15-122 Programming 5-6 Page 1 of 10

15-122: Principles of Imperative Computation, Spring 2016

Homework 5-6 Programming: Clac and EXP

Due: Thursday 25" February, 2016 by 22:00 ® ,

In this assignment, you will investigate stacks, queues, and dictionaries by implementing two
programming languages. The first language, Clac, is a strange new programming language,
but it is one that is easy to implement. The second language, EXP, looks more familiar.

The code handout for this assignment is on [Autolab and at

gatar.cmu.edu/~srazak/courses/15122-s16/hws/exp-handout.tgz

There is no limit on the number of times you may hand in this assignment on Autolab, but
only tasks 1 will be graded before the deadline. You should examine Autolab’s output
to make sure the other tasks compile. If you don’t check Autolab’s outputs
and there are compilation errors, you may end up receiving no credit for the
assignment.

Reminder about respecting interfaces: In this assignment, we will take interfaces se-
riously. When using the implementations of stacks and queues in the 1ib directory of the
handout, you should only use the interfaces. We will enforce this, in the autograder, by com-
piling your code against different implementations of the interfaces. Similarly, when working
on EXP in Section 3, you should respect the interface of the dictionaries you implemented
in Section 2.

1 Introducing Clac

Clac is a new stack-based programming language developed by a Pittsburgh-area startup
called Reverse Polish Systems (RPS). Any similarities of Clac with Forth or PostScript are
purely coincidental.

Clac works like an interactive calculator. When it runs, it maintains an operand stack.
Entering numbers will simply push them onto the operand stack. When an operation such
as addition + or multiplication * is encountered, it will be applied to the top elements of the
stack (consuming them in the process) and the result is pushed back onto the stack. When
a newline is read, the number on top of the stack will be printed. This is an example where
we start Clac and type 3 4 x, followed by a newline:

% ./clac

clac>> 3 4 x
Stack is now [12]

(© Carnegie Mellon University 2016

https://autolab.andrew.cmu.edu/courses/15122-s16/
qatar.cmu.edu/~srazak/courses/15122-s16/hws/exp-handout.tgz

15-122 Programming 5-6 Page 2 of 10

Clac responded by printing the stack, which now contains only 12. We now enter -9 2 /
and a newline:

clac>> -9 2 /
Stack is now [12,-4]

At this point the stack contains two integers: 12 (the result of the multiplication) and -4
(the result of the integer division, which is at the top of the stack). We can add them simply
by typing + and a newline.

clac>> +
Stack is now [8]

The stack contains only 8, since 12 + (—4) = 8. Note that the integers and operators we
input into Clac (they are called tokens below) work like a queue: Clac processes them left
to right and we enter new ones on the right.

1.1 Rules of Clac

Every Clac operation that you will implement removes a single string (a token) from an input
queue, and then modifies the operand stack. To specify operations, we use the notation

S — 9

to mean that the stack S transitions to become stack S’. Stacks are written with the top
element at the right end! For example, the action of subtraction is stated as

- S,y — S, x—y

which means: “When you dequeue the token - from the queue, pop the top element (y) and
the next element (x) from the stack, subtract y from x, and push the result x —y back onto
the stack.” The fact that we write S in the rule above means that there can be many other
integers on the stack that will not be affected by the operation.

The following table gives all the Clac operations that you will implement in this assign-
ment.

Token Before After Note

n . S — S,n for —231 <n < 23 in decimal

+ : S,xyy — Sz+y

- S,y — S;z—y

* S,y — Siaxy

/ . S,zyy — S,x/y Erorify=0orifz=-2%and y= -1
* ok S,y — S)av Errorif y <0

The addition, subtraction, multiplication, and exponent operations should give their answer
in terms of 32-bit two’s complement modular arithmetic, which makes it easy to implement
Clac’s math operations in terms of C0’s math operations. Whenever the instructions say

(© Carnegie Mellon University 2016

15-122 Programming 5-6 Page 3 of 10

that Clac should raise an error, you should call the function error() with an appropriate
error message. If a rule requires two integers to be removed from the stack and fewer than
two integers are presently on the stack, error() should also be called.

The error () function takes a string as its argument and is built in to CO0, like assert ().
User errors (errors in Clac code) should always cause error () to be called; assertions should
only be used for programmer errors.

You can use the function parse_int(tok, 10) to check whether a token is an integer
in base 10. If the function returns NULL, then the string stored as tok does not represent
an integer. Otherwise, dereferencing the returned pointer will give you the integer that the
string stored in tok represents.

1.2 Using the Reference Implementation

We can see how our introductory series of instructions affected the stack and the queue in
detail by running the clac-ref binary that is available on the shared Unix servers, giving
it the extra argument -trace. Using this argument, we can see the state of the stack and
the queue after every step.

% clac-ref -trace

clac>> 34 x -9 2 / +

stack || queue
[| 34 -92/+
3| 4*-92/+
34 || x-92/ +

12 || -92/ +

12 -9 || 2 / +

12 -9 2 || / +

12 -4 || +

8 |

We can see that 8 was printed out at the end because that was what was at the top of the
stack after the queue had been completely consumed.

The full Clac implementation contains many other tokens for calculation, manipulating
the stack and the queue, and even defining custom functions. However, the small set of
operations above will be enough for this assignment.

1.3 Implementation

Task 1 (5 points) In the file clac.c®, you should implement the function eval:

void eval(istack_t S, queue_t Q)
//@requires S !'= NULL && Q != NULL;
//@ensures queue_empty(Q);

(© Carnegie Mellon University 2016

15-122 Programming 5-6 Page 4 of 10

Note that the type is istack_t. In the code handout, you have both an interface of
stacks of integers (istack_t, in lib/stack_of_int.c0) and stacks of strings (stack_t,
in lib/stack_of_string.c0).

The main function in file clac-main.c0O takes lines of input and converts them to a
queue of tokens. Each token is just a string. This part of the Clac implementation has
already been programmed for you, and you are welcome to examine it, but you should not
change this code.

When eval is first called, the stack of integers S will be empty. But since the input is
processed line-by-line, the eval function may also be called with nonempty stacks, repre-
senting the values from prior computations. The eval function should dequeue tokens from
the queue @ and process them according to the Clac definition. When the queue is empty,
eval should return leaving the stack in whatever state it was already in. If error() is ever
called, it doesn’t matter what remains on the stack or on the queue.

It is possible to write a lot of long and confusing code to safely and efficiently implement-
ing these two tasks, but it is also possible to use helper functions to write very clear and
concise code. Try to think about how you would structure your code if you knew you were
going to implement full Clac, which has a dozen more tokens. (No matter how good your
code looks, your eval() function will probably still look like a loop containing a long series
of if-else statements.)

You can reuse code from lecture and the lecture notes, but if you do that, cite your
sources!

2 Dictionaries

The series of Clac tokens“3 4 * -9 2 / +” from Section[I.2|performs the computation that
we would write down on paper as 3 x 4 + —9 + 2. Correctly interpreting this mathematical
computation relies on understanding precedence or order of operations. Specifically, we know
that multiplication and division need to be done before addition, because these operations
have higher precedence. The order of operations is clear when we look at our Clac program:
the tokens * and / are earlier in the queue than the + token.

In this section, you will implement a dictionary that allows us to take a mathematical
operator (represented as a string, like "*+"), and find its precedence as an integer (say, 2).
When we initially create dictionaries with the function dict_new(), we populate them with
an array of strings, where each string A[i] contains a whitespace-separated list of all the
tokens that should be given precedence i. Here’s an example:

string[] A = alloc_array(string, 3);

A[2] = "xx"; // "xx' has the highest precedence, 2

Al1] "x /"; // 'x' and '/' have the same precedence, 1
A[O] = "+ -"; // '+’ and '-’ have the same precedence, 0
dict_t D = dict_new(A, 3);

If you haven’t already done so, you should look at the num_tokens () and parse_tokens()
functions from the CO library named parse. The is_infix_array() function provided to
you in the file Tib/utils.c0 gives an example of using these functions.

(© Carnegie Mellon University 2016

15-122 Programming 5-6 Page 5 of 10

Task 2 (5 points) In the file dict.c0, implement a precedence dictionary with the fol-
lowing interface:

typedef ______ * dict_t;

dict_t dict_new(string[] A, int n)
/*@requires \length(A) == n; @/
/*@requires is_infix_array(A, n); @/ ;

int dict_lookup(dict_t D, string oper)
/*@requires D != NULL; @/
/*@ensures \result >= -1; @/ ;

The dict_new(A, n) function must return NULL if the same token appears twice in the
input. The dict_Tlookup(D, x) function should return -1 if the string stored as X is not
present in the dictionary D. See the file dict-test.cO for examples.

The implementation is completely up to you, but you might consider re-using ideas from
the previous assignment, where you were also implementing a dictionary from strings to
numbers. If you use code from previous handouts or from lecture, make sure to cite your
sources.

Whatever you do, you should document your design clearly in comments, write and
deploy reasonable data structure invariants, and use contracts to ensure safety and some
degree of correctness for your code.

3 The EXP Language

Reverse Polish Systems has hired you to build a more user-friendly language, called EXP,
leveraging their existing Clac technology. The EXP language has all the mathematical
operations that the mini-Clac you implemented has: exponents, multiplication, division,
addition, and subtraction. The difference is that EXP allows us to write expressions as infix.
In EXP, we can write “27 / 3**x2 - 2**3” and the result will be —5, because we evaluate
the exponents first, getting 27/9 — 8, and then evaluate the division, getting 3 — 8 = —5.

3.1 Parsing EXP Programs

Both Clac and EXP use the same process for turning a string into a queue of tokens. The
EXP program above will be transformed into a queue of tokens with the following contents:

II27II, II/II, II3II7 ”**”7 II2II, II_II, II2II7 "**”7 II3II

We won'’t evaluate EXP programs directly. Directly evaluating infix expressions that are
presented in this way is difficult at best. Instead, we will approach the problem indirectly:
we will use an algorithm to transforms an EXP program into a Clac program. The ex-
ample above will be transformed into the Clac program “27 3 2 *x / 2 3 *x -7. We
already have an interpreter that can evaluate this Clac program, so we can use that existing
interpreter to run our EXP program!

(© Carnegie Mellon University 2016

15-122 Programming 5-6 Page 6 of 10

You can see this happening using the exp-ref binary that is also available on the shared
Unix servers:

% exp-ref

EXP>> 3x4 + -9/2

Corresponding Clac program: 3 4 x -9 2 / +
EXP>> -4%x2/3 - 7*7

Corresponding Clac program: -4 2 x 3 / 7 7 % -

The algorithm for translating infix EXP programs into postfix Clac programs will need
a dictionary in order to determine which tokens should be treated as infix mathematical
operations. We’ll use the word operator to describe a token that appears in the dictionary
(and that therefore has a known precedence).

In addition to a dictionary, our translation algorithm will use a stack of operators and two
queues. The input queue contains the EXP program we're reading, and the output queue
contains the Clac program we’re writing. Numbers always get moved immediately from the
input queue to the output queue. Operators cannot be immediately moved to the output
queue, though. They are placed on the operator stack until it is time to put them onto the
output queue.

The algorithm, named the shunting-yard algorithm by Edsger Dijkstra,ﬂ has two phases:
we start in the integer phase, and switch phases every time we remove something from the
input queue.

Integer phase: There must be a token on the input queue, and it must be an integer. Put
that token on the output queue and switch to the operator phase.

Operator phase: In this phase, you will sometimes pop operators off of the stack. When-
ever you pop an operator off the stack, you should add it immediately to the output
queue.

If there is a token tok on the input queue, it must be an operator (it must be in
the precedence dictionary). Pop just enough operators off of the stack so that the
operator on the top of the stack (if there is one) has precedence strictly less than tok’s
precedence. (If the operator stack is initially empty, or if the operator on the top of
the stack already has a lower precedence, then there’s nothing to do.) Finally, push
tok on the stack and switch to the integer phase.

If there are no tokens on the input queue, then you are done. Pop every operator off
the stack (and put it on the output queue).

!The algorithm is also described at https://en.wikipedia.org/wiki/Shunting-yard_algorithm.
You're welcome to read the Wikipedia article, but don’t refer to other sources.

(© Carnegie Mellon University 2016

https://en.wikipedia.org/wiki/Shunting-yard_algorithm

15-122 Programming 5-6 Page 7 of 10

Example To give a few examples of how the operator phase works, imagine that the
operator stack initially contains the following three operators, with "**" at the top of the
stack:

"+" (precedence 0), "/" (precedence 1), "*x*" (precedence 2)

The behavior of the operator phase depends on what’s on the queue. Here are three possible
outcomes:

e If the input queue is empty, then enqueue "*x*" then "/", and then "+" onto the
output queue in that order. Return the output queue.

e If the token at the front of the input queue is "42", then the input was not a valid
EXP program. Return NULL. The same happens when passed an invalid token like
IIXII Or II@II.

o If the token at the front of the input queue is "*" and the dictionary gave this token
precedence 1, first pop "**" off the stack and add it to the output queue. Then pop
"/" off the stack and add it to the output queue. Now the precedence of the token on
the top of the stack is strictly less than 1, so push "*" onto the stack. Switch to the

integer phase and repeat.

Associativity This version of the shunting-yard algorithm results in all operators being
treated as left-associative. We definitely want to interpret subtraction and division as left
associative. As an example, consider the expression 1 — 2 — 3. This is always evaluated
the same way as (1 —2) — 3, or “1 2 - 3 -” in Clac; it would be incorrect to read it as
1—(2-=3),0or1 2 3 - - in Clac. However, the exponentiation operator is often treated as
right associative. (Python does this, for instance.) EXP treats exponents as left associative
to make your implementation simpler.

3.2 Invariants

Before you start implementing this algorithm, think about the invariants that are at work!
Operationally, before you add a new operator to the input stack, you remove items from the
stack until the new operator has a higher precedence than the operator on the top of the
stack. We can write a specification function that captures this operational behavior as an
invariant.

Task 3 (2 points) In a new file parse.c0, write a function which checks that a stack S con-
tains valid operators with strictly increasing precedence. The highest-precedence operation
must be on the top of the stack.

bool is_precstack(dict_t D, stack_t S)
//@requires D != NULL & S !'= NULL;

When the function returns, the contents of the stack should be the same as they were when
the function was called.

(© Carnegie Mellon University 2016

15-122 Programming 5-6 Page 8 of 10

Important: Even though is_precstack(D, S) will be an important loop invariant of
our algorithm, we are not usually allowed to write it in a //@loop_invariant contract!
This is because CO has checks to make sure that programs will always run the same way
with or without contracts enabled.

The function is_precstack() must actually modify the stack S in order to respect the
stack interface. The CO compiler assumes that calling a function that modifies the stack in
any way could cause the program to behave differently when contracts are enabled. Even
though your function returns the stack to its original condition, the CO compiler cannot
prove this and therefore refuses to allow is_precstack() in a contract.

If you want to use this function in a loop invariant to help you debug your code, you
can call the compiler with the extra argument --no-purity-check. We’ll compile your
code with this option on Autolab — but that means you have to be extra careful that your
is_precstack() function returns the stack to its original state!

3.3 Implementation

Task 4 (5 points) In the file parse.c0, implement the algorithm described in Section

queue_t parse(dict_t D, queue_t input)
//@requires D != NULL && input != NULL;
//@ensures \result == NULL || queue_empty(input);

The function should return NULL if the input is not a well-formed EXP program according
to the operators in the dictionary D. If the function returns NULL it doesn’t matter what is
left on the input queue.

The exp-main.c0 file parses programs based on the following precedence table:

1. 11

>k k

No ok~ WN
A
A
\'4
\'

If you run your exp program with the -x option, it will attempt to run the parsed EXP
program with your Clac implementation.

% ./exp -X

EXP>> 3 x 4 + -9 / 2
Corresponding Clac program: 3 4 x -9 2 / +
Result: 8

This will only work if you restrict yourself to EXP programs using **, *, /, +, or -. Otherwise,
your Clac implementation will crash when it finds a token like < that it doesn’t know how
to process.

(© Carnegie Mellon University 2016

15-122 Programming 5-6 Page 9 of 10

Token Before After Note

> S,y — 51 Ifx>y

> S,y — S,0 Ifzx<y

== S,y — 51 fr=y

== S,y — 5,0 Ifx+#y

I= S,y — 51 Ifx#y

I= S,y — S,0 Ifxr=y

|| S,y — S, 1 If either z # 0 or y # 0
| | : S,eyy — S0 If both x and y are 0
&& s S,eyy — S 1 If both z #£ 0 and y # 0
&& S,y — 5,0 If either x or y is 0

<< S,y — S x2¥ If0<y<32

>> : Seyy — S,x/2Y Ifr>0and 0 <y < 32

Figure 1: Clac functions to implement in Task 5

3.4 Extending EXP using Clac

For the last part of this assignment, you will write some code in Clac, instead of writing
code in CO0. You will need to use the full Clac implementation described in Figure 2] which
is implemented by the clac-ref program.

The code you write will be in the form of Clac definitions, which you have already
encountered in the lab activity on Clac. For example, the Clac definition “: dup 1 pick ;”
defines a new token dup that takes whatever is at the top of the stack and duplicates it.
Therefore, the user-defined dup token implements the rule S,z — S, z, x.

Task 5 (3 points) In a file exp-defs.clac, write Clac definitions that implement the
Clac tokens described in Figure [I} The file already includes definitions of >, ==, and != to
get you started.

Task 6 (0 points) (Extra challenge 1) Make the shift operators always raise an error when
y<0ory>32

Task 7 (0 points) (Extra challenge 2) Make the right-shift operator perform division that
rounds towards negative infinity, so that it works correctly on negative x as well as nonneg-
ative z.

With your definitions, you can parse any valid EXP program into Clac, and then run it
with the Clac reference interpreter:

% ./exp

EXP>> 3 x4 > -9 /2 & 3 << 2 ==24>>2 -1

Corresponding Clac program: 3 4 x -9 2 / >32<<242 1 - > == §&&
% clac-ref exp-defs.clac

clac>> 34 x -92 / >32<<2421 - 5> ==§&&

1

(© Carnegie Mellon University 2016

15-122 Programming 5-6 Page 10 of 10

Before After
Stack Queue — Stack Queue Cond/Effect
S nQ o S,n |l Q
S,n || print,@Q — S Q See note #1
S || quit, @ — S Q See note #2
S,xy ||+, — S;e+y || Q See note #3
S,xy || -,Q — S;ie—y || @ See note #3
S,xy || *,Q — Ssexy || Q See note #3
S,xyy || /,Q — S,x/y || Q@ See note #4
S,x,y || %, Q — S,x%y || Q See note #4
S,xyy ||+, Q — S,a¥ || Q See #3, #4
S,xy || <@ — S, @ if v <y
S7I7y || <7Q — S,O || Q lfIZy
S,z || drop,@ — S Q
S,x,y || swap,@ — Sy,z || Q
S,x,y,z || rot,Q — S,y,z,z || @
S,z || 1f,Q — S Q if £ 40
S,z || if,toky, toks, toks, Q@ — S @ ifz=0
S, Tp,...,x1,n || pick,@ — STy, .1, || Q See note #5
S,n || skip,toks,. .., tok,, Q — S Q See note #5

Clac should raise an error whenever there are not enough tokens on the stack or the queue for an
operation to be performed, or whenever the token on the top of the stack is not one of the ones listed
above. Tokens are case sensitive, so Print and PRINT are not defined, though print is.

Notes:
1. The print token causes n to be printed, followed by a newline.

2. The quit token causes the interpreter to stop. The eval function should then return false
to indicate that we should just stop, rather than asking for more input.

3. This is a 32 bit, two’s complement language, so addition, subtraction, multiplication, and
exponentiation should behave just as in CO without raising any overflow errors.

4. Division or modulus by 0, or division/modulus of int_min() by -1, which would generate an
overflow exception according to the definition of CO (see page 3 of the |C0 Reference), should
raise an error in Clac. Negative exponents are undefined and should also raise an error.

5. The pick token should raise an error if n, the value on the top of the stack, is not strictly
positive. The SKip token should raise an error if n is negative; 0 is acceptable.

Figure 2: Clac reference

(© Carnegie Mellon University 2016

http://c0.typesafety.net/doc/c0-reference.pdf

	Introducing Clac
	Rules of Clac
	Using the Reference Implementation
	Implementation

	Dictionaries
	The EXP Language
	Parsing EXP Programs
	Invariants
	Implementation
	Extending EXP using Clac

