
Homework 2

ROS + Gazebo: Maze navigation using sensor data (Max score: 4)

16-311: Introduction to Robotics (Fall 2017)

OUT: September 11, 2017

DUE: September 17, 2017 at 09:00am - Available late days: 1

Instructions

Homework Policy

Homework is due on autolab by the posted deadline. As a general rule, you have a total of 8 late days. For
this homework you cannot use more than 1 late day. No credit will be given for homework submitted after the
late day. After your 8 late days have been used you will receive 20% off for each additional day late.

You can discuss the exercises with your classmates, but you should write up your own solutions. If you find a
solution in any source other than the material provided in the course, you must mention the source.

The programming questions must be answered using Python + ROS.

Submission

Create a tar archive of the folder with your ROS package and submit it to Homework 2 on autolab. You should
also have one PDF file in your archive, with an explaination of your results regarding the experiments with the
robot, and the instructions for running the nodes, if any.

1 Introduction

The goal of this second homework is to let you keep practicing with ROS and Gazebo while starting using
sensor data for robot robot navigation. In particular, the task will consists in designing a reactive controller
that can let your robot navigating safely and effectively in a maze-like environment using basic sensor data (i.e.,
in a closed-loop modality). Safe means without collisions with obstacles, effectively means able to move fast
and smooth in the “right” direction (as explained below).

Since a number of new concepts and ROS components are needed to tackle the task (and this will always be the
case, homework by homework), I extended the document start-with-ros.pdf with two new sections:

• Section 4: On-board sensors: depth camera, laser scan, bumpers, cliff sensors

• Section 5: Setting the robot pose for simulation experiments

Section 4 is fundamental for the homework, therefore you need to go through it before starting with the
assignment, while Section 5 is not strictly necessary, but it can be useful during the experiments.

The maze-like environment is described in the attached file funky-maze.world in sdf format. The world file
contains the description and locations of a number of blocks that altogether define a maze-like scenario, which
is shown in the figure. The “origin” is set in the upper-right corner, where the robot is (together with a can of
coke!).

Make a folder worlds in the root of your catkin workspace, catkin_ws, and add the funky-maze.world file in
there. You can start a Gazebo simulation with the given world scenario by executing:

$ export TURTLEBOT_GAZEBO_WORLD_FILE=∼/catkin_ws/worlds/funky-maze.world;
> roslaunch turtlebot_gazebo turtlebot_world.launch

1



Figure 1: The maze-like scenario.

In addition, you can set the initial position of the robot as it is shown, with the orientation straight towards
the open corridor (see the target path in the next figure). For this, you can use any of the methods described
in the mentioned Section 5 above.

2 Task: Maze navigation

Design a reactive robot controller (also defined as a reflex agent) to navigate through the maze. The robot has
no knowledge about the structure of the maze (i.e., no “hardwired” ad-hoc behaviors are possible/admitted!).
Robot’s “reflex-based behavior” must consists of two basic sub-behaviors:

• go straight (i.e., keep current heading) when there are no obstacles in front,

• make turns to avoid to collide with obstacles that are on the way.

The goal of the robot is to keep making tours, that is, circulating “forward” in the maze, possibly forever. This
is indeed possible given the structure of the maze. In Figure 2, an example of a feasible tour path (obtained
with a reactive controller) is shown. If your robot more or less would move following a path similar to the one
shown in the figure, then the robot can keep circulating in the maze forever. However, strong deviations from
the indicated path could easily take the robot to move inside areas from where it can’t (easily) get out.

Why are we calling the target robot controller a “reflex” or a “reactive controller”? Because decision-making
must be based exclusively on the current sensory input + the current state of the robot (i.e., current velocity
and/or behavior, such as “the robot was avoiding an obstacle to the left”). In a sense, robot’s behavior must
be an immediate response (reaction, reflex) to a sensory input, neither reasoning forward nor backward before
taking a decision for the new Twist vector (linear and angular velocity).

3 Your work

• Create a new ROS package with two nodes (at least) to implement the reactive controller. One node,
velocity-controller moves the turtlebot in the maze-like environment. In other words, it sets the
velocity controls. The other node, obstacle-detector, subscribes to the laser scan and bumper sensors
topics and uses this information to build an instantaneous obstacle map (i.e., if and where obstacles are
in the FOV of the robot based on the currently received information from the sensors). Information

2



Figure 2: One feasible maze touring path.

about the presence of obstacles is published by obstacle-detector on topic obstacle_detected. The
velocity-controller node is a subscriber of this topic, and it makes use of the received information to
adapt velocity controls.

• Robot’s navigation should be:

– safe: no collisions with obstacles,

– effective: the robot should be able to keep touring in the maze, similarly to what shown in Figure 2
(or even better!). Moreover, the faster and the smoother the motion, the better.

• How do you quantify that you have achieved the above two goals? Once you’re ready with your controller,
starting from the indicated pose, let your robot navigating the maze for 15 minutes (real time). Assuming
that your robot is capable of “touring”:

– count how many times the robot is passing near the can of coke (i.e., passing by the origin);

– count how many times the bumpers get triggered;

– compute an estimate of your average speed;

– Optional: can you compute a measure of smoothness of your motion?

Report these numbers and discuss them:

– Was the performance satisfactory? Justify and discuss the answer.

– What are the issues (if any) of your controller?

– Identify precise ways to proceed in order to improve the navigation performance of the reactive
controller.

4 Bonus points for the fastest touring controller

In the class I will run your controllers and make them competing with each other. The one that will have the
best performance over one single tour (i.e., that will get back faster to origin, with minimal or zero bumping)
will get 0.75 extra points!

3


	Introduction
	Task: Maze navigation
	Your work
	Bonus points for the fastest touring controller

