
15-122 : Principles of Imperative Computation, Spring 2016

Written Homework 1

Due: Monday 18th January, 2016

Name:

Andrew ID:

This written homework is the �rst of two homeworks that will introduce you to the way we
reason about C0 code in 15-122.

Print out this PDF double-sided, staple pages in order,

and write your answers neatly by hand in the spaces provided.

The assignment is due by 1:30pm on Monday 18th January, 2016.

You must hand in the assignment at the beginning of the lecture

You must hand in your homework yourself;

do not give it to someone else to hand in.

(This page intentionally left blank. Remember to print double-sided!)

15-122 Homework 1 Page 1 of 7

Question Points Score

1 2

2 4

3 5

4 4

Total: 15

15-122 Homework 1 Page 2 of 7

1.2pts Running C0 programs

The �le bar.c0 contains a function bar that takes an integer argument and returns an
integer. Additionally, there is a bar-test.c0 �le that contains the following:

1 int main() {
2 return bar(15122);
3 }

(a) From the command line, show how to display the value returned by bar(15122)
using the C0 compiler.

Solution:

(b) From the command line, show how to display the value returned by bar(15122)
using the C0 interpreter.

Solution:

15-122 Homework 1 Page 3 of 7

2.4pts Preconditions and postconditions

For the following functions, either check the box that says the postcondition always
holds when the function is given inputs that satisfy its preconditions or give a concrete
counterexample: speci�c values of the inputs such that the preconditions (if there is one)
holds and the postcondition does not hold. You don't have to write any proofs.

1 int f1(int x, int y)
2 //@requires 0 <= x && x < y;
3 //@ensures \result >= 0;
4 {
5 return y - x;
6 }

@ensures always true:

x = y =

1 int f2(int x)
2 //@requires x % 2 == 0;
3 //@ensures x < 0 || \result < x;
4 {
5 return x / 2;
6 }

@ensures always true:

x =

1 int f3(int x, int y)
2 //@requires y > 0;
3 //@ensures \result < y;
4 {
5 return x % y;
6 }

@ensures always true:

x = y =

1 int f4(int x, int y)
2 //@requires x + y == 5;
3 //@ensures \result - x == y;
4 {
5 return 5;
6 }

@ensures always true:

x = y =

1 int f5(int x, int y)
2 //@ensures \result < 0;
3 {
4 if (x > 0) x = -x;
5 if (y > 0) y = -y;
6 if (y < x) {
7 return y - x;
8 } else {
9 return x - y;

10 }
11 }

@ensures always true:

x = y =

1 int f6(int x, int y)
2 //@ensures \result >= 0;
3 {
4 if (x >= 0) x = -x;
5 if (y >= 0) y = -y;
6 if (y <= x) {
7 return y - x;
8 } else {
9 return x - y;

10 }
11 }

@ensures always true:

x = y =

15-122 Homework 1 Page 4 of 7

3. Thinking about loops

When we think about loops in 122, we will always concentrate on a single iteration of
the loop. A loop will almost always modify something; the following loop modi�es the
local assignable i.

1 while (i < n) {
2 i = i + 4;
3 }

In order to reason about the loop, we have to think about the two di�erent values stored
in the local assignable i.

We use the variable i to talk about the value stored in the local i before the loop runs
(before the loop guard is checked for the �rst time).

We use the �primed� variable i′ to talk about the value stored in the local i after the
loop runs exactly one time (before the loop guard is next checked).

(a)2pts Consider the following loop:

1 while(i < n) {
2 k = j + k;
3 j = j * 2 + i;
4 i = i + 1;
5 }

• If i = 7, j = 3, and k = 9, then assuming 7 < n,

i′ = , j′ = , and k′ =

• If i = 2y, j = x− y, and k = y, then assuming 2y < n, in terms of x and y,

i′ = , j′ = , and k′ =

• If j = k, then assuming i < n, in terms of i and k,

i′ = , j′ = , and k′ =

• In general, assuming i < n, then in terms of i, j, and k,

i′ = , j′ = , and k′ =

Note that we always say �assuming (something) < n,� because if that were not the
case then the loop wouldn't run, and it wouldn't make any sense to be talking about
the values of the primed variables.

15-122 Homework 1 Page 5 of 7

(b)1pt Consider this loop:

1 while(...) {
2 i = i + 3;
3 j = j * 2 + i;
4 k = k + i - j;
5 }

Be careful, it looks similar but is trickier! Give simpli�ed answers.

• If i = 7, j = 3, and k = 9, then assuming the loop guard evaluates to true,

i′ = , j′ = , and k′ =

• In general, assuming the loop guard evaluates to true, then in terms of i, j,
and k,

i′ = j′ = , and k′ = ,

(c)2pts Consider this loop:

1 while(a > 0 && b > 0) {
2 if (a > b) {
3 a = a-b;
4 } else {
5 b = b-a;
6 }
7 }

• If a = 94 and b = 12, then

a′ = and b′ =

• If a = x+ y and b = x, where x and y are both positive integers, then

a′ = and b′ =

• If a = x and b = x + z, where x is a positive integer and z is a non-negative
integer, then

a′ = and b′ =

• If a > 0 and b > 0, one of the two cases above will always be the case. Therefore,
we can conclude which of the following about the values stored in a and b after
an arbitrary iteration of the loop? (Check all that apply)

a′ ≥ 0 and b′ ≥ 0

a′ > 0 and b′ ≥ 0

a′ ≥ 0 and b′ > 0

a′ > 0 and b′ > 0

15-122 Homework 1 Page 6 of 7

4. Proving a function correct

In this question, we'll do part of the proof of correctness for a compute_sum relative to
a speci�cation function SUM. We won't prove that the loop invariants are true initially,
and we won't prove that they're preserved by an arbitrary iteration of the loop.

1 int compute_sum(int n) {
2 int total = 0;
3 while (n > 0) {
4 total = total + n;
5 n = n - 1;
6 }
7 return total;
8 }

(a)1pt Complete the speci�cation function below with the simple mathematical formula
that gives the sum of numbers from 0 to n.

1 int SUM(int n)
2 //@requires 0 <= n && n < 10000;
3 {
4 return __;
5 }

Give a postcondition for compute_sum using this speci�cation function.

1 int compute_sum(int num_ints)
2 //@requires 0 <= num_ints && num_ints <= 10000;
3

4 //@ensures __;
5 {
6 int n = num_ints;
7 int total = 0;
8 while (n > 0)
9 //@loop_invariant 0 <= n;

10 //@loop_invariant n <= 10000;
11 // Additional loop invariant will go here
12 {
13 total = total + n;
14 n = n - 1;
15 }
16 return total;
17 }

Note: in the real world we wouldn't have an e�cient closed-form solution used as

a speci�cation function for an ine�cient loop-based solution. We usually use the

slow, simple version as the speci�cation function for the fast one!

15-122 Homework 1 Page 7 of 7

(b)2pts Why was it necessary to add the new local num_ints in the second version of
compute_sum above?

Give a suitable extra invariant that would allow us to prove the function correct.

//@loop_invariant _____________________________________;

Which line numbers would we point to to justify that n == 0 when the loop ter-
minates?

Substitute in 0 for n in your loop invariant on line 15 and then simplify.

When you substitute \result for total in the simpli�ed version, you should have
exactly the postcondition on line 8. This proves that the loop invariant and the
negation of the loop guard imply the postcondition.

(c)1pt Termination arguments for loops (in this class, at least) must have the following
form:

During an arbitrary iteration of the loop, the quantity gets strictly larger, but

from the loop invariants, we know this quantity can't ever get bigger than .

or

During an arbitrary iteration of the loop, the quantity gets strictly smaller, but

from the loop invariants, we know this quantity can't ever get smaller than .

Assuming that your loop invariants are true initially preserved by every iteration of
the loop (which we didn't prove), why does the loop in compute_sum terminate?

During an arbitrary iteration of the loop, the quantity

but from the loop invariants, we know that this quantity can't ever get

