
15-122: Principles of Imperative Computation
R2: A Strange Sort of Proof James Wu, Andrew Benson
In class, we covered one quadratic sort, selection sort. Today, we’ll look at the full correctness proof,
from beginning to end, for another type of sort, known as insertion sort. This is somewhat more complex
of a proof, so be sure to follow along carefully!

Insertion Sort
1 void sort(int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@ensures is_sorted(A, 0, n);
4 {
5 for (int i = 0; i < n; i++)
6 //@loop_invariant 0 <= i && i <= n;
7 //@loop_invariant is_sorted(A, 0, i);
8 {
9 int j = i;

10
11 while (j > 0 && A[j−1] > A[j])
12 //@loop_invariant 0 <= j && j <= i;
13 //@loop_invariant is_sorted(A, 0, j);
14 //@loop_invariant is_sorted(A, j, i+1);
15 //@loop_invariant le_segs(A, 0, j, A, j+1, i+1);
16 {
17 swap(A, j−1, j);
18 j−−;
19 }
20 }
21 }

(a) Prove that, given the preconditions, the outer loop invariants initially hold.

In order to prove that the outer loop invariants are correct, we will need the negation of the inner
loop guard along with the preservation and correctness of the inner loop invariants. Therefore, our
proof sketch is as follows:

(b) Assume that the outer loop invariants hold for some iteration of the loop. Prove that the inner
loop invariants initially hold on this iteration.



(c) Given that the inner loop invariants hold initially, prove that the inner loop invariants are preserved.

(d) Prove the inner loop terminates.

We successfully proved the inner loop invariants correct! Now all that’s left is to prove the outer
ones.

(e) Prove the outer loop invariants are preserved, given that the inner loop invariants hold.

(f) Prove that the outer loop terminates.

(g) Finally, prove that the termination of the outer loop and the negation of the outer loop guard prove
the post condition. Whew! We’re done!


