1 Introduction

In these notes we review contracts, which we use to collectively denote function contracts, loop invariants, and other assertions about the program. Contracts will play a central role in this class, since they represent the key to connect algorithmic ideas to imperative programs. We follow the example from lecture, developing annotations to a given program that express the contracts, thereby making the program understandable (and allowing us to find the bug).

In term of our learning goals, this lecture addresses:

Computational Thinking: Developing contracts (preconditions, postconditions, assertions, and loop invariants) that establish the safety and correctness of imperative programs.

- Developing proofs of the safety and correctness of code with contracts.
- Developing informal termination arguments for programs with loops and recursion.
- Identifying the difference between specification and implementation.

Algorithms and Data Structures: Employing integer algorithms (fast power).

Programming: Identifying, describing, and effectively using while-loops and contracts (in C0).

If you have not seen this example, we invite you to read this section by section to see how much of the story you can figure out on your own before moving on to the next section.
2 A Mysterious Program

You are a new employee in a company, and a colleague comes to you with the following program, written by your predecessor who was summarily fired for being a poor programmer. Your colleague claims he has tracked a bug in a larger project to this function. It is your job to find and correct this bug.

```c
int f (int x, int y) {
    int r = 1;
    while (y > 1) {
        if (y % 2 == 1) {
            r = x * r;
        }
        x = x * x;
        y = y / 2;
    }
    return r * x;
}
```

Before you read on, you might examine this program for a while to try to determine what it does, or is supposed to do, and see if you can spot the problem.
3 Forming a Conjecture

The first step it to execute the program on some input values to see its results. The code is in a file called mystery.c0 so we invoke the coin interpreter to let us experiment with code.

% coin mystery.c0
C0 interpreter (coin)
Type ‘#help’ for help or ‘#quit’ to exit.

At this point we can type in statements and they will be executed. One form of statement is an expression, in which case coin will show its value. For example:

--> 3+8;
11 (int)

We can also use the functions in the files that we loaded when we started coin. In this case, the mystery function is called f, so we can evaluate it on some arguments.

--> f(2,3);
8 (int)

Can you form a conjecture from these values?
From these and similar examples, you might form the conjecture that \(f(x, y) = x^y \), that is, \(x \) to the power \(y \). One can confirm that with a few more values, such as

\[\begin{align*}
\text{--> } f(-2,3); \\
\text{-8 (int)} \\
\text{--> } f(2,8); \\
\text{256 (int)} \\
\text{--> } f(2,10); \\
\text{1024 (int)} \\
\text{--> }
\end{align*}\]

It seems to work out! Our next task is to see why this function actually computes the power function. Understanding this is necessary so we can try to find the error and correct it.
4 Finding a Loop Invariant

Now we start to look inside the function and see how it computes.

```c
int f (int x, int y) {
    int r = 1;
    while (y > 1) {
        if (y % 2 == 1) {
            r = x * r;
        }
        x = x * x;
        y = y / 2;
    }
    return r * x;
}
```

We notice the conditional

```c
if (y % 2 == 1) {
    r = x * r;
}
```

The condition tests if y modulo 2 is 1. For positive y, this is true if y is odd. We also observe that in the loop body, y must indeed be positive so this is a correct test for whether y is odd.

Each time around the loop we divide y by 2, using integer division (which rounds towards 0). It is exact division if y is even. If y starts as a power of 2, it will remain even throughout the iteration. In this case r will remain 1 throughout the execution of the function. Let’s tabulate how the loop works for $x = 2$ and $y = 8$. But at which point in the program do we tabulate the values? It turns out generally the best place for a loop is just before the exit condition is tested. By iteration 0 we mean when we enter the loop the first time and test the condition; iteration 1 is after the loop body has been traversed once and we are looking again at the exit condition, etc.

<table>
<thead>
<tr>
<th>iteration</th>
<th>x</th>
<th>y</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>256</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

After 3 iterations, $x = 256$ and $y = 1$, so the loop condition $y > 1$ becomes false and we exit the loop. We return $r * x = 256$.
To understand why this loop works we need to find a so-called loop invariant: a quantity that does not change throughout the loop. In this example, when y is a power of 2 then r is a loop invariant. Can you see a loop invariant involving just x and y?
Going back to our earlier conjecture, we are trying to show that this function computes x^y. Interestingly, after every iteration of the loop, this quantity is exactly the same! Before the first iteration it is $2^8 = 256$. After the first iteration it is $4^4 = 256$. After the second iteration it is $16^2 = 256$. After the third iteration is it is $256^1 = 256$. Let’s note it down in the table.

<table>
<thead>
<tr>
<th>iteration</th>
<th>x</th>
<th>y</th>
<th>r</th>
<th>x^y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>256</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>256</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>2</td>
<td>1</td>
<td>256</td>
</tr>
<tr>
<td>3</td>
<td>256</td>
<td>1</td>
<td>1</td>
<td>256</td>
</tr>
</tbody>
</table>

Still concentrating on this special case where y is a power of 2, let’s see if we can use the invariant to show that the function is correct.
5 Proving the Loop Invariant

To show that the quantity \(x^y \) is a loop invariant, we have to prove that if we execute the loop body once, \(x^y \) before will be equal to \(x^y \) after. We cannot write this as \(x^y = x^y \), because that is of course always true, speaking mathematically. Mathematics does not understand the idea of assigning a new value to a variable. The general convention we follow is to add a prime (') to the name of a variable to denote its value after an iteration.

So assume we have \(x \) and \(y \), and \(y \) is a power of 2. After one iteration we have \(x' = x \cdot x \) and \(y' = y/2 \). To show that \(x^y \) is loop invariant, we have to show that \(x^y = x'^y \). So let’s calculate:

\[
x'^y = (x \cdot x)^{y/2} \quad \text{By definition of } x' \text{ and } y' \\
= (x^2)^{y/2} \quad \text{Since } a \cdot a = a^2 \\
= x^{2 \cdot (y/2)} \quad \text{Since } (a^b)^c = a^{b \cdot c} \\
= x^y \quad \text{Since } 2 \cdot (a/2) = a \text{ when } a \text{ is even}
\]

Moreover, if \(y \) is a power of 2, then \(y' = y/2 \) is also a power of 2 (subtracting 1 from the exponent).

We have confirmed that \(x^y \) is loop invariant if \(y \) is a power of 2. Does this help us to ascertain that the function is correct when \(y \) is a power of two?
6 Loop Invariant Implies Postcondition

The postcondition of a function is usually a statement about the result it returns. Here, the postcondition is that \(f(x, y) = x^y \). Let’s recall the function:

```c
int f (int x, int y) {
    int r = 1;
    while (y > 1) {
        if (y % 2 == 1) {
            r = x * r;
        }
        x = x * x;
        y = y / 2;
    }
    return r * x;
}
```

If \(y \) is a power of 2, then the quantity \(x^y \) never changes in the loop (as we have just shown). Also, in that case \(r \) never changes, remaining equal to 1. When we exit the loop, \(y = 1 \) because \(y \) starts out as some (positive) power of 2 and is divided by 2 every time around loop. So then

\[
r \times x = 1 \times x = x = x^1 = x^y
\]

so we return the correct result, \(x^y \)!

By using two loop invariant expressions (\(r \) and \(x^y \)) we were able to show that the function returns the correct answer if it does return an answer. Does the loop always terminate?
7 Termination

In this case it is easy to see that the loop always terminates. To show that a loop always terminates, we need to define some quantity that always gets strictly smaller during any arbitrary iteration of the loop, and that can never become negative. This means that the loop can only run a finite number of times.

The quantity $y/2$ is always less than y when $y > 0$, so on any arbitrary iteration of the loop, y gets strictly smaller and it can never become negative. Therefore, we know the loop has to terminate.

(By the same token, we could identify any lower bound, not just zero, and a quantity that strictly decreased and never passed that lower bound. or we could identify an upper bound and a quantity that strictly increased but never passed that upper bound!)

Lecture Notes
8 A Counterexample

We don’t have to look at powers of 2 — we already know the function works correctly there. Some of the earlier examples were not powers of two, and the function still worked:

```c
--> f(2,3);
8 (int)
--> f(-2,3);
-8 (int)
--> f(2,1);
2 (int)
```

What about 0, or negative exponents?

```c
--> f(2,0);
2 (int)
--> f(2,-1);
2 (int)
```

Looks like we have found at least two problems. $2^0 = 1$, so the answer 2 is definitely incorrect. $2^{-1} = 1/2$ so one might argue it should return 0. Or one might argue in the absence of fractions (we are working with integers), a negative exponent does not make sense. In any case, $f(2, -1)$ should certainly not return 2.
9 Imposing a Precondition

Let’s go back to a mathematical definition of the power function x^y on integers x and y. We define:

\[
x^0 = 1 \\
x^{y+1} = x \cdot x^y \quad \text{for } y \geq 0
\]

In this form it remains undefined for negative exponents. In programming, this is captured as a precondition: we require that the second argument to f not be negative. Preconditions are written as `//@requires` and come before the body of the function.

```cpp
int f (int x, int y)
//@requires y >= 0;
{
    int r = 1;
    while (y > 1) {
        if (y % 2 == 1) {
            r = x * r;
        }
        x = x * x;
        y = y / 2;
    }
    return r * x;
}
```

This is the first part of what we call the function contract. It expresses what the function requires of any client that calls it, namely that the second argument be non-negative. It is an error to call it with a negative argument; no promises are made about what the function might return otherwise. It might even abort the computation due to a contract violation.

But a contract usually has two sides. What does f promise? We know it promises to compute the exponential function, so this should be formally expressed.
10 Promising a Postcondition

The C0 language does not have a built-in power function. So we need to write it explicitly ourselves. But wait! Isn’t that what f is supposed to do? The idea in this and many other examples to capture a specification in the simplest possible form, even if it may not be computationally efficient, and then promise in the postcondition to satisfy this simple specification. Here, we can transcribe the mathematical definition into a recursive function.

```c
int f (int x, int y)
//@requires y >= 0;
{
    int r = 1;
    while (y > 1) {
        if (y % 2 == 1) {
            r = x * r;
        }
        x = x * x;
        y = y / 2;
    }
    return r * x;
}
```

In the rest of the lecture we often silently go back and forth between x^y and $POW(x, y)$. Now we incorporate POW into a formal postcondition for the function. Postconditions have the form //@ensures e;, where e is a boolean expression. They are also written before the function body, by convention after the preconditions. Postconditions can use a special variable \texttt{\textbackslash result} to refer to the value returned by the function.

```c
int f (int x, int y)
//@requires y >= 0;
//@ensures \texttt{\textbackslash result} == POW(x,y);
{
    int r = 1;
    while (y > 1) {
        if (y % 2 == 1) {
            r = x * r;
        }
        x = x * x;
        y = y / 2;
    }
}
```
Note that as far as the function f is concerned, if we are considering calling it we do not need to look at its body at all. Just looking at the pre- and post-conditions (the @requires and @ensures clauses), tells us everything we need to know. As long as we adhere to our contract and pass f a non-negative y, then f will adhere to its contract and return x^y.

```c
return r * x;
```
11 Dynamically Checking Contracts

During the program development phase, we can instruct the C0 compiler or interpreter to check adherence to contracts. This is done with the -d flag on the command line, which stands for dynamic checking. Let’s see how the implementation now reacts to correct and incorrect inputs, assuming we have added POW as well as pre- and postconditions as shown above.

```c
% coin mystery2b.c0 -d
mystery2b.c0:20.5-20.6:error:cannot assign to variable 'x'
  used in @ensures annotation
    x = x * x;
~
Unable to load files, exiting...
%
```

The error is that we are changing the value of x in the body of the loop, while the postcondition refers to x. If it were allowed, it would violate the principle that we need to look only at the contract when calling the function, because assignments to x change the meaning of the postcondition. We want $\text{result} == \text{POW}(x,y)$ for the original x and y we passed as arguments to f and not the values x and y might hold at the end of the function.

We therefore change the function body, creating auxiliary variables b (for base) and e (for exponent) to replace x and y which we leave unchanged.

```c
int f (int x, int y)
//@requires y >= 0;
//@ensures \text{result} == \text{POW}(x,y);
{
    int r = 1;
    int b = x; /* base */
    int e = y; /* exponent */
    while (e > 1) {
        if (e % 2 == 1) {
            r = b * r;
        }
        b = b * b;
        e = e / 2;
    }
    return r * b;
}
```
Now invoking the interpreter with -d works correctly when we return
the right answer, but raises an exception if we give it arguments where we
know the function to be incorrect, or arguments that violate the precondi-
tion to the function.

coin mystery2c.c0 -d
C0 interpreter (coin) 0.3.3 ‘Nickel’
Type ‘#help’ for help or ‘#quit’ to exit.
--> f(3,2);
9 (int)
--> f(3,-1);
mystery2c.c0:11.4-11.20: @requires annotation failed

Last position: mystery2c.c0:11.4-11.20
 f from <stdio>:1.1-1.8
--> f(2,0);
mystery2c.c0:12.4-12.32: @ensures annotation failed
Last position: mystery2c.c0:12.4-12.32
 f from <stdio>:1.1-1.7
-->

The fact that @requires annotation fails in the second example call means
that our call is to blame, not f. The fact that the @ensures annotation fails
in the third example call means the function f does not satisfy its contract
and is therefore to blame.
12 Generalizing the Loop Invariant

Before fixing the bug with an exponent of 0, let’s figure out why the function apparently works when the exponent is odd. Our loop invariant so far only works when y is a power of 2. It uses the basic law that $b^{2c} = (b^2)^c = (b \cdot b)^c$ in the case where the exponent $e = 2 \ast c$ is even.

What about the case where the exponent is odd? Then we are trying to compute b^{2c+1}. With analogous reasoning to above we obtain $b^{2c+1} = b \ast b^{2c} = b \ast (b \ast b)^c$. This means there is an additional factor of b in the answer. We see that we exactly multiply r by b in the case that e is odd!

```cpp
int f (int x, int y)
//@requires y >= 0;
//@ensures \result == POW(x,y);
{
    int r = 1;
    int b = x; /* base */
    int e = y; /* exponent */
    while (e > 1) {
        if (e % 2 == 1) {
            r = b \ast r;
        }
        b = b \ast b;
        e = e / 2;
    }
    return r \ast b;
}
```

What quantity remains invariant now, throughout the loop? Try to form a conjecture for a more general loop invariant before reading on.
Let’s make a table again, this time to trace a call when the exponent is not a power of two, say, while computing 2^7 by calling $f(2, 7)$.

<table>
<thead>
<tr>
<th>iteration</th>
<th>b</th>
<th>e</th>
<th>r</th>
<th>b^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>128</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>1</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

As we can see, b^e is not invariant, but $r * b^e = 128$ is! The extra factor from the equation on the previous page is absorbed into r.

We now express this proposed invariant formally in C0. This requires the `@loop_invariant` annotation. It must come immediately before the loop body, but it is checked just before the loop exit condition. We would like to say that the expression $r * \text{POW}(b,e)$ is invariant, but this is not possible directly.

Loop invariants in C0 are boolean expressions which must be either true or false. We can achieve this by stating that $r * \text{POW}(b,e) == \text{POW}(x,y)$. Observe that x and y do not change in the loop, so this guarantees that $r * \text{POW}(b,e)$ never changes either. But it says a little more, stating what the invariant quantity is in term of the original function parameters.

```c
int f (int x, int y)
//@requires y >= 0;
//@ensures \result == \text{POW}(x,y);
{
    int r = 1;
    int b = x; /* base */
    int e = y; /* exponent */
    while (e > 1)
        //@loop_invariant r * \text{POW}(b,e) == \text{POW}(x,y);
        {
            if (e % 2 == 1) {
                r = b * r;
            }
            b = b * b;
            e = e / 2;
        }
    return r * b;
}
```
13 Fixing the Function

The bug we have discovered so far was for $y = 0$. In that case, $e = 0$ so we never go through the loop. If we exit the loop and $e = 1$, then the loop invariant implies the function postcondition. To see this, note that we return $r \times b$ and $r \times b = r \times b^1 = r \times b^e = x^y$, where the last equation is the loop invariant. When y (and therefore e) is 0, however, this reasoning does not apply because we exit the loop and $e = 0$, not 1.

Think about how you might fix the function and its annotations before reading on.
We can fix it by carrying on with the while loop until \(e = 0 \). On the last iteration \(e \) is 1, which is odd, so we set \(r' = b \times r \). This means we now should return \(r' \) (the new \(r \)) after the one additional iteration of the loop, and not \(r \times b \).

```c
int f (int x, int y)
//@requires y >= 0;
//@ensures \result == POW(x,y);
{
  int r = 1;
  int b = x; /* base */
  int e = y; /* exponent */
  while (e > 0)
    //@loop_invariant r * POW(b,e) == POW(x,y);
    {
      if (e % 2 == 1) {
        r = b * r;
      }
      b = b * b;
      e = e / 2;
    }
  return r;
}
```

Now when the exponent \(y = 0 \) we skip the loop body and return \(r = 1 \), which is the right answer for \(x^0 \)!

Indeed:

```
% coin mystery2e.c0 -d
C0 interpreter (coin) 0.3.3 'Nickel'
Type '#help' for help or '#quit' to exit.
--> f(2,0);
1 (int)
-->```
14 Strengthening the Loop Invariant Again

We would now like to show that the improved function is correct. That requires two steps: one is that the loop invariant implies the postcondition; another is that the proposed loop invariant is indeed a loop invariant. The loop invariant, \( r \cdot b^e = x^y \) implies that the result \( r = x^y \) if we know that \( e = 0 \) (since \( b^0 = 1 \)).

But how do we know that \( e = 0 \) when we exit the loop? Actually, we don’t: the loop invariant is too weak to prove that. The negation of the exit condition only tells us that \( e \leq 0 \). However, if we add another loop invariant, namely that \( e \geq 0 \), then we know \( e = 0 \) when the loop is exited and the postcondition follows. For clarity, we also add a (redundant) assertion to this effect after the loop and before the return statement.

```c
int f (int x, int y)
//@requires y >= 0;
//@ensures \result == POW(x,y);
{
 int r = 1;
 int b = x; /* base */
 int e = y; /* exponent */
 while (e > 0)
 //@loop_invariant e >= 0;
 //@loop_invariant r * POW(b,e) == POW(x,y);
 {
 if (e % 2 == 1) {
 r = b * r;
 }
 b = b * b;
 e = e / 2;
 }
 //@assert e == 0;
 return r;
}
```

The //@assert annotation can be used to verify an expression that should be true. If it is not, our reasoning must have been faulty somewhere else. //@assert is a useful debugging tool and sometimes helps the reader understand better what the code author intended.
15 Verifying the Loop Invariants

It seems like we have beaten this example to death: we have added pre- and post-conditions, stated loop invariants, fixed the original bug and shown that the loop invariants imply the postcondition. But we have not yet verified that the loop invariant actually holds! Ouch! Let’s do it.

We begin with the invariant \( e \geq 0 \). We have to demonstrate two properties.

**Init:** The invariant holds initially. When we enter the loop, \( e = y \) and \( y \geq 0 \) by the precondition of the function. Done.

**Preservation:** Assume the invariant holds just before the exit condition is checked. We have to show that it is true again when we reach the exit condition after one iteration of the loop.

**Assumption:** \( e \geq 0 \).

**To show:** \( e' \geq 0 \) where \( e' = e/2 \), with integer division. This clearly holds.

Next, we look at the invariant \( r \times \text{POW}(b, e) = \text{POW}(x, y) \).

**Init:** The invariant holds initially, because when entering the loop we have \( r = 1, b = x \) and \( e = y \).

**Preservation:** We show that the invariant is preserved on every iteration. For this, we distinguish two cases: \( e \) is even and \( e \) is odd.

**Assumption:** \( r \times \text{POW}(b, e) = \text{POW}(x, y) \).

**To show:** \( r' \times \text{POW}(b', e') = \text{POW}(x, y) \), where \( r', b', e' \) are the values of \( r, b, e \) after one iteration.

**Case:** \( e \) is even. Then \( r' = r, b' = b \times b \) and \( e' = e/2 \) and we reason:

\[
\begin{align*}
r' \times \text{POW}(b', e') &= r \times \text{POW}(b \times b, e/2) \\
&= r \times \text{POW}(b, 2 \times (e/2)) & \text{Since } (a^2)^c = a^{2c} \\
&= r \times \text{POW}(b, e) & \text{Since } e \text{ is even} \\
&= \text{POW}(x, y) & \text{By assumption}
\end{align*}
\]

**Case:** \( e \) is odd. Then \( r' = b \times r, b' = b \times b \) and \( e' = (e - 1)/2 \) (because \( e \) is odd, integer division rounds towards 0, and \( e \geq 0 \)) and we
reason: 
\[ r' \ast POW(b', e') = (b \ast r) \ast POW(b \ast b, (e - 1)/2) \]
\[ = (b \ast r) \ast POW(b, 2 \ast (e - 1)/2) \quad \text{Since} \quad (a^2)^c = a^{2c} \]
\[ = (b \ast r) \ast POW(b, e - 1) \quad \text{Since} \quad e - 1 \text{ is even} \]
\[ = r \ast POW(b, e) \quad \text{Since} \quad a \ast (a^c) = a^{c+1} \]
\[ = POW(x, y) \quad \text{By assumption} \]

This shows that both loop invariants hold on every iteration.
16 Termination

The previous argument for termination still holds. By loop invariant, we know that $e \geq 0$. When we enter the body of the loop, the condition must be true so $e > 0$. Now we just use that $e/2 < e$ for $e > 0$, so the value of $e$ is strictly decreasing and positive, which, as an integer, means it must eventually become 0, upon which we exit the loop and return from the function after one additional step.
17 A Surprise

Now, let’s try our function on some larger numbers, computing some powers of 2.

% coin mystery2f.c0 -d
C0 interpreter (coin) 0.3.3 ‘Nickel’
Type ‘#help’ for help or ‘#quit’ to exit.
--> f(2,30);
1073741824 (int)
--> f(2,31);
-2147483648 (int)
--> f(2,32);
0 (int)
-->

$2^{30}$ looks plausible, but how could $2^{31}$ be negative or $2^{32}$ be zero? We claimed we just proved it correct!

The reason is that the values of type int in C0 or C and many other languages actually do not represent arbitrarily large integers, but have a fixed-size representation. In mathematical terms, this means we are dealing with modular arithmetic. The fact that $2^{32} = 0$ provides a clue that integers in C0 have 32 bits, and arithmetic operations implement arithmetic modulo $2^{32}$.

In this light, the results above are actually correct. We examine modular arithmetic in detail in the next lecture.
18  Summary: Contracts, and Why They are Important

We have introduced contracts, using the example of an algorithm for integer exponentiation.

Contracts are expressed in form of annotations, started with `//@`. These annotations are checked when the program is executed if it is compiled or interpreted with the `-d` flag. Otherwise, they are ignored.

The forms of contracts, and how they are checked, are:

@requires: A precondition to a function. This is checked just before the function body executes.

@ensures: A postcondition for a function. This is checked just after the function body has been executed. We use `\result` to refer to the value returned by the function to impose a condition on it.

@loop_invariant: A loop invariant. This is checked every time just before the loop exit condition is tested.

@assert: An assertion. This is like a statement and is checked every time it is encountered during execution.

Contracts are important for two purposes.

Testing: Contracts represent a kind of generic test of a function. Rather than stating specific inputs (like f(2, 8) and testing the answer 256), contracts talk about expected properties for arbitrary values. On the other hand, contracts are only useful in this regard if we have a good set of test cases, because contracts that are not executed with values that cause them to fail cannot cause execution to abort.

Reasoning: Contracts express properties of programs so we can prove them. Ultimately, this can mathematically verify program correctness. Since correctness is the most important concern about programs, this is a crucial aspect of program development. Different forms of contracts have different roles, reviewed below.

The proof obligations for contracts are as follows:

@requires: At the call sites we have to prove that the precondition for the function is satisfied for the given arguments. We can then assume it when reasoning in the body of the function.
@ensures: At the return sites inside a function we have to prove that the postcondition is satisfied for the given return value. We can then assume it at the call site.

@loop_invariant: We have to show:

Init: The loop invariant is satisfied initially, when the loop is first encountered.

Preservation: Assuming the loop invariant is satisfied at the beginning of the loop (just before the exit test), we have to show it still holds when the beginning of the loop is reached again, after one iteration of the loop.

We are then allowed to assume that the loop invariant holds after the loop exits, together with the exit condition.

@assert: We have to show that an assertion is satisfied when it is reached during program execution. We can then assume it for subsequent statements.

Contracts are crucial for reasoning since (a) they express what needs to be proved in the first place (give the program’s specification), and (b) they localize reasoning: from a big program to the conditions on the individual functions, from the inside of a big function to each loop invariant or assertion.
Exercises

Exercise 1  Rewrite first \texttt{POW} and then \( f \) so that it signals an error in case of an overflow rather than silently working in modular arithmetic. You can use the statement \texttt{error("Overflow")}; to signal an overflow.

Exercise 2  Find an input for \( f \) that fails the first guess of a loop invariant:

\begin{verbatim}
//@loop_invariant r * POW(b,e) == POW(x,y);
\end{verbatim}