
15-122: Principles of Imperative Computation
Recitation 8: Rotating Rotation Aaron Gutierrez, Josh Zimmerman

Binary Search Trees
A binary tree, like a linked list, is a recursive data structure. The only difference is that a node can have
0, 1, or 2 children, which can be other nodes or leaves. A leaf is a type of node that has no children.

1 typedef struct tree_node tree;
2 struct tree_node {
3 elem data;
4 tree* left;
5 tree* right;
6 };

We call left and right subtrees.

A binary search tree (BST) has an additional invariant, the ordering invariant. For a node with key
k, all elements in the left subtree must have keys that are strictly less than than k, and all elements in
the right subtree must have keys that are strictly greater than k (By this definition, we do not allow
duplicate keys).

Checkpoint 0
Circle all of the nodes that contain keys that violate the ordering invariant.
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Balanced Search Tree
Let’s take a look at two binary trees that contain the same elements.
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The height of the left tree is 7, while the height of the right tree is only 3. Say we want to access the
element 9. In the left tree, we need to travel down 7 levels, while on the right we only need to go down
3. Remember that we have to do a comparison at each level, so we’d like our trees to be as short as
possible.



AVL Trees
AVL trees add an additional invariant in order to ensure the tree is balanced. The height invariant
requires the height of the left and right subtrees only differ by at most 1. How do we preserve this
invariant? Rotations.

We insert nodes just as we would with a plain BST, but then check to see if (and where) the height
invariant is violated. Say we insert 5 into the following tree:
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Our tree is looking pretty unbalanced. But where is the violation? 6 and 9’s subtrees only differ by 1,
but the left subtree of 15 has height 3, while the right has height 1. To fix this, we rotate right at 15.
Notice that 12 is now the left child of 15, rather than the right child of 9.

Use the visualization at http://www.cs.usfca.edu/~galles/visualization/AVLtree.html to in-
sert 1, 2, 5, 3, 4 into the tree in the following order, then delete the keys 2 and 4.

Checkpoint 1
Rotate Left in Place We want to write rotate left, but rather than return a new root (like you saw
in lecture), we can keep the same root node. Instead of swapping nodes, we can get away with just
swapping their data. What does fix_height do?

1 void rotate_left(tree* T)
2 //@requires is_tree(T) && T != NULL && T−>right != NULL;
3 //@ensures is_tree();
4 {
5 elem x = T−>data;
6 elem y = T−>right−>data;
7 tree* A = T−>left;
8 tree* B = T−>right−>left;
9 tree* C = T−>right−>right;

10 T−>data = ;

11 T−>left = ;

12 T−>left−>data = ;
13 T−>left−>left = ;
14 T−>left−>right = ;
15 T−>right = ;
16 fix_height( );

17 fix_height( );
18 }

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

