15-122: Principles of Imperative Computation

Lab 2: A Reversal of Fortune Shyam Raghavan, Tom Cortina

Setup: Copy the lab code from our public directory to your private directory:

% cd private/15122
% cp -R /afs/andrew/course/15/122/misc/lab-integers .
% cd lab-integers

You should write your code in a file, reverse.c0, in the directory lab-integers.

Grading: You will work through (1.a) and (1.b) as a group. Finish (2.a) for lab credit, and (2.b) for
potentially more credit. Show your TA that you've passed the tests when you complete these parts. You
can work on these problems with your neighbors and compare notes and solutions!

In this lab, you'll be implementing two distinct ways of reversing a seven-digit decimal number - one
using mathematical operations (or bitwise operations, if you'd like!) and one using arrays. There are
multiple ways to do each!

Reasoning about reversing a decimal number

For these two tasks, you'll need to use a loop to manipulate integers. Your loop should include loop
invariants that allow you to prove the correctness and safety of the function.

(1.a) Our first task will be to write loop invariants for an algorithm that reverses the digits in a seven-
digit decimal number (a number with fewer digits will be treated as having leading zeros) using
mathematical operations. Although there is more than one way to do this, we've provided the
steps of a suggested algorithm run on three examples below, which shows the state of each of the
different variables at iteration i in the loop:

i x y i x y i x y
0 1234567 O 0 15122 0 0 2400000 O
1 123456 7 1 1512 2 1 240000 O
2 12345 76 2 151 22 224000 0
3 1234 765 3 15 221 3 2400 0
4 123 7654 4 1 2215 4 240 0
5 12 76543 5 0 22151 5 24 0
6 1 765432 6 0 221510 6 2 4
7 0 7654321 70 2215100 7 0 42

Can you suggest a couple of loop invariants for the algorithm above? Hint: you may want to use
the POW specification from lecture. What can you say about POW(10,1)7?

//@loop_invariant

//@loop_invariant

//@loop_invariant

Remember that if you use POW, you need your loop invariants to also ensure that the exponent will
always be nonnegative.

(1.b)

Next, we'll write loop invariants for an algorithm that reverses seven-digit numbers using arrays
(note that this algorithm uses two sequential loops, denoted by i followed by j). Again, we provide
steps of an algorithm that you can use when implementing the code in (2.b):

i x A jy A

0 1234567 [0|0]0[0|0|0]|0 00 7161514321
1 123456 | 7{0(0{0|0]|0O0 17 71654321
2 12345 716/0]0|0(0O0 2 76 716154321
3 1234 716(5]0|0(00 3 765 7T16(514(|3]2]1
4 123 716(514[0{0]0 4 7654 7161514321
5 12 71654300 5 76543 71654321
6 1 71654320 6 765432 71654321
7 716514321 7 7654321 |7T|(6|5(4|3]2]1

Again, let’s suggest a couple of loop invariants for the second (right) loop above. Hint: make sure
you're ensuring the safety of the array accesses!

//@loop_invariant

//@loop_invariant

Implementing the algorithms

(2.a)

No o~ N =

(2.b)

~No ok~ N

Now you have two good sets of loop invariants: in reverse.cO, use the algorithm from (1.a)
to implement a function that reverses the decimal digits in a seven-digit nonnegative number
using only mathematic and bitwise operators, and call it reverse_math (we've provided a skeleton
function for you). You shouldn’t have to use POW outside of contracts. Treat a number with
fewer than seven digits as if it has leading zeroes.

% coin —d reverse.cO

——> reverse_math(7654321);
1234567 (int)

——> reverse_math(1512200);
22151 (int)

——> reverse_math(42);
2400000 (int)

You can test your code by running ccO -d -x reverse.cO test-math-rev.cO

In reverse.cO, write a function reverse_array that reverses all the decimal digits of a seven-
digit nonnegative number using arrays and the algorithm from (1.b). Be sure to use the loop
invariants you wrote above!

% coin —d reverse.cO

——> reverse_array(7654321);
1234567 (int)

——> reverse_array(1512200);
22151 (int)

——> reverse_array(42);
2400000 (int)

You can test your code by running ccO -d -x reverse.cO test-array-rev.cO

