
15-122: Principles of Imperative Computation

Lab 2: A Reversal of Fortune Tom Cortina, Nivedita Chopra

Two's complement

Because C0's int type only represents integers in the range [−231, 231), addition and multiplication are

de�ned in terms of modular arithmetic. As a result, adding two positive numbers may give you a negative

number!

Checkpoint 0

What assertion would you need to write to ensure that an addition would give a result without over�owing

(in other words, to ensure that the result you get in C0 is the same as the result you get with true integer

arithmetic).

1 int safe_add(int a, int b)
2 /*@requires
3

4

5

6

7 @*/
8 { return a + b; }

What about multiplication? For the sake of simplicity, you can assume both numbers are non-negative.

1 int safe_mult(int a, int b)
2 /*@requires a >= 0 && b >= 0 &&
3

4

5

6

7 @*/
8 { return a * b; }



Checkpoint 1

Setup: Copy the lab code from our public directory to your private directory:

% cd private/15122

% cp -R /afs/andrew/course/15/122/misc/lab-integers .

% cd lab-integers

You should write your code in a �le, reverse.c0, in the directory lab-integers.

Manipulating integers with a loop

For this task, you'll need to use a loop to manipulate integers. We can identify two ways of manipulating

integers in C0:

� The mathematical operations of multiplication (a * b), division (a / b), modulo (a % b) addition

(a + b), subtraction (a - b), and negation (-a).

� The bitwise operations bitwise-and (a & b), bitwise-or (a | b), bitwise-xor (a ^ b), bitwise nega-

tion (~a), left shift (a << b) and right-shift (a >> b).

We don't always think about these operations as distinct categories! Sometimes, for instance, we think

about a << b as the mathematical operation a×2b. But for this assignment we will make the distinction.

(2.a) Our task will be to reverse the digits in a seven-digit decimal number (a number with fewer digits

will be treated as having leading zeros). There's more than one way to do this! The three examples

below show one way of reversing a number using a loop on the variable i:

i x y

0 1234567 0
1 123456 7
2 12345 76
3 1234 765
4 123 7654
5 12 76543
6 1 765432
7 0 7654321

i x y

0 15122 0
1 1512 2
2 151 22
3 15 221
4 1 2215
5 0 22151
6 0 221510
7 0 2215100

i x y

0 2400000 0
1 240000 0
2 24000 0
3 2400 0
4 240 0
5 24 0
6 2 4
7 0 42

Can you suggest a couple of loop invariants for the algorithm above? Hint: you may want to use

the POW speci�cation from lecture. What can you say about POW(10,i)?

//@loop_invariant

//@loop_invariant

//@loop_invariant

//@loop_invariant

Remember that if you use POW, you need your loop invariants to also ensure that the exponent will

always be nonnegative.


