
15-122 Programming 3 Page 1 of 8

15-122: Principles of Imperative Computation, Spring 2016

Programming 3: Images

Due: Thursday 4th February, 2016 by 22:00

This programming assignment will have you using arrays to represent and manipulate images.

The code handout for this assignment is on Autolab and at

qatar.cmu.edu/~srazak/courses/15122-s16/hws/images-handout.tgz

The �le README.txt in the code handout goes over the contents of the handout and explains
how to hand the assignment in. There is a FIVE (5) PENALTY-FREE HANDIN LIMIT,
with the idea that for each task you can test your code, hand in, and then �x any bugs
found by autolab while working on and testing the next task. Make sure to leave enough
submissions to work on the optional Task 5, if you wish to do that. Every additional handin
will incur a very small (0.2 point) penalty.

Style Grading: With this assignment, we will begin to emphasize programming style

more heavily. We will actually be looking at your code and evaluating it based on the
criteria outlined at http://www.cs.cmu.edu/~rjsimmon/15122-s16/etc/styleguide.
pdf. We will make comments on your code via Autolab, and will assign an overall passing
or failing style grade. A failing style grade will be temporarily represented as a score of -15.
This -15 will be reset to 0 once you:

1. �x the style issues,

2. see any member of the course sta� during o�ce hours, and

3. brie�y discuss the style issues and how they were addressed.

We will evaluate your code for style in two ways. We will use cc0 with the -w �ag that
gives style warnings � code that raises warnings with this �ag is almost certain to fail style
grading. Because the -w �ag does not check for good variable names, appropriate comments,
or appropriate use of the functions de�ned in pixel.c0 and imageutil.c0, these issues
will be checked by hand.

Task 1 (2 points) In addition to using good style, be sure to include appropriate contracts,
@requires, @ensures, and @loop_invariant. Your annotations should at least be su�-
cient to ensure that all your array accesses are safe, and part of your grade will be based on
a visual inspection of this.

c© Carnegie Mellon University 2016

https://autolab.andrew.cmu.edu/courses/15122-s16/
qatar.cmu.edu/~srazak/courses/15122-s16/hws/images-handout.tgz
http://www.cs.cmu.edu/~rjsimmon/15122-s16/etc/styleguide.pdf
http://www.cs.cmu.edu/~rjsimmon/15122-s16/etc/styleguide.pdf

15-122 Programming 3 Page 2 of 8

1 Image manipulation

The two programming problems you have for this assignment deal with manipulating images.
An image will be stored in a one-dimensional array of pixels. (The C0 image library assumes
the ARGB implementation of pixels that you wrote last week.) Pixels are stored in the array
row by row, left to right starting at the top left of the image. For example, if a 5× 5 image
has the following pixel �values�:

a b c d e
f g h i j
k l m n o
p q r s t
u v w x y

then these values would be stored in the array in this order:

a b c d e f g h i j k l m n o p q r s t u v w x y

In the 5× 5 image, the pixel i is in row 1, column 3 (rows and columns are indexed starting
with 0) but is stored in the one-dimensional array at index 8. An image must have at least
one pixel.

Task 2 (2 points) Complete the C0 �le imageutil.c0. As with the pixel.c0 implemen-
tation from last week, you must �ll in the missing code and translate the English precondi-
tions and postconditions into @requires and @ensures statements.

We do not require you to hand in an images-test.c0 �le that tests your imageutil
implementation the way you tested your pixel implementation. It would be a good idea to
write one to test your own implementation, however!

2 Image Transformations

The rest of this assignment involves implementing the core part of a series of image transfor-
mations. Each function you write will take an array representation of the input image and
return an array representation of the output image. These functions should not be destruc-
tive: you should make your changes in a copy of the array, and not make any changes to
the original array. Your implementations should be relatively e�cient, meaning both that
they should have a reasonable big-O running time and that they should take at most a few
seconds to run on our example images.

Remember that your code should have appropriate preconditions and postconditions. It
is always a precondition that the given width and height are a valid image size that matches
the length of the pixel array passed to the function. It is always a postcondition that the
returned array is a di�erent array from the one that was passed in, and that this resulting
array has the correct length.

In order to pass style grading, you will be expected to use functions from the pixel
interface (the type pixel and functions get_red, get_green, get_blue, get_alpha, and
make_pixel) and the imageutil interface (the functions is_valid_imagesize, get_row,
get_column, is_valid_pixel, get_index) in the next two tasks. On Autolab, we will

c© Carnegie Mellon University 2016

15-122 Programming 3 Page 3 of 8

Figure 1: A sporty coupe before and after red removal.

compile your code for tasks 2 and 3 against our implementation of the pixel and the imageutil
interfaces, so you cannot add new functions to these interfaces.

Testing. You should use the provided *-main.c0 �les to help you test your code. The
use of these �les is described in the README.txt in the code handout.

For this assignment, we are providing a program, imagediff, to help you compare your
output images to the sample images in the handout, optionally saving an image that shows
you exactly where the two images di�er. It is in the course directory on afs, so it is available
on any cluster machine or when you are connected via ssh. For example:

% imagediff -i images/sample.png -j images/my-image.png -o images/diff.png

This command compares the image images/sample.png and images/my-image.png and
creates a visual representation of the di�erence in images/diff.png.

2.1 Removing red

As an example of image manipulation, you should take a look at remove-red.c0. The core
of this transformation is this function:

pixel[] remove_red (pixel[] pixels, int width, int height)

An example of this transformation is given in Figure 1.
You should look at the �le remove-red.c0 to get an idea of how this transformation

works, and you should look at README.txt to see how to compile and run this transformation
against remove-red-main.c0. You are strongly encouraged to write some smaller test cases
for your programs. An example of what this should look like is given in remove-red-test.c0.

Note that remove-red.c0 doesn't use the pixel or imageutil libraries. If your code
doesn't use the pixel or imageutil libraries, you will fail style grading! While it is not
required, you might want to try your hand at modifying remove-red.c0 to use the pixel
and imageutil libraries.

c© Carnegie Mellon University 2016

15-122 Programming 3 Page 4 of 8

Figure 2: Original image (left); Image after �rotation e�ect�

2.2 Rotation E�ect

In this task, you will create a rotation e�ect on an image. The core of this transformation
is this function:

pixel[] rotate(pixel[] pixels, int width, int height)

The returned array should be the array representation of the duplicated and rotated image.
An example of this transformation is given in Figure 2.

Your task here is to implement a function that takes as input an image of size w×h and
creates a �rotation� image of size (w + h)× (w + h) that contains the same image repeated
four times, the top right image containing the original image, the top left containing the
original image rotated 90 degrees counterclockwise, the bottom left containing the original
image rotated 180 degrees, and the bottom right containing the original image rotated 90
degrees clockwise.

The original image must have the same width and height in order to do the �rotation�
e�ect, i.e., w = h. If the supplied image is not �square� (i.e., its width does not equal its
height) or does not match the size given by the given width and height, your function should
abort with a precondition failure when compiled and run with the -d �ag.

Task 3 (5 points) Create a C0 �le rotate.c0 implementing a function rotate. You
may include any auxiliary functions you need in the same �le, but you should not include a
main() function.

You should look at README.txt to see how to compile and run this transformation
against rotate-main.c0. You are also strongly encouraged to write some test cases for
your programs in images-test.c0.

c© Carnegie Mellon University 2016

15-122 Programming 3 Page 5 of 8

Figure 3: Overlay the 3 × 3 mask
over the image so it is centered on
pixel e to compute the new value
for pixel e.

Figure 4: If the mask hangs over
the edge of the image, use only
those mask values that cover the
image in the weighted sum.

2.3 Applying Masks to an Image

In this problem, you will write a function that will apply a �mask� to an image. The core of
this transformation is this function:

1 int[] apply_mask(pixel[] pixels, int width, int height,
2 int[] mask, int maskwidth);

The returned array should contain the results of running the mask computation, a weighted
sum, on each pixel in the input. This is an array of integers, not an array of pixels; each
integer in the returned array corresponds to a pixel in the given image.

Masks In addition to an input image, we pass this transformation a mask, an n× n array
of integers representing weights. For our purposes, n must be odd. This means that the
n×n array has a well de�ned center � the origin. The weights in the mask can be arbitrary
integers � positive, negative, or zero.

For each pixel in the input image, think of the mask as being placed on top of the image
so its origin is on the pixel we wish to examine. The intensity value of each pixel under the
mask is multiplied by the corresponding value in the mask that covers it. These products
are added together. Always use the original values for each pixel for each mask calculation,
not the new values you compute as you process the image.

For example, refer to Figure 3, which shows a 3 × 3 mask and an image that we want
to perform the mask computation on. Suppose we want to compute the result of the mask
computation for pixel e. This result would be:

a + 3b + c + 3d + 5e + 3f + g + 3h + i

c© Carnegie Mellon University 2016

15-122 Programming 3 Page 6 of 8

Figure 5: Hammerschlag Hall: original image (left), blurred with the mask (middle), and
after running edge detection (right). See text for mask values.

Instead of doing this calculation for each channel individually, use the average value of the
red, green, and blue channels � we ignore the alpha channel. Going back to the example
in Figure 3, if the pixels a and e are both given by (a, r, g, b) = (255, 107, 9, 217), then use
(107 + 9 + 217)/3 = 111 as the average intensity of those pixels. If every other pixel in that
�gure is given by (a, r, g, b) = (15, 200, 120, 100) for an average intensity of 140, then index
14 (which corresponds to pixel e in Figure 3) of the returned array should store 2766:

111+(3×140)+140+(3×140)+(5×111)+(3×140)+140+(3×140)+140 = 2766

Note that sometimes when you center the mask over a pixel you want to operate on, the
mask will hang over the edge of the image. In this case, compute the weighted sum of only
those pixels the mask covers. For the example shown in Figure 4, the result stored in index
18 of the returned array, which corresponds to pixel e, is given by

3b + c + 5e + 3f + 3h + i

where b is the average intensity of the pixel labeled b and so on.

Task 4 (6 points) Create a C0 �le mask.c0 implementing a function apply_mask. You
may include any auxiliary functions you need in the same �le, but you should not include a
main() function.

You should look at README.txt to see how to use this transformation to perform a
grayscale blur (maskblur-main.c0) and edge detection algorithms (maskedge-main.c0).
The next page talks a little bit about how these algorithms, especially edge detection,
work. You are also strongly encouraged to write some test cases for your programs in
�le images-test.c0.

c© Carnegie Mellon University 2016

15-122 Programming 3 Page 7 of 8

Applications

The �rst main function you are given to test your code, maskblur-main.c0, reads a mask
from a text �le, speci�ed by the -m option. The mask is read in from the �le and passed
along to apply_mask. Then, the data returned from apply_mask is used to calculate new
intensity values for the pixels. This is done by summing all of the weights of the mask and
dividing by it. Note that this will cause the edge of the image to have a lower intensity
than it should, since we're not considering the part of the mask that hangs o� of the image,
but this is an acceptable simpli�cation of the problem. Since we're allowing our masks
to have negative values, this creates the possible issue of having an intensity greater than
255. If this is the case, the intensities are modi�ed appropriately � for the blur masks, the
maskblur-main.c0 program will do division to get an average intensity that is between 0
and 255. Since we're returning just one value instead of one per channel, this has the e�ect
of converting the image to grayscale.

One application of masks is blurring an image, which would be the e�ect created by the
examples shown in Figure 3 and Figure 4.

The other main function you are given to test your code, maskedge-main.c0, implements
an edge detection algorithm, which is another application of masks. The algorithm described
here is an implementation of Canny Edge Detection, using Sobel Operators. In this case,
the function apply_mask is called three times. The �rst call will be to blur the image. For
this purpose, the following mask is used:

2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2

After getting the resulting grayscale image, two more �lters (the Sobel operators) are ap-

plied to it. These �lters determine the change in intensity, which approximates the horizontal
and vertical derivatives.

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 and Gy =

−1 −2 −1
0 0 0

+1 +2 +1

After these two calls to apply_mask, the values obtained are used to search for edges

based on the magnitude and direction of the change in intensity. An example of the �nal
result is shown in Figure 5.

You can even see the intermediate results of the X and Y �lters individually by trying:

./maskblur -i images/cmu.png -m sobelX.txt -o images/cmu-edgeX.png

./maskblur -i images/cmu.png -m sobelY.txt -o images/cmu-edgeY.png

c© Carnegie Mellon University 2016

15-122 Programming 3 Page 8 of 8

2.4 Your own image processing algorithm (Optional)

In this task, you will perform an image manipulation of your choice. The core of this
transformation are three functions:

int result_width(int width, int height)
int result_height(int width, int height)
pixel[] manipulate(pixel[] pixels, int width, int height)

If I is the representation of an image with width w and height h, then the result of calling
manipulate(I,w,h) should the representation of image of width result_width(w,h) and
height result_height(w,h).

Task 5 (bonus points) Create a C0 �le manipulate.c0 implementing the three functions
described above: result_width, result_height, and manipulate. You may include
any auxiliary functions you need in the same �le, but you should not include a main()
function. You may not add arguments to manipulate, but you can write a separate function
my_manipulate (or whatever) and then call your function from the manipulate function
with some speci�c arguments.

You should look at README.txt to see how to compile and run this transformation
against manipulate-main.c0.

If you choose to do this task, be creative! Submissions will be displayed on the Autolab
scoreboard and we will make an e�ort to highlight exemplary submissions. If you include a
(small!) �le manipulate.png, we'll run your transformation against that image; otherwise
we'll run your transformation on g5.png.

Figure 6: Manipulate me!

c© Carnegie Mellon University 2016

	Image manipulation
	Image Transformations
	Removing red
	Rotation Effect
	Applying Masks to an Image
	Your own image processing algorithm (Optional)

