
15-110: Principles of Computing

Homework 08

Due: 11th October, 2022 at 10:00pm

� You need to complete the Python �le for this assignment, and submit it to Gradescope.

� There are 100 points.

� You must solve the tasks individually, always abiding by the course and CMU's academic

integrity policy.

� We are not giving you any starter code this week. That means you need to create your �le from

scratch and de�ne your own test cases. For writing test cases, you may follow the style of test

cases used in the previous homework.

1. (20 points) Caesar Cipher

Julius Caesar used a system of cryptography, now known as Caesar Cipher, which shifted each

letter 2 places further through the alphabet (e.g. "A" shifts to "C", "R" shifts to "T", etc.). At

the end of the alphabet we wrap around, that is "Y" shifts to "A". We can, of course, try shifting

by any number.

Implement the function decode(T, n) that takes an input a string T, representing the encode text,

and the shift n that was used to encode it. The function returns the original text. You can assume

that there are only letters in the text (no spaces or punctuation) and that all letters are uppercase.

You should know this, but to avoid any confusion, this is the alphabet:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

For example:

� decode("LIPPSASVPH", 4) should return "HELLOWORLD"

� decode("ECV", 2) should return "CAT"

2. (20 points) Tautogram

Fatima has always loved poetry, and recently she discovered a fascinating poetical form. Tau-

tograms are a particular case of alliteration, which is the occurrence of the same letter at the

beginning of adjacent words. In particular, a sentence is a tautogram if all of its words start with

the same letter.

For instance, the following sentences are tautograms:

� Flowers Flourish from France

� Sam Simmonds speaks softly

� Peter pIckEd pePPers

� truly tautograms triumph

1

https://www.gradescope.com/courses/412067


Fatima wants to impress her friends by writing a letter full of this kind of sentences. Please help

Fatima check if each sentence she wrote down is a tautogram or not.

Implement the function tautogram(S) that takes a sentence as a string (a sequence of words

separated by spaces), and returns True if S is a tautogram and False otherwise. You may assume

that the words are formed only by letters, and there are no punctuation marks.

For example, tautogram("Flowers Flourish from France") should return True.

3. (25 points) Relevant Word Frequency

You are tasked to write a program for �nding out the category a text belongs to. In order to

�nd this out, you decided to see which words occur more frequently in the text, and you wrote

a python program that computes the frequency of each word, i.e., the number of times the word

occurs divided by the total number of relevant words.

However, on a �rst attempt, you realized that the most frequent words are usually irrelevant for

guessing a category, such as �the�, �is�, and �are�. You also noticed that your program would count

�Python� and �Python's� as two di�erent words because of the contraction.

There are a lot of improvements you can make to your code, so you have decided to implement it

again, this time removing all the parts of the text that are not relevant.

Implement the function relevantWordFrequency(text) that takes a string text as a parameter,

and returns a list of tuples of two elements, where the �rst element of each tuple is a word in text

and the second element is the frequency of the word.

The function should satisfy the following:

1. You should only count words that have more than 3 characters (so �are� and �is� should not

be counted, for example).

2. All punctuation should be ignored. With this aim, you can use the string constant string.punctuation

from the module string (https://docs.python.org/3/library/string.html).

3. All contractions should be ignored. They are:

� 'm

� 're

� 's

� 've

� 'll

� 'd

� n't

4. Capitalization should be ignored, and the words in the returned list should appear lower case.

For example, if text is the string:

'''

I am hungry.

Me too, I'm really hungry! Let's get some food!

'''

then relevantWordFrequency(text) should return the list:

[

('food', 0.2)

('hungry', 0.4),

('really', 0.2),

('some', 0.2)

]

© Carnegie Mellon University 2022 2 of 3 15-110 Homework 08

https://docs.python.org/3/library/string.html


The returned list must be sorted in ascending order. In the example, ('food', 0.2) is the �rst

element of the list since, alphabetically, the letter 'f' comes before the other �rst letters of the

words.

To better organize the code, you must write a (helper) function cleanText(text) and use it inside

relevantWordFrequency(text). The function cleanText(text) takes as input a string text and

removes from the input string all punctuation, contractions, and spaces. Moreover, all letters are

lowercased. The function returns a 'cleaned' list of words from the input string in the same order

as they occurred in the string.

For instance, cleanText(text) where text is the above example string, returns

['i', 'am', 'hungry', 'me', 'too', 'i', 'really', 'hungry', 'let', 'get', 'some', 'food'].

Most likely, the �rst step in relevantWordFrequency(text) is precisely to invoke cleanText(text)

;-)

4. (35 points) DNA Match

In the following problems, a DNA sequence is represented by a string composed of the characters

"A", "C", "T", and "G" only.

(a) An important problem in working with DNA is subsequence matching. In short, subsequence

matching determines if a short DNA sequence occurs within a longer sequence. (All the

letters on the subsequence occur consecutively within the original sequence.) Implement the

function simpleSubSeqMatch(sequence, subSeq) which, given a DNA sequence sequence

and a shorter DNA sequence subSeq, returns how many times subSeq occurs within sequence.

For example:

� simpleSubSeqMatch("ACCCCTTT", "CCT") should return 1.

� simpleSubSeqMatch("ACCTACCT", "CCT") should return 2.

� simpleSubSeqMatch("ACCCTTTT", "TT") should return 3.

(b) Sometimes, when doing subsequence matching, we allow partial matches instead of perfect

matches. A partial match is one where we don't care about the value of certain characters. If

we don't care about a character, we give it the value "N". For example, "ANC"can match any

three letter sequence that starts with "A" and ends with "C", such as "ATC", "AGC", etc.

Implement the function subSeqMatch(sequence, subSeq) which, given a DNA sequence

sequence and a shorter DNA sequence subSeq which may contain N values, returns how

many times subSeq occurs within sequence.

For example:

� subSeqMatch("ACCTCT", "TNT") should return 1.

� subSeqMatch("ACCTAGCT", "NCT") should return 2.

� subSeqMatch("ACCCTTTT", "NTT") should return 3.

You may �nd it helpful to create helper functions to solve this task.

© Carnegie Mellon University 2022 3 of 3 15-110 Homework 08


