15-122 : Principles of Imperative Computation, Spring 2016 Written Homework 8

Due: Monday $14^{\text {th }}$ March, 2016

Name: \qquad
Andrew ID:

Section: \qquad

This written homework covers amortized analysis, hash tables, and generics.

The assignment is due by $1: 30 \mathrm{pm}$ on Monday $14^{\text {th }}$ March, 2016.
This assignment is to be completed by editing the PDF file and then submitted through Gradescope.

1. Amortized Analysis Revisited

Consider a special binary counter represented as k bits: $b_{k-1} b_{k-2} \ldots b_{1} b_{0}$. For this special counter, the cost of flipping the $i^{\text {th }}$ bit is 2^{i} tokens. For example, b_{0} costs 1 token to flip, b_{1} costs 2 tokens to flip, b_{2} costs 4 tokens to flip, etc. We wish to analyze the cost of performing $n=2^{k}$ increments of this k-bit counter. (Note that k is not a constant.)
Note that if we begin with our k-bit counter containing all 0 s , and we increment n times, where $n=2^{k}$, the final value stored in the counter will again be 0 .
(a) The worst case for a single increment of the counter is when every bit is set to 1. The increment then causes every bit to flip, the cost of which is

$$
1+2+2^{2}+2^{3}+\ldots+2^{k-1}
$$

Explain in one or two sentences why this cost is $O(n)$. (HINT: Find a closed form for the formula above.)
\square
(b) Now, we will use amortized analysis to show that although the worst case for a single increment is $O(n)$, the amortized cost of a single increment is asymptotically less than this. Remember, $n=2^{k}$.
Over the course of n increments, how many tokens in total does it cost to flip the $i^{\text {th }}$ bit the necessary number of times?

Solution:

Based on your answer to the previous part, what is the total cost in tokens of performing n increments? (In other words, what is the total cost of flipping each of the k bits through n increments?) Write your answer as a function of n only. (Hint: what is k as a function of n ?)

Solution:

Based on your answer above, what is the amortized cost of a single increment as a function of n only?

Solution: O(\qquad) amortized

2. Hash Tables: Data Structure Invariants

Refer to the C 0 code below for is_hset, which checks that a given separate-chaining hash set containing only strings is valid.

```
typedef struct chain_node chain;
struct chain_node {
    string data;
    chain* next;
};
typedef struct hset_header hset;
struct hset_header {
    int size; // number of elements stored in hash table
    int capacity; // maximum number of chains in hash table
    chain*[] table;
};
int hashindex(hset* H, string x)
//@requires H != NULL && H->capacity > 0;
//@ensures 0 <= \result && \result < H->capacity;
{
    return abs(string_hash(x) % H->capacity);
}
bool is_table_expected_length(chain*[] table, int length) {
    //@assert \length(table) == length;
    return true;
}
bool is_hset(hset* H) {
    return H != NULL && H->capacity > 0 && H->size >= 0
        && is_table_expected_length(H->table, H->capacity);
}
```

An obvious data structure invariant of our hash table is that every element of a chain hashes to the index of that chain. Thus, this specification function is incomplete: we never test that the contents of the hash table satisfy this additional invariant. That is, we test only on the struct hset, and not on the properties of the array within.
On the next page, extend is_hset from above, adding a helper function to check that every element in the hash table belongs in the chain it is located in, and that each chain is non-cyclic. You should assume we will use the following two functions for hashing strings and for comparing them for equivalence:

```
int string_hash(string x);
bool string_equiv(string x, string y);
```

Note: your answer needs only to work for hash tables containing a few hundred million elements - do not worry about the number of elements exceeding int_max().

```
bool has_valid_chains(hset* H)
// Preconditions (H != NULL, H->size >= 0, ...) omitted for space
{
    int nodecount = 0;
    for (int i = 0; i <
```

\qquad

``` ; i++) \{
        // set p to the first node of chain i in table, if any
        chain* p =
```

\qquad

``` ;
        while (
```

\qquad

``` ) \{
            string x = p->data;
        if (__ != i)
            return false;
        nodecount++;
        if (nodecount > _ )
            return false;
        p =
        }
    }
    if (
        return false;
    return true;
}
bool is_hset(hset H) {
    return H != NULL && H->capacity > 0 && H->size >= 0
        && is_table_expected_length(H->table, H->capacity)
        && has_valid_chains(H);
}
```


3. Hash Tables: Mapping Hash Values to Hash Table Indices

In our hset implementation, we require a library helper function hashindex that takes an element, computes its hash value using the client's elem_hash function and converts this hash value to a valid index for the hash table. The first two functions below try to implement hashindex but have issues.
(a) The following function has a bug in it. For one specific hash value h, this function does not return an index that is valid for a hash table. Identify the specific hash value.

```
int hashindex(hset H, elem x)
```

//@requires H != NULL \&\& H->capacity > 0;
//@requires x != NULL;
//@ensures 0 <= \result \&\& \result < H->capacity;
\{
int h = elem_hash(x);
return abs(h) \% H->capacity;
8 \}

Solution: This function fails when $\mathrm{h}=$ \qquad
(b) The following function has an undesirable feature, although it always returns a valid index. Identify the flaw and, in one sentence, explain why it's a problem.

```
int hashindex(hset H, elem x)
//@requires H != NULL && H->capacity > 0;
//@requires x != NULL;
//@ensures 0 <= \result && \result < H->capacity;
{
    int h = elem_hash(x);
    return h < 0 ? 0 : h % H->capacity;
}
```

(c) Complete the following function so it avoids the problems in the previous two implementations of hashindex.

```
int hashindex(hset H, elem x)
//@requires H != NULL && H->capacity > 0;
//@requires x != NULL;
//@ensures 0 <= \result && \result < H->capacity;
{
    int h = elem_hash(x);
    return (h < 0 ? : h) % H->capacity;
}
```


4. Generic Algorithms

A generic comparison function might be given a type as follows in C1:
typedef int compare_fn(void* x, void* y)
//@ensures - 1 <= \result \&\& \result <= 1;
(Note: there's no precondition that x and y are necessarily non-NULL.)
If we're given such a function, we can treat x as being less than y if the function returns -1 , treat x as being greater than y if the function returns 1 , and treat the two arguments as being equal if the function returns 0 .
Given such a comparison function, we can write a function to check that an array is sorted even though we don't know the type of its elements (as long as it is a pointer type):

```
bool is_sorted(void*[] A, int lo, int hi, compare_fn* comp)
    //@requires 0 <= lo && lo <= hi && hi <= \length(A) && comp != NULL;
```

(a) Complete the generic binary search function below. You don't have access to generic variants of $l t_{-}$seg and $g t_{-}$seg. Remember that, for sorted integer ar-


```
int binsearch_generic(void* x, void*[] A, int n, compare_fn* comp)
```

//@requires $0<=n$ \&\& $n<=$ llength(A) \&\& comp != NULL;
//@requires is_sorted(A, 0, n, comp);
\{
int lo = 0;
int hi = n;
while (lo < hi)
//@loop_invariant $0<=$ lo \&\& lo <= hi \&\& hi <= n;
//@loop_invariant lo == || ___ == -1;
//@loop_invariant hi == ___ || == 1;
\{
int mid = lo + (hi - lo)/2;
int $\mathrm{c}=$
\qquad
if ($c==0$) return mid;
else if (c < 0) lo = mid + 1;
else hi = mid;
\}
return -1;
\}

Suppose you have a generic sorting function, with the following contract:

```
void sort_generic(void*[] A, int lo, int hi, compare_fn* comp)
    //@requires 0 <= lo && lo <= hi && hi <= \length(A) && comp != NULL;
    //@ensures is_sorted(A, lo, hi, comp);
```

(b) Write an integer comparison function compare_ints that can be used with this generic sorting function, which you should assume is already written. You can leave out the postcondition that the result of compare_ints is between -1 and 1 inclusive. However, the contracts on your compare_ints function must be sufficient to ensure that no precondition-passing call to compare_ints can possibly cause a memory error.

```
int compare_ints(void* x, void* y)
//@requires x != NULL && \hastag(___)
//@requires y != NULL && \hastag(___);
{
    if (__) return -1;
    if (__) return 1;
    return 0;
}
```

(c) Using the above generic sorting function and compare_ints, fill in the body of the sort_ints function below so that it will sort the array A of integers using the generic sort function specified above. You can omit loop invariants. But of course, when you call sort_generic, the preconditions of compare_ints must be satisfied by any two elements of the array B.

