA2b+I4+r8UY/sUiw95//Cu1ayJVMWJb3E0g6e0Le/qaX3NmjvvLvDgv0Ti80k69+e0/gSsYb0/6EXfJL0LfSrXc7QVBd+Oq/49m68voXT8rmXeu8sUse3WYK9sUwPNjSa/yhAX/drvphUwzN9/kqdu/eLTVq1NDHCNutN23yPd+SvjqQ3377rUBwMt5jxs/wQb5y5Upf7X6x9QsiSteuXXXOEEymTy/8djeIzXBnoI0V4n0ccPBPOc7VqVNHz69d54p3uMwoaCpuwR4Wn0ZXEHDVw3ld0FFjfo3AhAkTzIwJYMG9datvbdPV+urN79j9A6v60aNHy5NPPpnvLiRv7qvW9nXr1pm5XbN8xmMnHXbnwZ+9O9L+/ftVTBIsKmNHWHHsYkpOTpZPP/1U//uGOBOff/65O7rHMkuQwOWDB2V83Ua6W5zImnUliQGFS3BE7Fd9af9+OTQxWhY89bSsGfCRZFy8aD+zj5xZ0utFK8FeE+o1ITv01kpKzM7OzHR5rzOvXpUNX34l8x57Qg5GRsnFPXtdXoetAvf+FyQhN1VQixIQ6xd2f0bSz56zlZXHSKBQBI6dSpBfxn4nnZ5vpvy8392rsXTo2VB6fdhNho0ZKFv2bPAKY9Hd8dvll+Bv5eVPH5N7nm8i6AcC6sLdz8//fS2Hju0vFB9e5JgABXvHfFxydvz48fo/4fjhUbduXYGfSibPIfDvv+fnKWQAACAASURBVP+ajRGsZTVf6J7TSrbEFoFHHnnEbOyMP+7hlsmRCGyrPB6zJoAFRrg6MAarRNC9rCJY18DHtLE8+NV2VF58fLyZpalxnIv6Ge6ZCpqKW7B///33dZ/c6C8WGeAOiokECkMA1ue4hzWXH7gXe/ToIXADxeSZBM6dOydwl+PradKkSWZ/G4zPd/iTh2s7d+6cQNnY0QURvTgSdqOOGzfObKdghw4dBLEBmHyPwIFxkWZW9jM73SvXkpJ8r6M+0qP0c+eUWF/YQK7eggH9i254W65gDyt78xfcxMzs1EWOzprjcst6jRGehZmXL0vameKL9Yc4BRPqNVH9xU6CcdXqSBJ3NmlDwncXEkhNS5G1W1bIG4N6KNG+4/NNlN/3Dj0bycAR+E3tHiMEF3ZBho7+TO7qUV+1G0I9XOA89W5nWbZ+gaB/TO4hQMHePVzNSoU/TEvLUHf7wTRrAL/kSwCucT788ENdEIM/7bfffpu+Q/MlV/IZINjD8hhWd/Blj4C2vXv3liVLlig/5yXfQu9uASw84TvZuIsB7mgsfboXpJf4pxwBuDUhBmLhG2+84bAIiFWffPKJPPvss9KrVy+XvZ577jkVRNBh5TZOFqdgD/dRd955pxmvgsQOsNF8HiIB5eID/uu1+xDi/R9//OFw4YzYSMDdBBDcG3/L8Tcdf9ux+6p79+5ql4EvLlhg95TRdWatWrX0QLvuZs3yi58Agltu/HawjL0pMNfS3l+WvvCywLqYiQRKikB2erqsere/zLirk/IfH1GppvLhP6F2I5n7wMOyLzhMrvvYHE1OSJAZd3fKDQbtL2Hlq8jmoT/QFU5JTcJSUu/l5EuyYNVM+eT/3pRufdop6/TgyaPcaojgKrTh08fI/a+3Va5w+g95RWYtnyxnL3DB2VV87ZVDwd4eGRcehyXbV199pf8oxo9jCE4QiZk8hwB+CMKfPcR6TcBAkDMIhUyeSwDi79mzZ+XgwYOF8qfuuT0r+ZbBVzIEPM0KF/cFfF8XddcCgujBql27zxD4GbtcvCkVp2CPXVrwZ6zxwi6tVatWeRMuttVDCcDV1T333KPPLdzrw4cP52Knh45XaWkW4iwcOnRIMD/daU1fkjzRrwULFpgFF65evbosXLiwJJvFuouBANyrrH7/Qxlbxl+J9nA3suzV3gJrbiYSKGkCCP56OT5eko8elRvZ2SXdHLfUf377dpn1v64qsC7iSoTcUknWff6F5BRh57BbGspCfZoAXMiETh0tR08e9op+Hj1xWCbOCRX4sGcqPgIU7IuJ9caNG5W1kCa4IKBVQkJCMdXOapwlAOEXgS21ccJ7z549Ze/e4vGj52w7mY8E3E3g2LFjyoeu0W1NmzZtXHIvILhe/fr19fvM399ftmzxrsA7xSXYQ9R5+eWXdVYYj2eeecbdw8/ySxEBCKPGBTT83fv444/l6NGjpYgCu0oCxUcAi9ZBQUFmlvXVqlWjWF98Q1DiNWVcuiRLnn9ZifamoJ4BsuDxp+Tctm0l3jY2gAR8lQCMvJJWrpLJrdqo4LK498L8q8r6gV95hQ9xXx0X9osESMA+AQr29tm49MzVq1elb9++uuiCH8Q//fSTS+tgYa4hgB9Sb731ltxyyy36eLVu3VqCg4Npwe0axCzFgwnAb++UKVMEbm+MC1dwSbBhwwaXtHzFihVmAWdr167tdb6zi0uwh2japEkTfSywuDF37lyXjAMLIQGNwOHDh80WhnDv4xkA932MlaBR4jsJFI0AAuUiWDj+xzTu5sRiOHz3M5UuAmmnT8vaAR9LWGAVJR4i4GVMsxYSHzVBUk+cKF0w2FsScDOBy/v3y/YRv8rE+k3V/favXzkZX7uhbPtlhOT46E4CNyNl8SRAAsVAgIJ9MUDWqli9erWZlT3cGhTFD7RWLt9dTwDBLxHY7NFHH9WFMggYbdu2lZ07d7q+QpZIAh5AAIGWn3rqKSshITo62mUB+GDdMnr0aLP76umnn/aA3hesCcUl2MNVkHGXA8YHDJlIwNUEEK8C7pfatWun359wkYM4IbS2dzVtllfaCGAxfPDgwVK+fHn9/qpSpYpyQQXXP0yll8DJFStl4ZPP6CIiXORMatWW1vald0qw5y4msD98nEy6raV+j4WWqyKr3/+A95iLObM4EiAB1xOgYO96pnZLhC/7xx9/XP9HHT+ER4wYYTc/T5Q8gaSkJImJiZGuXbuqccMiCwX7kh8XtsA9BE6fPi0PPPCAmustW7aUUaNGKT/CrqwNAVRhXWi03v/555/zrQL+9GHti50uYWFhLnuFhoaqAMX5NsAiQ3EI9hBxtGcPeN10002yZs0ai5bwKwm4lsCRI0dkzJgxgp1lmHctWrRgLBfXImZppZAArOu/++47dU/BV/3AgQNl+/btkk3LzlI4G6y7nHb6jCRMmSbzHn5MiYqh5SrLpX37rDPyCAmQQIEJHJ48RcWLCLm5gizu+bycWhkr15OTC1wOLyABEiCB4iZAwb6YicPVBP5R18Qq/BA+efJkMbeC1RWUANzkIA7BnDlzBO6NmEjAFwlo2/WXL1+u3GC4Q0iAGGi04MWzEC5y8ktw2YEdLoj/Ua5cOZe+Hn744fyqtzpfHIL92LFjzQL+Ir4Gdv8wkYC7CSB2AlzhYKcZ/m9hIgESKDqB/fv3y7Rp0+TEiRMCIx4mErAkkHn5siStXSeHYyZLVkqK5Wl+JwESKASBzORk2R8cKpf275frVynUFwIhLyEBEighAhTsixk8XBm8+eabuosDPz8/ZWWDH8dMJEACJODrBBBcFs89bdES4vu5c+fy7fbBgwelQYMG+nXa9a5479ixY771W2Zwt2CPhY3bbrtN72/lypUFwXqZSKC4CdAFU3ETZ30kQAIkQAIkQAIkQAIkQAKlnQAF+xKYARCemjdvrgsxDRs2lFWrVpVAS1glCZAACRQfAQh/sNY1iuydO3eW1NTUfBsBH9r33Xef1KlTR+CaylUvlNerV69867fM4E7BHpwGDRqkc4L7NLgnwg4IJhIgARIgARIgARIgARIgARIgARIgAd8mQMG+hMYXYo/RyhRBF9PT00uoNayWBEiABNxPAILzsGHDdCEawv2HH34oCHappW3btgl86VsmuA/YsGGDLFq0SPmcX7JkiUveFy9eLDt27LCszuF3COpBQUFm/UCAamM/HBaQz0n4qYfrH21hA7FP4J6EiQRIgARIgARIgARIgARIgARIgARIwPcJULAvwTH+9ttvdUGmbNmyAn/FdI1TggPCqkmABNxKAIFj+/btqz/3IEj/9ttvep14BtaoUUM6dOgg8FnvqQkLD19//bVZP1q1auWS5zdc4SDgrybWYwfWgQMHPBUF20UCJEACJEACJEACJEACJEACJEACJOBiAhTsXQy0IMVduHBBnnjiCV2YQTDadevWFaQI5iUBEiABryEA1zdvvPGG/syDKN29e3dlKf/VV18J/LTjWL169QTB+Tw1wQK+fv36Zv24+eabZerUqUVqMiz0X3rpJb3cwMBA+eeff4pUJi8mARIgARIgARIgARIgARIgARIgARLwLgIU7Et4vCBK3X333bpAA9/2nixUlTAuVk8CJODFBCBIDx06VH/eQZwvU6aMEurxron1iOmRlZXlET09ceKEjBgxQr777jvp16+f3H///VKtWjWzPqDdeFWsWFG6du0q/fv3lyFDhsgvv/wi69evd8ryHm52PvvsM91V2i233CKDBw8WuAJiIgESIAESIAESIAESIAESIAESIAESKD0EKNh7wFjDZzNcQGiiT/v27T3aHYQHIGMTSIAEvJTApk2bpEqVKvrzTnvuQbBHAFpPC8AdGxtr1Vatzc68Q+jPb/EBLnbgE19btLjpppuUeJ/fdV46BdhsEiABEiABEiABEiABEiABEiABEiABBwQo2DuAU5yntm/fLvCBrAlA7dq1k61btxZnE1gXCZAACbidAOJ0wHVM69atlVuZRo0ayR133CE//vijwE2YpyUEpO3SpYt07NixUK+IiAiHFvYpKSkyfPhwgUsdPP/LlSsnAwcOdHiNpzFie0iABEiABEiABEiABEiABEiABEiABFxHgIK961gWuSS4ToC7BU20b9KkiURHRwsCNTKRAAmQgC8RuHjxosTFxQkEcYjWpTHFx8fLRx99pD/zEXAX4j3c4zCRAAmQAAmQAAmQAAmQAAmQAAmQAAmUTgIU7D1s3M+fP6/8JQcEBCgRB0EH4TKHiQRIgARIwLcI9O3bVxfrYcW/ceNG3+oge0MCJEACJEACJEACJEACJEACJEACJFBgAhTsC4zM/RdkZ2fLkiVL5IEHHpC2bdvK6dOn3V8payABEiABEihWAvBbj0C1cAd0+PDhYq2blZEACZAACZAACZAACZAACZAACZAACXgmAQr2njkuqlUnT56UgwcPenAL2TQSIAESIIHCEoC7s507d0pmZmZhi+B1JEACJEACJEACThLISkmVKa3bSWzffk5ewWwkQALeQCD2rXdkaps7JIuuhL1huNhGEiABJwlQsHcSFLORAAmQAAmQAAmQAAmQAAmQAAl4J4HryckSXLaCzL73Qe/sAFtNAiRgk8CszvdJyC2VJCs11eZ5HiQBEiABbyRAwd4bR41tJgESIAESIAESIAESIAESIAEScJrA9ZQUGV+rgczseC8tcZ2mxowk4NkEYFU/454uMqFOI97Xnj1UbB0JkEABCVCwLyAwZicBEiABEiABEiABEiABEiABEvAuAkrYa99Rpra+U5KPHPGuxrO1JEACNgkkJyTIlFZ3yMy7O0t2errNPDxIAiRAAt5IgIK9N44a20wCJEACJEACJEACJEACJEACJOA0geyMDFn60isyoW4TObUy1unrmJEESMBzCZxcsVIm1Gksy155TbIZF8pzB4otIwESKDABCvYFRsYLSIAESIAESIAESIAESIAESIAEvIlAzo0bsuuvURJ8cwXZ9edIb2o620oCJGCHwM4//lL39O5RfwvucSYSIAES8BUCFOx9ZSTZDxIgARIgARIgARIgARIgARIgAbsEzsRtlL/9ysmK3m/azcMTJEAC3kNg+et91D19dtNm72k0W0oCJEACThCgYO8EJGYhARIgARIgARIgARIgARIgARLwbgLXTp6U6CbNZdodd0va2bPe3Rm2ngRKOQHcw9PadZDops3lWlJSKafB7pMACfgaAQr2vjai7A8JkAAJkAAJkAAJkAAJkAAJkIAVAQSl3DDwKwkqGyinVqy0Os8DJEAC3kPg1PIV6l6OG/Q1A856z7CxpSRAAk4SoGDvJChmIwESIAESIAESIAESIAESIAES8G4CJ1eulLH+lWXDwC/lBoNUevdgsvWllgDu3Q2ffyFjAypL0qpVpZYDO04CJOC7BCjY++7YsmckQAIkQAIkQAIkQAIkQAIkQAIGAhkXLsjS51+WiFr15fzWrYYz/EgCJOAtBM5t2SIRNevJshdfEdzTTCRAAiTgawQo2PvaiLI/JEACJEACJEACJEACJEACJEACdgmcXLFSggOqyoInnpKsa9fs5uMJEiABzyNwPTVV5j/WXYIDq8qplbGe10C2iARIgARcQICCvQsgsggSIAESIAESIAESIAESIAESIAHvIJCdkSGLe/SSsX7+smf0GO9oNFtJAiSgCOweOVr+8ysvS3o+L7iXmUiABEjAFwlQsPfFUWWfSIAESIAESIAESIAESIAESIAE7BI4v2OHTLq9lYQHVpPExUvs5uMJEiABzyGQuHCRhAdUk8nNW8uFHTs9p2FsCQmQAAm4mAAFexcDZXEkQAIkQAIkQAIkQAIkQAIkQAKeT+DIzFkSVbOeRNVqIImLFktOVpbnN5otJIFSSOBGVpZArI+qWV/G16ovR2fNKYUU2GUSIIHSRICCfWkabfaVBEiABEiABEiABEiABEiABEhAJ3AgYpxEVqujLO13j/pbMi9f1s/xAwmQQMkTyLh8WXaN/FvCA6tKVPW6cjAyquQbxRaQAAmQgJsJULB3M2AWTwIkQAIkQAIkQAIkQAIkQAIk4LkE4idES3SzFvKvXzlZ8cZbkrhgkaQcPy45N7I9t9FsGQn4MIGc7GxJOXZc3YvL+7yp7s3o21vIoegYH+41u0YCJEACeQQo2Oex4CcSIAESIAESIAESIAESIAESIIFSSOBqQoJsHjJMQm6pqAJaTrq9tSx4rLsse+lVWf7aG3wVF4PX35TV/d+XTd8PkePzFsj1lBSXzcarCUfk4LhIiRv0tcT2fVeWv9aH41pc41qAenDPzX+0u+AexCJayK2VZPOwHyQ5IcFlc4EFkQAJkICnE6Bg7+kjxPaRAAmQAAmQAAmQAAmQAAmQAAm4nQD8ZJ9Zt16Jg7M63Sth5avIGL9yMoqvYmXwt185tWgyvlYDmXlPF9kx4ne5npJc6PFPOZ4oq97pL1Nat5OICtWVCDyaY1qsY1qQewj3HO69WZ27ypYfflT3JO5NJhIgARIoTQQo2Jem0WZfSYAESIAESIAESIAESIAESIAEHBK4cf26pJ89J8lHj8rlg/Fy+cABvoqLwf79ciZuo8RHx8iS51+UMP8qElq+iszsdK8krVrtcNwsT2IcD4SPk0lNW0pQGX+JbthM1n8xUAUsPbdtO8e0uMa0oPUcjFf3Xvq5c4IxZCIBEiCB0kiAgn1pHHX2mQRIgARIgARIgARIgARIgARIgAQ8mEB2RoZyg7Lm/Q8kvEINiaxaV/YFhciNzMx8W52VkqLE+aBbKsj4Wg1l39hgybh0SWipnS86ZiABEiABEvAAAhTsPWAQ2AQSIAESIAESIAESIAESIAESIAESIAHbBBKmzZAJ9Rora/udv/0pCEpqL2WlpsraDz9SbnVm3/uAnImLs5eVx0mABEiABEjAIwlQsPfIYWGjSIAESIAESIAESIAESIAESIAESIAENAJwiTOh8W0SVqmmJK227R4n58YN2f7zLxLk5y9zH3xEUo4d0y7nOwmQAAmQAAl4DQEK9l4zVGwoCZAACZAACZAACZAACZAACZAACZReAmfWr5folm0k5vYWcjk+3grE/pAwCS1fWWZ3eUDSkpKszvMACZAACZAACXgDAQr23jBKbCMJkAAJkAAJkAAJkAAJkAAJkAAJlHICsKDfHxah3N2s++gTgZ97LV07lSTT290tof5V5PS6ddphvpMACZAACZCA1xGgYO91Q8YGkwAJkAAJkAAJkAAJkAAJkAAJkEDpJJCVliYzO98nwf6V5fyWLTqEgxGRMqZsgGwZ9qNITo5+nB9IgARIgARIwNsIULD3thFje0mABEiABEiABEiABEiABEiABEigFBM4EDFOwitWlxW931QUUhITZc79D8nklu3kSvyhUkyGXScBEiABEvAFAhTsfWEU2QcSIAESIAESIAESIAESIAESIAESKCUEstPTZVbnrhJeoZqknjwpR2fNkb/9ysmuP0dKDq3rS8ksYDdJgARIwHcJULD33bFlz0iABEiABEiABEiABEiABEiABEjAJwns+PUPiahQQzYNHiqx774n4QHV5JzBRY5PdpqdIgESIAESKBUEKNiXimFmJ0mABEiABEiABEiABEiABEiABEjAdwjA9U1U9boyqUlzGV+vkbK4z7xyxXc6yJ6QAAmQAAmUWgIU7Evt0LPjJEACJEACJEACJEACJEACJEACJOC9BGbf103G+pVXr7UDPvbejrDlJEACJEACJGAgQMHeAIMfSYAESIAESIAESIAESIAESIAESIAEvINA3KBvJMjPXyIq1ZR9wSHe0Wi2kgRIgARIgATyIUDBPh9APE0CJEACJEACJEACJEACJEACJEACJOB5BA7FTFaCfUzj5nJq1WrPayBbRAIkQAIkQAKFIEDBvhDQeAkJkAAJkAAJkAAJkAAJkAAJkAAJkEDJEkCQWbjEmdq2vSQfPVqyjWHtJEACJEACJOAiAhTsXQSSxZAACZAACZAACZAACZAACZAACZAACRQfgWunTinBflanrpJ1LbX4KmZNJEACJEACJOBGAhTs3QiXRZMACZAACZAACZAACZAACZAACZAACbiHQOaVK/K3XzmZfldHkZwc91TCUkmABEiABEigmAlQsC9m4KyOBEiABEiABEiABEiABEiABEiABEig6ARuZGXJ4ZjJcnL5iqIXxhJIgARIgARIwEMIULD3kIFgM0iABEiABEiABEiABEiABEiABEiABEiABEiABEiABEo3AQr2pXv82XsSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEPIUDB3kMGgs0gARIgARIgARIgARIgARIgARIgARIgARIgARIgARIo3QQo2Jfu8WfvSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAEPIQABXsPGQg2gwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIoHQToGBfusefvScBEiABEiABEiABEiABEiABEiABEiABEiABEiABEvAQAhTsPWQg2AwSIAESIAESIAESIAESIAESIAESIAESIAESIAESIIHSTYCCfekef/aeBEiABEiABEiABEiABEiABEiABEiABEiABEiABEjAQwhQsPeQgWAzSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESjcBCvale/zZexIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAQ8hQMHeQwaCzSABEiABEiABEiABEiABEiABEiABEiABEiABEiABEijdBCjYl+7xZ+9JgARIgARIgARIgARIgARIgARIgARIgARIgARIgAQ8hAAFew8ZCDaDBEiABEiABEiABEiABEiABEiABEiABEiABEiABEigdBOgYF+6x5+9JwESIAESIAESIAESIAESIAESIAESIAESIAESIAES8BACFOw9ZCDYDBIgARIgARIgARIgARIgARIgARIgARIgARIgARIggdJNgIJ96R5/9p4ESIAESIAESIAESIAESIAESIAECk0gOyNDrp1KktTEREk9nigZly5Jzo0bhS6PF3ongevJyZJ29qyknT4t6efPS052tss6kpOVLennzulzDHVg3jGRAAmQgK8SoGDvqyPLfpEACZAACZAACZAACZAACZAACZCAmwkcjJog0+/qKDFNW6jX4l4vSkpioptrZfGeRABi+tqPPpG5Dz4ss/53n8x7/AlJXLLUZQs3p9evlwVPPCWTbjPNsRmd7pVD0TGehIBtIQESIAGXEqBg71KcLIwESIAESIAESIAESIAESIAESIAESg+B5a/1lrF+5SXIz1+C/MrLv37l5MzGjT4B4EZWlpzfvl1OrVgpJ5ctl4u794jk5PhE31zZiVOxsRJRsab851dezYW//crJ2o8/lay0dJdUs+uvkRJWrkruPCsv//iVk5Vv9HVJ2SyEBEiABDyRAAV7TxwVtokESIAESIAESIAESIAESIAECkDg8sGDsu7jT2VFnzdlRZ+3JO7rb+TygQMFKME669mNG2XDl18pYQzlxg36RlKO03LamlTpPrLyzb4S7BeY+wpQwv3ZTZt8AsqGgV/KhDqNJDygmoT5V5OoBk0kYep0n+ibKzuRtGq1RFWvJ0F+AWoeYNFm/edfSFZamkuq2T16jIQHVtfLx8JA7Dv9XFI2CyEBEiABTyRAwd4TR4VtIgESIAESIAESIAESIAESIIECENgXFKKsTiFkQSwLLVdZdv72RwFKsM667uPPlPiGMlW5ZfzlyPSZ1hl5pFQT8FXBPv3iRZnUrJW6n0y7B/xljF85iX27n2RevVqqx9yy8xTsLYnwOwmQAAkUjQAF+6Lx49UkQAIkQAIkQAIkQAIkQAIkUOIEdo0crcREzdI59JZKsmnwkCK1a+Wb70iwspg1Wc1CrDw0kX6jiwTVBy/2VcEeu1ZiGjdXbn60+woLV9jBknnpkg+OZOG7RMG+8Ox4JQmQAAnYIkDB3hYVHiMBEiABEiABEiABEiABEiABLyKwe9TfysJeExZDb60sm4cMK1IPYvv2092coFz4jT4UPalIZfJi3yPgq4J92tkzKoguRHq4esFL+U5/823JvHLF9wayCD2iYF8EeLyUBEiABGwQoGBvAwoPkQAJkAAJkAAJkAAJkAAJkIA3EaBg702j5Vtt9VXBHqOE2A0RFatLyE0VJeTmihJWtZYcHBcpOQw8azaJKdib4eAXEiABEigyAQr2RUbIAkiABEiABEiABEiABEiABEigZAlQsC9Z/qW5dl8W7NPOnZN9Y4Nl4zeDZdN3gyV+fLTLAqn60pyhYO9Lo8m+kAAJeAIBCvaeMApsAwmQAAmQAAmQAAmQAAmQAAkUgQAF+yLA46VFIuDLgn2RwJSiiynYl6LBZldJgASKhQAF+2LBzEpIgARIgARIgARIgARIgARIwH0EKNi7jy1LdkyAgr1jPqXhLAX70jDK7CMJkEBxEqBgX5y0WRcJkAAJkAAJkAAJkAAJkAAJuIGARwn28O+tvez0NefGDcnJzs573bhhusZOfoeHtbps+RXPycmrA/WhngImq7Zq5diqr4Blq+xooyt5oFBHTJxpo359/pldItjrDIppXgCRBXPFzGZ385/PNi9z80HVfos+4Jj9fhSuQSZOhnGxUYe3Cfb22Cl+hcNkdRXiHJjYWTznrHI6ecBeea56DjnZDGYjARIoHgIU7IuHM2shARIgARIgARIgARIgARIgAbcR8BTB/nJ8vGz94SdZ/9nnsv6LgXJ46nQlmJs6niNpZ87IoehJsvTlV2VK6ztlfK0GEtO0hcy+9wFZ9+lncio2Vm5cv+4UpxuZmXJ8wUJZ//kXsu7Tz2Xz0B8k5cSJ3Kpy5GrCYVn7yScyrV0HGV+rvkxs0FTmdntEdv01Cz/XcAAAIABJREFUSq6npjqsIystTS4dOCC7R/4ti597XqbfebdMqNdIxtduKFPb3CVzH3pMNnz5lZzdskWuX012WJa9k+kXLsiR6TNl6w//Jyte6y3T2raXSbe1kOl3dpT5j3WXDQMHyq6Rf8vuUWOsXrtGjpLExUsNbE21XE9OlvjoGMUEY7B5yDA5v22bvSZYHc+8elUwl9Z/8aWs++Qz2fbTcElOSLDKZzxQWMEe45x27rycWLpMNn77vSx6uofMuKuTTKzfRKKq1ZVJTVvI/EefkHWffS7x4ycKeDmbLu7ZI5u+H6rmBeZh0vr1+mJN+sWLsj8kTOY++KiMr9tYzcEZd92j5h/G3JiuJiTIjuG/ybrPB6p27B45WjIuXjRm0T+f27xF9vzzn5oztsbM/rG/5cjU6YL5nF8Cs9TEExI/foIsf623zOrUVWKaNFd9mNy8jczu2k1Wv/eBHJs3X+B/v7DpRlaWpCQmyr7gEFn83Asyo31HNfcn1msiMzt1lTUDPpLTa9bI9ZQUVUXS6jUSVb2eBPkFSLBfoPzrV07NQdxHrki7R4+R8MDqevn/+ZWX2Hf6Faho3BvnNm+WHcN/lcXPPicz7uksMY2bS1St+uq+m9XlPln+eh85EBYuVw8fluz09AKVj8zZGRmStGaN7Pj1d9W+OV0flAn1msiEeo1l2h0dZEXvPrIvKFhSjh2TbCfGG2VmXrkqR2fPUfN52cuvyfS77lHjjfsDz821H3+izmfg/qB4X+Ax4wUk4KkEKNh76siwXSRAAiRAAiRAAiRAAiRAAiTgJAFPEew3DPxSgssESpCfvxLtIJannz+vhL1DMZOUMDbWr3yu8AZxz/SC0IfjITdVkG0/DxcIx/kliF7T77xHIN5p1+/64y/JuZEtCdOmS0zj29U5rQ68o47QcpXl1MpYO8XnCMTeVe+9LyE3V1L9MImQeW1FOTiGPqK8hU8+IxAsnRXLMi9flmOz58iMuztJkGq7v00eKN/eC4LopNtaWonpZ+I2yrjKtVS7tGsXP9vTTl+tDx+bO19Cb62s9/sfv3Ky9cf/Ewi49lLBBfscubR3r1rYibmtpaGtJq7G8dI4oy/T23eSozNnScalS/aaoh9f3f/93DEKUPNw6YuvCLhDiJ3b7dHcOvPG1FRPgKzo/YZeBj7EDfpaQspWyOVRXs2n4/MWmOVRX3JyZEH3pwW8NO7Ov5eXMP9qkrhwkXW5hiNY7No8dJhhfO3xMs3zmGYt5djsuQUOkguhf9efo2Rc1dq589O8HrDCvIcwv7jX85Jy/LicWb9extesnzuPPUuwhzCeFLtKFj3bM3fcTc8L9MN6rqGv5SW0fFVZ+/GncnH3bsMIOP54+eBB2fD11xJaroo+v2zXUV7GVampFuqwiGAvYXHmxJKlMvfhx3Lnsu3npmnulpdJLVqp55qje9VeXTxOAiTgeQQo2HvemLBFJEACJEACJEACJEACJEACJFAgAp4i2MMyG0I3xDwI6TPv6SLnd+yQDQO/UuIYREycs/fSxMBV/fpL2tmzDhlogr0mHuLa3X+NksOTp8i4SjV1UdFYF/KE3FJJTi5dbrPshMlTZWLDJkrkNV6nif2muiD05fUB/YyoUEMOjosSuMFwlLJSU2XNBwMkqEye6Gkqy/Qd5efHCPmRD9bOWFwwJpNgD6FV4xwgi57pYczi8POx2XMlrHxVvX9YGNgy7EeHux4KKtgfnjJNJjZqphjntVPjCcFUW8DQjpneTWwClOU/LJkdpVX93pfgMhVUPzA+K3q/KafXr5dZne+zOS+08Vz20itmxW74apCaL9oYoSxbgj2s4+d1e9TGvDHvg1aP+XuAYr4/KMSsbuMXCMcLnno6l5n5/AMvjY2xXBwDg03fDdEt4Y1l2vqceeWKLH3h5dzytDlkvw+YHzM73Subvx8qkdXqepxgDwv/7T8PlzD/qrmLd7b6Ys5TG2v0bWKjpnJyxUo4ULKFSz92ac9emdK6nVqwMS0CmOqB+I9xsByfsX7+Eh5QTQ5PnqqXYfwAVzoJU6dJaLlKFu3Oe06o8c3d0YA2o73zHn5c7YwwlsXPJEAC3kmAgr13jhtbTQIkQAIkQAIkQAIkQAIkQAI6AU8U7CGOw+p2Sst2urUzhCUIjBCXYI2Md4igRqERn3Fu1bv9dTcmekcNHywFe1w3q8v9ElnFZBmslQlhC3WYRLPyEnJrJTm5zFywh9AO8Sy0QjWz9qAPJqvpAOV6BFb7EOTQbpzT6sDnsPJVZF9wqKGF5h9h+bpn1Bj5r4zJcl67VhPzJrdoK1PbtpdxVWqpNhjL1/KiH6j7b79yEtPodkk+etSsEk8X7OGKKLpxczUWWp8wH9AvcAbbqOp1lZiJ76a5kccZQmdwucpyfP5Cs35bfjEK9uAIrpOatcq1qNbE1ABVPurQWC975TWzopwV7LG7YkH3p2R0bptRpr2XSWg1CscBEu5fVQ6GjzOrW/tyZsMGiW7WQo27xgzvKB9zIapmfdW30PJVcudlntCOfqG+dZ9+4fBeQl1wObT6/Q+txGWMCerCeIzJvW+NfcA5JVLnLpCgbWgXXFWVpEuczCuXZUWft/RdAnnsTP1BG/HS7md81uaBlhd9G1ernhyZMcvuDhosLM6853825/TE+k1lRofOpvu6ci1Vn3a/h/tXk52//aENs9n7yeUrJKpOA1HzPXdxULsOro9m3N1ZuRILLltBH3Och1sty0U8s4L5hQRIwGsIULD3mqFiQ0mABEiABEiABEiABEiABEjANgFPFOwhemlirBL0ci3D4c9549ffSvzEGOXreeFTz5qJXSaxLEDGVaqlXJjY7rEoP9BwiWMUDyG4wapVKwPnZnb8nxLuZt/XTYLLBiqXPQiSaUywYIYvcJP4qAm65SW8QnWJ+3aw8rMOX/Dnt24TiGlbhv1frk9trS70tbzyl2/P1/rpdeuUH/A8Ec7kagT+6hMXLZELO3fJxd17BPniBn2jFgAsBcSlL70i20f8JtuGj5AjM2Za+cH2dME+9dQpmVC3ca4walr4mFC7oax+70M1H7CQcmZDnCStXi1Hps2QxT16qbxGDhBWFz7VQ9LO2N+BYRTsjXPBOA+jatZTPssX9+wl+Iyxj33rHeO0EKcFexFJXLxEVg/4SGL7viux7/S3+UK74Ks/bw5grgVIeGA15VbGrHL4L796VfkpNwnLmshv2oWAso7MnC0Yc+xiORW7SvYFhaoYAJb3RETFGnIhH/cu2PkQElDFTLTG/Rt6SyVZ8twLanwgXO/8/U8lQmtit8bX9G5qI86VtGC/ZegPaieLce6gP1iwW9j9aXUPJ0yboe5n+Pzf8OUgtfiBPMa+YF5gscdycUwbK/DQ5hWuA/voRrerxTnENbi0f78S0XFf7/pzpExv31HNNbiewnPbMl2/ckWWvPBi7mKC9iwKkDn3P6QWDi7s3Knia5zfvl0SlyyV9QO/lPG1G6lFPMTaQH1MJEAC3k+Agr33jyF7QAIkQAIkQAIkQAIkQAIkUMoJeKpgbxS+gstWlNi335XL8Yf0gI452dnK9Q2CjhpFL9N1ARL3zbd2R9aWhb1WBsRziJR7/x0rqSdPKv/l15KS5NzWbcrPc1ZusEwUDj/ScOtiFOtRzsSGTeXY3HkqkKRlI+BfGlbeE+s1NoivAcr/+/bhv1lmV/2FCG8uvAbKsldet+n6BwEvD0ZNMC0w6Jb8ATL3wYdVWeBmK3m6YA8L+4kNmylRE4FlESgY8+F6sil4qWWf0s9fkK0//iywHtfGFu9Bt1RwGEzXlmCvzSnMw6UvvqxEVPi1T79wXq7Ex8uJZcutRNmCCPZoO1weQWS/bucFP/TLX+1jtsiE/sx98BGbQWd3/DLC0O9ccT+gmuz5+281by154fv5rVtlXrdHzOqACL3izbdtZVfHcG/M+t99ZvcAhO6wgGqy7adfRAU0zb0a7lpST5yQnb//IeEVa5gJ/Nr9XtKCPRZPJta/zYpBZPW6si8kVNLPnbNy85SdlibYzTClZVsL5iYRHsGLbd13C7s/pecHs8iqdexa5Gvs9geHSNzAr2z6yE9NTFRBZbWFBrxPaX2HJB85YnP8sIsBi32INbHvvyCn4n/YLIgHSYAEPIoABXuPGg42hgRIgARIgARIgARIgARIgAQKTsCTBXsITrBq3frDT7pQb9lD+M6OfbuflWA4uXlru64obAv2sHQPUJbxsESHQJZfgnUy/NrnCcKBSiC2tMK3Vc6Wof+nLJA1cQ2i//S7OlrtDIDgueDxJ80ExMhqdazyGevAQgKE5zyRP0AiKtWUpDVrjNnMPnu6YI/Gwqp5z5h/JfnYMSvR1KwzuV/grx4uQIzjA/csxxfYD9JqLdhr1umBggC011Ov2arK6lhBBXurAiwOHJ0zV0JurWiw4A5Q7n/OrFtvkVOU3/mYps3N+v1fWX/ZOzbYpnBsLODsps0yvlZDs1gG8DF/dtMmYzb9M3Z4wFWTJrjjHfcEdsJgccpWgnh9dPZcwcJL3q6Wkrewxz2PmAX/6jttTLtf0M7EhYvzfSZc2rdP7ZQxt7QPkKgadSXdIq7GjewsmXx7K50z7n/MLwTadpTQxuyMTJvPNuziMY4FLPa3/viTo+LUObjcYsDZfDExAwl4DQEK9l4zVGwoCZAACZAACZAACZAACZAACdgm4LmCfYCE+FdWVro3Mm0Lf1qPTq1YqfJqwixE8PG1GwrcqNhKtgX7AAm5qaJs/OY7W5dYHYPoGDfoazMhHQJZ7Dv9JCcryyq/5QG0AYFMNet8XBtZvZ4cmhhjljUlMVFZ42sioLJ4fuMtuWHHUl67GG5vjII9AsLucxCc1BsEe61vBXnfM3qMmXANJnv/C7IrvtoS7DFGs7s+KBmXLztdtSsF+2tnz8rkFm3M+oH5gqCwtkTxAxGREuZfTc+P9s97+DGBNXx+CTs0Ng8eYj53ylWR7b/8anUpFkTgu16bw9pOBCyS2LIotywAcRuMAWdxfUla2CcnJMjk21ub9SeobICsfKuvZdPtfkeg2aCb8hZ51ALGzZVkv0WMCgjz0Q2bmQn2i57pKWnn7Ltrsltp7okTS5aatR1zxNnnWX5l8zwJkID3EKBg7z1jxZaSAAmQAAmQAAmQAAmQAAmQgE0CnirYQwRc/cEA5SrEZsMNB+G6BoKkJhxCsIdV7Dk7VsE2BfsygTLvocfsugsxVKc+3sjMFPh91izkTZbFFQX+oZ1N6z79XPnFx0IDykHw2R2//m52+cW9e3P7ZQqgChEOVrP57QCAeIcytfaF3lpJNn472Kxs4xdfFezhY1xbyMEYYY5AxMT42UqWgj34RVavI2fj4mxlt3vMlYL92o8+EQQJRfu1Pszo0EmunT5ts/7lr/fJnVea1Xp5q4UgmxfmHjy1MjZ390eu5XzZirKq/wdWl2Anx4y7u+iiM9qG+bnzz5FWee0d2DTkBwktl+e2qCQF+xNLlknwzRX1ewaLY1j4O7Vqlb3mWx1PP3deZnbsYnB3ZYp9sfKNt6zyTm1zl84OdUXWrKviL1hldPIAfNAH3Zw3TzB3UQcWIphIgARKDwEK9qVnrNlTEiABEiABEiABEiABEiABHyXgmYK9KagofIM7k+D3e3X/D3SrYCWyVqkjp2JjbV5uLdibAtWeWbvOZn5bByGWhgfkWTEjGOjU1ncIXPQ4m3aP/keVgfbiBTF53aefmV2OgJ//GYJZQhBF4Nr8BPvEhYvMhH6IotuHjzAr2/jFVwX7Czt3Wwn2az4YIPA7bitZCvYYk+0/j7BpyW7reu2YqwR7BCoeV7m2QdgNkLDKNeTIzJlaVWbvsHqHayXME5OA7q9iMpzf5vxCEgIYR9VsoLurwdxc8MSTZvXgC/z4T6ijBQLG4gB811dVgU2tMts5AN/vUTXq6yJ5SQn2OTk5Aot/uEzSFkaCygTIvIcft9Ny24ex4wEBYo3lgMv0O+62umBJrxes5iZceR2eMlWyrqVa5c/vQOrJU2ZW++gHFgIQKBeujphIgARKBwEK9qVjnNlLEiABEiABEiABEiABEiABHybgqYI9hFKIzs6kG9czZeO335kJ9uMq1ZLjdq63JdhHN2nuTFV6nhNLlykrZF3c8wuQCbUbyfaff5E9//yrfK3D37q9176xQbLwqWcFlu+aBThEvqUvvaLXgQ9wiTOhTiNd0NQEOMnJMctn/AJ3JLv+HKXzQPnhFWpI4uKlxmxmn31BsL9+LVVSjh6Vc5s3y5n1G+RMXJwcHD9RF2AxVphXaz78yEnBPkBZShfUuh5gXSHYXzl0SGa076SL7xhHtH/LsB9tBjRGvZcPHpSYxs3NxHbs3EDgU7gCsjcftePIg7xwqQOhHswg/k9r10GyLVxTweVUyE15Ft1YtJrR8V7JvJpsNrccfUG8h6jq9fS6Skqwv56SKmsHfGx2z4TeUkk2ffe9o+bbPJe0eo2aNxo/vGNhAzsSjOn4oiUSdmtl/f7XWGO85tzXTfBsvnY6fzdGWpnYNbL5+6EWiwWm8YuqWVeW9HpREPAaixNMJEACvkuAgr3vji17RgIkQAIkQAIkQAIkQAIkUEoI+IJgD4F6y9AfdaEKApkS7BcstDmKrhDsD0+akhtwNs9fNeqF1X1EhRr5vyrWlJCbEUTUJIpCrINYCRHfaD2fdvaszLm/m0G0DZSIijXl1PIVNvuGg1cPJ8ik21sZ3HIEKCttuA6yl7xNsAej4wsXC9zFLHjiKZnRsYtMa9tBJjdvI9ENb5foBrdJdINmyqUJ2Gqvwgj2p9estYfN7nFXCPZrP/pI+UPXhF+0HRbYKccT7dZ7dkOcTKzfVLfIN/Xb5G4J8ybfuVmxpnLNZJyXEOyntGwnGRcvmNV7dssWs/mLfIt79pLrySlm+Rx98RTBPv3CRVn2au/cXSm5uwXKV5E9//znqPk2z2HBKLJyLX0MMH7jazdSi2/GC25cz1KLBNpuCG2OIj/GOjywmkxpdYesfvc9ueqkW5vkI0dkzoOPGPphmvuoA6+oWg1kdpcHZPeoMZJpsYBgbBs/kwAJeC8BCvbeO3ZsOQmQAAmQAAmQAAmQAAmQAAkoAtaCfSXZNHhIkejE9u2XK5CaxGhYjh+KnuSwzPVffCkhN8Pa3CSWQbBy1sI+50a2bP3hp2IV7PcGhRjamycIwwLe+Rf4mF4Q6cBpcc8XzDjdyMqSHb/+Jv+VzfUnnstnSps75VTsKmVpDfEaL7jjuLRvn8zt9qhuYa3xhJsUR1b53iLYw0oZcxa+uSMqYdGjkuKtCZKW7xgLTQjFu7cI9mc2bpRx1eroCzWYHxBwd/3xl9n8sPyCXRTwu27Zb1zv/LwEs7y5CWZT27a3iidxZPpMM8Ee+Va/94Hd3QuWbcV3TxHs006flgVPPmsQugPU4sbROXNtNdvhsYu7d0tM0xZmY4cxuXr4sNV1GRcvyqr+70nIrZjHeTEnMFfxHfM5pGwFiapRV2LffldSjh+3KsPyANxoTW3XQRAwF2UYF18wB1AmrPjRxp1//CVZ165ZFsHvJEACXkyAgr0XDx6bTgIkQAIkQAIkQAIkQAIkQAIgsHv0GF3ohkgUclNFWfVO/yLBWdyjl5lgCMtxWKQ7St4m2O/6a1SuhXyeWA9+YeWrKncicClSsFcViapeV1CuZVKuUToYXaOYxDwI1ot7PK8C1SJY7cq33pbxtRpYCHQmofdkPvEAvEGwTz1xUhY920sFVDUKkZoICcEYr7xzmmCZN0Y4X1CXOMVtYQ8Rd/krrxvEY5Mv8kVP9xAs4DhKR2fPlagacDFjXKgIUIFdsfujYHPSlB+7VdZ+8olVtfuCQszmGtjCrUx2erpVXnsHPEWwx+6TuQ89qovsELmxIwGurwqaLuzYIRMMuxwwH2Fhb89KHi69Dk2MkUnNWkuYfxXVhqDcGAR4pmjiPdoU3fh2wRjn59bmWlKSmucT6zZRz6m8+0K7F0z3RkjZQJn7yGMOd20UtP/MTwIkULIEKNiXLH/WTgIkQAIkQAIkQAIkQAIkQAJFJrA/LMJMsIfQN++hxwpdLtzTzOp8n0FsDJCgMv5ydPYch2V6m2C/LzTMzMIeohzENPgX3/nnSGW5CutVZ18IVIkdBVk2xM7LBw7KjI7/M7i4MYpuJlcXmmW50ZpWO7Z52A+CcXGUbAr2T/dwdInZuWOz56rFCk1gxCINWMDq315a+WZfg/U7BER/Obtpk83sCOa7oPszFgxMwYkhRMMCHK4+5j/eXVb0eUti3+mnLJIXPdPTUIcXWNjn5Mj+kLBc4RjW0Rhrk+B7bus2m2yMBxGoGeKwJthjXoZXqC7rP/9cdo0c5fR8NM7bw5MmCwI7WyYswhnnG0Th5a/1KZDFtqcI9tfOnJaFTz5j9tzCvDoUM9my2/l+P79tm1o4M44B4lCknjzh8Nr0c+fU+Mzu2k2iatZTbcE9rN1TJuG+vERUrimJS+3HozBWcnHvXhXIGhb32KGB+1Jrl1YudvbAv336+XPGS/mZBEjASwlQsPfSgWOzSYAESIAESIAESIAESIAESEAjcGTadBnjV04XhSAQwd1Ifpa82vWW77DshC9xTWiCYBharrKccBDwFGV4m2CfMGWamQ97iJWwgHa1e4nstHRlKQuhTRPY8NnaYjbPEhfskWdiwybKx3vG5cuWw2T13ZZgP//xp63y2TvgbsEebnAwjzCfTBxMFsKzuz6ohOjko0dtNi352HErUdmTLexV0NimCBqbZyGPz1t++D+b/bM8eHbjRjMf9pgL0Y1ul2QnfaBblufoe9KaNWZsUdfCp56xCq7qsAwPCTqbceGCLHv5NTPBHm5jsAOpoOn0uvUSfHMFfa5izk6s21iyrqU5VRR2KByeMk2Wvvyqcm+Ee1279/EOzrPvfUDSTp9xqjxkwg6C3aNGq+sQTBdl5JVpcr2ze+TfgsC1TCRAAt5NgIK9d48fW08CJEACJEACJEACJEACJEACkrh4ibJa1oRQiIPRjZrLpQMHCkUnafVqiW7YTPehDmEIgQ4RiNFR8jbBHv2E8KWJXuAGv/LXTp921M0Cnzu7ZauMLaP5FA9U7mA2fT9Ulr/+hvLhDmEeFrLaK7xiDZnarr0S6i/u2et0fec2bZaoGvV1oRjzYXaX+52+/vjc+W6zsM+4dFFmduyii4xBuaLlmg8G2LT8Njb64t59ZqIyxE9PFeyxG2FB96f1fmriLCy/rzvpZxwLF5Nua6mXAdcq4yrVlDMb4oxYXPIZ/tSNFvaYM7j3My5dcrp8uBuKqg4XPqaFGMzn9Z9/IVlpzonb+VUEwT08sLpePsYfuy8sU1Zqqqz9+BO10KXd08o9WP8PLLPm+x2+/XE/auWA0Yy7O+d7na0M57dtV66uMI4aI3yGO6wDoRG2LnF4DDtVjsycrfzXG8cOXGZ2vFeunTrl8HqeJAES8HwCFOw9f4zYQhIgARIgARIgARIgARIgARJwSOD89u3KfUOexWWAhJSrLBu/HezwOnsn138xUIJvqagLeRCCEPA07exZe5eo494m2MN9BVxmGEU5WOTCBYWrEvxU7wsO1UXEsX7+SlSDj/OMCxfl3NatcmrFSjkQMU4OhIbLiSVL5dyWrXI5Pl6up6QWqBkQBic2vM0g9PrL5OatJcfJUg5GRCo/6RoPCK+ucolzbts2mdQ0T4QGh/G16qu+5tc8bxLs9weHWrlZgvuTs3Eb8+umfh6i/4z29+jjCFF2bNkAOTJthp7HVR9glR5esbp+r6uxLxMop9esc7qKhKkzBD7yNTG6pAR7BG3eM+Y/M6Ed82zaHXdLxsULTvfnenKKrHizr8FSP1DgJx7BeAubTAtW9xrKDFABZeMGfVPYIuX0unUqqK4m2oM/FnbgfouJBEjAuwlQsPfu8WPrSYAESIAESIAESIAESIAESEDSL16QWZ276qIwRDeI95Obt5Ez69cXiNCl/Qckpklzg1gYqMpd/NwLIjmOpV9vE+zhOgJWs5rQqHGL++rrfP3FOwsVdcS+9a7OE+OyqMdzAitZV6dLe/cqV0jawg36pXZGbNmab1VY9Jncoq0EldHc1ZjG3VWCfeKCxTKhbhOdAxaBpt1xj6Sdyd8lyIXde8wEZVzriRb2CEiKe8c4n/4r4y/bh48QiMkFSfDhH1xGi3Ng8tu/9IWXJf38+YIUk2/ezKtXZWqbO/VdGbgHsNMkbtDX+V6LDAjOOqN9RyU+K7HfzzRvSsLCHu1JXLhY8dfGAO/Kkn1cpFP9QSYsfIWWr2w250JvrlQoX/jGSjd9972E3Fopd34EKPF+9fsfGrMU+PO8bo8Y5hvu3QC5uGdPgcvhBSRAAp5FgIK9Z40HW0MCJEACJEACJEACJEACJEAChSIA68+xZfN8ZivxuYy/8ul8PSXFqTKRD6ISBFFNfIN4F1GplhyMGp9vGd4m2COI6+bBQ8z6C8FrXJU6cuXQoXz760yG7MxMWfbK67p7IXANubmi7Pj1d4HAm3HxkoA7/ObD73V2RoYK8ppfgFlbdcPH9SKLoJtwCbJ2wMe2suvHLuzcKTM6dNLFdG3sXWlhf3LZcplYP8/6H3NsSus7JfWE4yCecHOy6p3+ZuKpEuwHfCSIDWArrer3vgSXqZA7h+Hb21/gtqWgacNXgwwxDkwC6/F5C2wWg4WZZa/2tmon3OOkJibavMbRwUMTYyTcH7s/tAUUk0X2sdlzHV1W4HOw5t805AezxT7UGdO4uZqfjgpMPXFSZnd9wOL+KVnBHvet5YIjxn/eI485FZvienKyYP5oi16meyFAohvcJplXzIP2IkYIAvk6uxiz/adfJLR8FV2wRyBvPDONCc8AtMHZhHgDxsUJ7BjCoisTCZCAdxOgYO/d48fWkwAJkAAJkAAJkAAJkAAJkIAiAEtOWmvPAAAQ9klEQVT66MbNLcQzBPX0l+Wv95ELO3Y6JAXRFvmQP08kNFnqz33oUcnKsC2OGgv1NsEebYdVeliAJqJpFs0BMu/hx+T8jh3G7tn9DMH94u7dcmzefIE1uDHBJc7e/4LN3HRABIQgiACsc+57SHGHKL32408l7utvZesP/yc7//hLWfSe2bBBLu7eI3Chk1+Cz/CNX39rJr5CrIxu1ExOLFlm8/IzcXEyuWVbi3lj4uBKwR6LCQiErAmhmGdhFarLsTnzbLYLB3FN7Nv9DOK7qV2eaGEPX+TjqtTWLdXBHZbdBd3hosHAWMKdkfm96C9TWraV4wsWSk52lpbV7jsWf67Exyur89PrN9jNh3keFljVrC6IwPMeelTgNspWOrdli8x/orvdeVNSFvZo67KXX7dolykgK+Il2OsProPLLyxuBRuCBeNexXzb+uNPVsL8sbnzZenzL8nef8cKYgE4ShgL8DLOf7gR2h8arl+Wk5WlFvKWvfqaHJk5K9/YDhDmx9duoI8byp7Z6V65dvKkXiY/kAAJeCcBCvbeOW5sNQmQAAmQAAmQAAmQAAmQAAlYEdjw1dfKNYVmcWm0lJ7UrKXs+nOUHJu3QPk+Prd1mxITj8+bL7tH/S2TbmthIXKZXGMgmCQEQmeSNwr2sGxf8/4AM5FbE9SjG98uB8Ij5OKu3SqQI6xfYU0Lq2+4coFoCb/icM8yoXYj+duvnCx+5jkrVPBHP6FxMyu+EGMhskEQNL4glOOFoJc4D7c2y1/ro8Yu49Jlq/KNB04uX6EWICAYa+OPsuHbPmHKNNWXlGPH5fz2HbJr5GizcbdcrHGlYI82zu7azYwB2jX7vgdV0GSMg5auJ1+VxEVLZO7Dj+XuTNCszD1TsEfb59z/kNkcQt+m33WPnFyyVMUoQJwCu6/YVXJp/36t+/o7gq0aBXuMpwpWWqG67Bj+q5p/yUeOqPmYk3NDstPSlMucS/v2yYnFS9Xiz5QWbdU8imnUTC/X8gOsxFe8/oZZ+9UzpGwFWfLCS5K0eo2a/9eSktT82fPPv8p9EuaHqU1YGMwbIxwvScEeuyDG16yvi+Om+8C0Q2Lpy6/KiaXLJOXYMbUIhgDTWMzEM25xj15qN4aROcZxatu7bO4EWdXvPf3+nXXv/bI/JEzFv8i4fEkwHkhYeIGLmk2Dh6rdGhonlBvd8HY5uzEvtgHGb0rrdqZxKFNBVvV/X47PXyAYY+MuKbhFSlq1Wmbf+6DZ/MDzYnW/983yWo41v5MACXgHAQr23jFObCUJkAAJkAAJkAAJkAAJkAAJ5EsAwuGq/h9YCFUmkRPCLwQdCEURFWtIVM0GygJYO453TeA1iXD+ggCshyZNzrdeLYM3CvZo+7XTSTL/se42reDBZWK9Jipw5fxHHpeFTz4jcx98VGZ06CxYzABPCJQQu/E+7+HHNRxm7xDI5zzwUK4gaBoTI2/7n027JFBPcNlAWfR0D7l6+LBZ2cYvEAjnPvSYmfiKstX4lglUfYErmvG1G6k82rjjPapGXbMgvOiPq3zYo437wyMMLkHyxHfMx7ndHlWug+A+COJ36K2VdHEfIqfWTvQFLDzJh/2FXbsUV2MbIfqG3FJJ3UPYSeHoFVK+kszqfJ+kXzAPjJp9PVOJthgH4/wADzCIqlFPprRsp+bjwqeeVbtCZna8V6Ib3a6EXG3BB/lxvzuKQIHFhHE16lrMT1M9cLMy/Y67Zfqd96h+oj1aX7GAEB5YXSKr1dV3QuB8SQr2mGt7xvyT6y8+b+EKDNG20Fsry5RWdyjmCKaNxTb0R91jfnn3Jr7HNGsp2OViK616t78EqfwmTsgf3bCZzO7ygGA8Fvd8QeY99JhMrN9Ula2J9XiHL/u4b74TuFLSkhLsW7XTXeaYxj1AJrdsJ3MeeFgW9eilFhUwxmH+VfUx0O7vmNtbStKaNVpxfCcBEvBiAhTsvXjw2HQSIAESIAESIAESIAESIAESsCQAlw9w/QABShOIjGIfhESIy6bzEOnzLGO1fDgHMfBg5HiBSxdnk7cK9ujfxb17ZXLrdlaiHfhoYh4ENO0FcQ7HjfxwbuHTPWziglUvxDzjmOB6rTztHeVqL4ih2pjgHeOGc8tefkXS7LgqQeVHZ82WyJoQXy2vz+uL8Rw+R9aoK4enTJVJt7fS+4Q2uVKwx2KCye2S+ZzTFjsgMOOFejVOOBdRoYbMvOd/ursZMPAkwf781q0yvnZDK97avYa+OHqhP7C2Tj52zGrupJ0+Lcte662YGOdafvNS44d5o9wiNbRvYY9KsXtk5+9/KsbGa43zDu00zhuTWF9NWZYv6P6UPlcxfiUt2GPxctv//aIC91r3J09gz+uT+ZxEH6Jq1Vc7Fez5qN80eIiE3FxJv1+0McG1eGlz2cQsr3xww8KfpZurGxkZSuA33vdoO9qolYcy8R33hfZsUJ9vqigHwiMFfvWZSIAEvJ8ABXvvH0P2gARIgARIgARIgARIgARIgATMCGQmJ8vesUHK0tYk7EAscvYVKAuefEaUz+sCiPVogBLsb6qo1wVhKXHhIrO22fuScyNbtv7wU66Vu0ngHFeppl13PHBpAavfPDEsQODCpijpwu7dsuT5F3MDjTrLS8sXKNPa3qXcbVi24fz27TKxXmPzwLM3VVSi5tm4jQI3NkfnzpOEqdMlfvwE5RN74zeDZcHjTypLc6PgCPEV1tq7Ro22rEb/DtHuVGyswQe61kbrd5QHK+DT69aJ5OTIlFbt9PGDOJivYP/GW3p+zDGIjWc3bdLbYvnh2qlTsvCpHrmCvHV7jPMUcxduZeAWZN1nnyuhEuchXmJRChbJttKqd9/LFTNN5WOOFDrorC7ImoRTW0Fn4c4GgU5NQqpjcR5jaflC+0xBXm3vnIDlPXyow9K9oPcz6hpfq4HsDw2zhcrsGET7uEFfS5iqx/HYqDY3aS4nliwVBEhe+sJL+jzA+Kz/7HPlDsasgkJ+gWsgY9/BOfbtd/MtDf3ZHxKugh2b7iHHfdLmHgI1z3vkcTm12rG1evLRozL73m5mc00rw957yM0VZNnLr0rykaPW7c/JUXMduyGcGWdtHkVWra3iXmRn5FnrWxfOIyRAAt5EgIK9N40W20oCJEACJEACJEACJEACJEACThKAVSiCKEKom9nxfxJZo55EVKyphC+4usEr3L+ahFeoLgh+CAvf5a/2lmNz5xVaaNsXFCLj6zSSyKp1ZFzVWjKhflMzH835Nf3guCiJqF479/raMrlVO4GIbithJ8GyV3tLeLVaKj9ccsAHdVETRL6TK1bK0hdfkYn1mgoWDcIDq0lY+aqKGd7hAgQsx1Wro9xVQDwEt8wrV612JMDSFy50TAsLue42bgqULUN/FASitEo5OcpP/o3r19U4ILAlgo8GlcmzqIWQvrLPm0pgt7recODq4QRZ0utF5a4EVupaHyB+wg3N5BZtZPvwXyXz0iV1FXZTLHn+JdUvjCHG4mBEpKFE64/bf/lVoqrX1cd8aps7BcEwHSXEADg6c5bM7NRVIqrWVCzD/MG4ipqfEZVqKPcrO/8cqXyyq8C9Y4P1uRFevbbs+mOkgJGttPOPkRJVs77eJvgFv7DL9jyydb12DD7JJ9RtrJczoV5Tm+5RsjMz1QIChPHxteorgdz0Gd/zf0XVqqfGyZ4lN9qDgKRwq4SgqIhHMa5ybXXv4h423c9VTewwL6vUUq5rMIcPRo0X+GmHqO5MAtPExUtk8bPP5c0bw9jgfoi5rYVsHvaDmei86bvvJaqGiTnuyV1/jbS6F5yp31aeo3PmKZ/5eKaMq1pbxXTYMeI3W1mtjoEpghdv+3m4TGl9h2KDeyGPmzbnaqqxwjMEsR6yrtleDLKsAIujh2ImKZda8Jtv9YwNrC7jKteSyOq1ZXHPXnJ63Xq1m8GyHO072puSeEJ2/v6HTGlzp+qveXurqjoiq9SRCXUayfovvxIsHNCyXiPIdxLwDQIU7H1jHNkLEiABEiABEiABEiABEiABEnBIAK41EIgyfkK07Bk9RglCCKgK9ynntmx1meCTcemSCpII9x7Xk5MdtsnWybTz5+VqQoKkJCZKli1B23DRjexsJcYhPwJiOu+8x1CIg49Z6elyZuNGOTx5quwbG6yY7fsvSA5PmSYnlq9QgTgdXK5OIThkcFnsOsjz2Q5f1JlXr+Z3qX4ewjGEQJOVsMkPN3y+GwNR6pltfMDYH5szz9SHP/6U+MjxcmbdOpuCNwRDWMGDaeaVKzZKsz4EC3DkTz5+XLLtiOjWV2G9IUe5gcEOA/QRIm/8+IlyZkOctcCckyPa3FC+3vPZ/ZF+8WJemwx+wm21w9GxjMuXizSfHZVdlHPwm49790D4ODUv9/z9j8RHxyix/eK+/S65nzGex+bNV2ODxZP4qAlyevVquwt6WCBEfAUEZC6IKy1nOGCupxw/LlePHhWMSWESng/YDYEFACxEoU+w3j8UHaMCAhe2XK0tuKfh+gpzGIG88To6Y5ac37ZNMB8Lk3BfYQzUOP/xl+D5c2LZcrkSH297wa8wlfAaEiABjyNAwd7jhoQNIgESIAESIAESIAESIAESIAES8BUCm4cM04NxQrT/r4y/XTc/9voMgW68cpMBlx6moKuz/ne/YHGEiQRIgARIgARIwLcIULD3rfFkb0iABEiABEiABEiABEiABEiABDyIwKp3+unW9fBrPbZMgMBvfUFS/MRoiahUS7ewh0ucxc+9KNhhwEQCJEACJEACJOBbBCjY+9Z4sjckQAIkQAIkQAIkQAIkQAIkQAIeRGDDwK/MLOwRkDNu0DeSk3PDqVbC9cmMu/8nCA4L63oVaLJsBdn47fdOXc9MJEACJEACJEAC3kWAgr13jRdbSwIkQAIkQAIkQAIkQAIkQAIk4EUEEqZOk5CyFXQrewju4RWry/ovvpDUEyfs9iQnO0uOzZkr0++4R4LKBOjW9QheO7FuEzk+f4Hda3mCBEiABEiABEjAewlQsPfesWPLSYAESIAESIAESIAESIAESIAEPJxAyokTMq5SXsBYzUo+9JZKElWjvsx/7AnZ8NUg2fn7n7Lrr9ES9/W3suzV3jKjfUcJr1AtV6g3+a6HS53gshVk7YCPbQaM9XAUbB4JkAAJkAAJkIATBCjYOwGJWUiABEiABEiABEiABEiABEiABEigMARybtxQQnxYYFX5z6+8KNHdLzDX4h5CvCbGa8fwrh03nYNVPq4NLVdZVvR5S7KuXStMU3gNCZAACZAACZCAFxCgYO8Fg8QmkgAJkAAJkAAJkAAJkAAJkAAJeC+BG1lZsnv0GJnUqo3ApQ382OM9SPmlty3Y45yWN/TWSjKtXQfZPGSYZKeney8ItpwESIAESIAESCBfAhTs80XEDCRAAiRAAiRAAiRAAiRAAiRAAiRQdAIXdu+WNQM+ltn3d5PoRrdLeIXqSpT/x6+cjMl94TOE+rDyVVSeeQ8/Klt//D+5mpBQ9AawBBIgARIgARIgAY8nQMHe44eIDSQBEiABEiABEiABEiABEiABEvAlAteTk+XSvv1yeu1aOTZvvhyZNkPiJ8ZI/IQYOTJtpjp2KjZWLu3bR4t6Xxp49oUESIAESIAEnCBAwd4JSMxCAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAu4mQMHe3YRZPgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAk4QYCCvROQmIUESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAE3E3g/wEYJVL10be5RQAAAABJRU5ErkJggg=="
}
},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Regularization\n",
"\n",
"Regularized loss function, $\\ell^R({\\bf w})$\n",
"\n",
" \n",
"\n",
"- The regularizer $R({\\bf w})$, weighted by the parameter $\\lambda$, **prevents the model from becoming too complex.** It's role is to: \n",
" - penalize weight values that are large, such that weights do not get large values if not strictly necessary for minimizing the loss (main role of $R({\\bf w})$); \n",
" - *possibly* bring to zero weights that are very small. \n",
" \n",
"- Regularization is particularly important for small $m$, large feature spaces\n",
"\n",
"
\n",
"