
4 On-board sensors: depth camera, laser scan, bumpers,

cliff sensors

In the previous package, a random robot controller has been developed. The controller
did not use input data from sensors to assign velocity values. In a sense, the robot was
operating blindly, or, in other words, in open-loop modality. However, sensory inputs
are fundamental to cope with the challenges of real-world scenarios. To support safe and
effective navigation, the TurtleBot2 is equipped with an RGB-D depth camera, an array of
bumpers, and an array of cliff sensors, which are described in the two sections that follow.

4.1 Depth camera (a first introduction)

The depth camera returns a point cloud that can be used to assert the presence or not of
objects within the 3D field of view of the camera.

Figure 7: Depth of an object within the FOV of the camera. Each pixel gets a depth value.

In our real TurtleBot2, the RGB-D camera is an ORBBEC Astra, that has a declared
FOV of 60◦ horizontal and 49.5◦ vertical, a depth image of 640 × 480 pixels updated at 30
Hz. The operational range is between 0.6 to 8 meters. The Microsoft Kinect, the sort of
original RGB-D camera, has a FOV of 57◦ horizontal and 43◦ vertical, with an operational
range of 0.9 to 3.5 meters (and same depth image size). The model which is include as a
default RGB-D camera for the TurtleBot2 since ROS Indigo, is the Asus Xtion Pro Live
3D Sensor, shown in the figure. The working of sensor is based on an infrared emitter,
an infrared camera, and an RGB camera. The FOV is 58◦ H, 45◦ V, 70◦ D (Horizontal,
Vertical, Diagonal). The distance of use is between 0.8 and 3.5 meters.

Figure 8: The Asus Xtion Pro Live sensor which is the default mounted on the TurtleBot2
in ROS and Gazebo models.

For the time being, we will not use the depth camera, but rather we will use a 2D slice
of its data, that would be equivalent of the output returned from a planar laser scanner
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(range finder). A virtual sensor exists that precisely returns this information, which would
tell about the presence of obstacles on a plane at the height of the depth camera sensor.
This is performed by the depthimage_to_laserscan package.

* However, before moving to check what kind of messages the laser scan sensor provides,
it is instructive to check what the camera “sees”. At this aim first starts gazebo (if you
don’t have yet a real robot), for instance with the maze world from the homework:

$ export TURTLEBOT_GAZEBO_WORLD_FILE=∼/catkin_ws/worlds/funky-maze.world;
> roslaunch turtlebot_gazebo turtlebot_world.launch

then, in two different shell, execute the following rosrun commands, that will run the
image_view package, which is a viewer for ROS image topics (http://wiki.ros.org/
image_view):

$ rosrun image_view image_view image:=/camera/rgb/image_raw
$ rosrun image_view image_view image:=/camera/depth/image_raw

where the first command shows what the robot sees with the RGB camera, while the second
shows the depth images, where the grayscale encodes depth. In gazebo, you can manually
move the robot and/or add objects to the scene, in front of the robots, and you will see
how the images do change. If you have a real robot, you can keep track of what the robot
is seeing in the real world. In the figure, the maze world is shown as from Gazebo, together
with the RGB and depth images from image_view. We can also use rviz for an enhanced

Figure 9: The maze world in Gazebo, and the RGB and depth images as seen from the
robot camera.

visualization:

$ roslaunch turtlebot_rviz_launchers view_robot.launch
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check the PointCloud button and you will see something similar to what shown in the
figure below (Left). If you uncheck PointCloud and check LaserScan, you will visualize
the output from the laser scan sensor, that will show the obstacle in range of the FOV of
the robot, as shown in the figure (Right).

Figure 10: Visualization of the point cloud (Left) and of the laser scan (Right) in rviz for
the same scenario of the previous figure.

4.2 Laser scan sensor

Going back to the 2D laser scan sensor, the output of the scan readings are published on
the topic /scan:

$ rostopic info /scan

that makes use of sensor_msgs/LaserScan as type of topic messages:

std_msgs/Header header
float32 angle_min
float32 angle_max
float32 angle_increment
float32 time_increment
float32 scan_time
float32 range_min
float32 range_max
float32[] ranges
float32[] intensities

with the following meaning:

Header header # timestamp in the header is the acquisition time of
# the first ray in the scan.
#
# In frame frame_id, angles are measured around
# the positive Z axis (counterclockwise, if Z is up)
# with zero angle being forward along the x axis

float32 angle_min # start angle of the scan [rad]
float32 angle_max # end angle of the scan [rad]
float32 angle_increment # angular distance between measurements [rad]
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float32 time_increment # time between measurements [seconds] - if your scanner
# is moving, this will be used in interpolating position
# of 3d points

float32 scan_time # time between scans [seconds]

float32 range_min # minimum range value [m]
float32 range_max # maximum range value [m]

float32[] ranges # range data [m]
# (values < range_min or > range_max should be discarded)

float32[] intensities # intensity data [device-specific units]. If your
# device does not provide intensities, please leave
# the array empty.

* In order to subscribe and read the messages from the /scan topic, the above message
type must be imported in the python code, with a statement:

from sensor_msgs.msg import Laserscan

The run-time value of the fields of the range finder messages (e.g., the ranges of the objects
in the FOV) can be read as usual from the command line:

$ rostopic echo /scan/ranges

The sensor has a number of parameters (http://wiki.ros.org/pointcloud_to_laserscan):

-min_height (double, default: 0.0) The minimum height to sample in the point cloud in meters.
-max_height (double, default: 1.0) The maximum height to sample in the point cloud in meters.
-angle_min (double, default: -90) The minimum scan angle in radians.
-angle_max (double, default: 90) The maximum scan angle in radians.
-angle_increment (double, default: pi/360) Resolution of laser scan in radians per ray.
-scan_time (double, default: 1.0/30.0) The scan rate in seconds.
-range_min (double, default: 0.45) The minimum ranges to return in meters.
-range_max (double, default: 4.0) The maximum ranges to return in meters.
-target_frame (str, default: none) If provided, transform the pointcloud into this frame before

converting to a laser scan. Otherwise, laser scan will be
generated in the same frame as the input point cloud.

-concurrency_level (int, default: 1) Number of threads to use for processing pointclouds. If 0,
automatically detect number of cores and use the equivalent
number of threads. Input queue size is tied to this parameter.

-use_inf (boolean, default: true) If disabled, report infinite range (no obstacle) as range_max -+ 1.
Otherwise report infinite range as +inf.

* Parameter values can be retrieved or can be set from command line or from inside a
program using the rosparam service:

$ rosparam list
$ rosparam get /depthimage_to_laserscan/range_min

* In addition, the package /depthimage_to_laserscan publishes the topic
/depthimage_to_laserscan/parameter_descriptions that precisely describes the pa-
rameters and their values in use:

$ rostopic echo /depthimage_to_laserscan/parameter_descriptions

Many complex packages include such a parameter_descriptions topic precisely to ease the
access to relevant parameters. Also an parameters_updates topic is available for dynamic
updates. As a general rule, it is necessary to check what are the specific parameters of a
sensor before using it!
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In particular, for the laser scan sensor, the ranges[] arrays returns a depth value for
the presence (or not) of an object along n radial directions, where n depends on the max
and min scan angles (angle_min and angle_max), and on the angle increment parameter,
angle_increment. If an object is detected at a distance di along the i-th radial direction,
the distance value is reported in ranges[i]. If nothing is detected (up to the maximum
range), a NaN is reported (or any arbitrary value over the declared ranges). ranges[1]

corresponds to the rightmost scan direction with respect to the heading of the robot, while
ranges[n] corresponds to the leftmost one. ranges[n/2] corresponds to the measure along
the heading of the robot. Since the size of the depth image is 640 × 480 pixels, the number
n is equal to 640 (an horizontal slice). The difference between max and min ranges divided
by n must be then equal to the angular resolution.

Figure 11: Illustration of laser scan operations.

4.3 Bumpers

In the TurtleBot2 there are three bumper sensors in the base of robot (which is the Kobuki
robot):

• one in the middle-front;

• one in the left front;

• one the right front.

* The bumper sensor is a mechanical sensor that helps the robot detecting collision with
obstacles. When the robot touch an external object one bumper sensor (if in correct posi-
tion) gets pressed and throws a bumper event. A bumper event is also generated when the
bumper is released.

Bumper messages following a bumper event are published in the topic:

/mobile_base/events/bumper

As usual, if we check the info of the topic with:

$ rostopic info /mobile_base/events/bumper

we find that topic messages are of type:
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kobuki_msmgs/BumperEvent

which means that a statement

from kobuki_msmgs.msg import BumperEvent

will need to be part of the initial part of a python code using bumpers.

To check what is the structure of the BumperEvent messages:

$ rosmsg info kobuki_msmgs/BumperEvent

which shows the following:

# bumper
uint8 LEFT = 0
uint8 CENTER = 1
uint8 RIGHT = 2

# state
uint8 RELEASED = 0
uint8 PRESSED = 1

uint8 bumper
uint8 state

The state field says what actions has triggered the event, while the bumper field says to
which bumper the event refers to.

The state of the bumpers can be check at any time from the command line echoing the
topic:

$ rostopic echo /mobile_base/events/bumper

For instance, if in Gazebo you manually move the robot in order to let it touch an obstacle,
the above topic should report it.

4.4 Cliff sensors

Cliff sensors are responsible for detecting cliffs and altitude changes when the robot is
moving, especially to prevent crashes when reaching stairs. They are located in the bottom
of the Kobuki base. The behavior is very similar to the bumper sensor. Likely, we are not
going to use cliff sensors, however, they are described below for completeness.

There are three cliff sensors:

• one in the center,

• one in the left side,

• one in right side.
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Cliff events are published in the topic:

/mobile_base/events/cliff

Again, getting the info from rostopic and the type of message from rosmsg we get that
type is:

kobuki_msmgs/CliffEvent

which means that a statement

from kobuki_msmgs.msg import CliffEvent

will need to be part of the initial part of a python code using cliff sensors.

To check what is the structure of the CliffEvent messages:

$ rosmsg info kobuki_msmgs/CliffEvent

which shows the following:

# cliff sensor
uint8 LEFT = 0
uint8 CENTER = 1
uint8 RIGHT = 2

# cliff sensor state
uint8 FLOOR = 0
uint8 CLIFF = 1

uint8 sensor
uint8 state

# distance to floor when cliff was detected
uint16 bottom

5 Setting the robot pose for simulation experiments

When running a simulation experiment, it might be appropriate to set he initial pose of
the robot at a specific location of the environment and at a specific orientation. This can
be realized in different ways.

5.1 Using world files

First, the pose can be flexibly specified in the world file which is given as input to a
roslaunch command. We will study later how to create or modify a world file, therefore,
let’s skip this for the time being.
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5.2 Using environment variables

A way which is related to the changing a world file, is by exporting the environment variable
holding the robot pose when calling gazebo, for instance:

$ export ROBOT_INITIAL_POSE="-y 2 -x 3 -z 0 -R 0 -P 0 -Y 2";
> roslaunch turtlebot_gazebo turtlebot_world.launch

where the pose is set in terms of position variables (x,y,z) and orientation ones (Roll
Pitch, and Yaw). Any subset of the pose variables can be set, with the remaining ones
taking their default values. In a similar way, also the initial Twist (linear and angular
velocity vectors) can be set.

In Gazebo, after selecting the robot, in the left panel it is possible to check in [Property -

Value] that the value of the pose has been assigned correctly (as well as what is the pose
of the robot or of other objects at any time).

5.3 Manually

* Of course, an easy, yet not automatic way of changing the pose is to do it manually,
moving the robot inside Gazebo (first select, and then move). The robot can be manually
moved at any time.

5.4 Using a set model service

In a more general way, from the inside of a simulation, it is possible to set the robot pose
using a service, analogous to what done for reading the ground truth. In this way the service
allows to set a value, rather than returning one. How to use a service for the purpose is
shown in the code below.

One issue with this way of proceeding consists in the so-called problem of the kidnapping
robot: in pratice the robot is being teleported, which means that its state knowledge is not
valid anymore (e.g., its odometry information would be totally wrong after the teleportation
act).

The code below is the same as in pose-monitor.py, except for a modification in the _-

_init__ function and in the import statements (lines 15–16, 40–52). The code for the
functions other than the __init__ one are not reported being the same. The node gets
connected to the service for setting the state of an entity in the Gazebo world and then
sets the pose of the mobile_base entity, that physically moves the TurtleBot2, by assigning
position.x=2 (all the other parameters stay from default). If Gazebo is launched first as
usual, and then rosrun this node, the robot will be ”teleported” in the new coordinate
position (from the default one at 0,0,0).

1 #!/usr/bin/env python
2

3 import rospy
4
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5 # Import the Odometry message
6 from nav_msgs.msg import Odometry
7

8 # Import the Twist message
9 from geometry_msgs.msg import Twist

10

11 import tf
12

13 # for the ground truth
14 from gazebo_msgs.srv import GetModelState
15 from gazebo_msgs.srv import SetModelState
16 from gazebo_msgs.msg import ModelState
17

18 class PoseMonitor():
19

20 def __init__(self):
21 # Initiate a named node
22 rospy.init_node(’pose_monitor’, anonymous=True)
23

24 self.odom_sub = rospy.Subscriber(’/odom’, Odometry, self.callback_odometry)
25

26 self.vel_change_sub = rospy.Subscriber(’/change’, Twist, self.callback_velocity_change)
27

28 self.rate = rospy.Rate(1)
29

30 self.report_pose = False
31

32 print("Wait for GET service ....")
33 rospy.wait_for_service("gazebo/get_model_state")
34 #rospy.wait_for_service("gazebo/spawn_model")
35

36 print(" ... Got it!")
37

38 self.get_ground_truth = rospy.ServiceProxy("gazebo/get_model_state", GetModelState)
39

40 print("Wait for SET service ....")
41 rospy.wait_for_service("gazebo/set_model_state")
42 #rospy.wait_for_service("gazebo/spawn_model")
43

44 print(" ... Got it!")
45

46 self.model_state = ModelState()
47

48 self.model_state.model_name = "mobile_base"
49 self.model_state.pose.position.x = 3
50

51 self.set_model_state = rospy.ServiceProxy("gazebo/set_model_state", SetModelState)
52 self.set_model_state(self.model_state)
53

54 .... (the same as in pose-monitor.py)
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