
15-122: Principles of Imperative Computation Spring 2023
Lab 04: TA Training Tuesday January 31st

Collaboration: In lab, we encourage collaboration and discussion as you work through the prob-
lems. These activities, like recitation, are meant to get you to review what we’ve learned, look
at problems from a different perspective and allow you to ask questions about topics you don’t
understand. We encourage discussing problems with other students in this lab!

Setup: Copy the lab code from our public directory to your private directory in your unix.qatar.cmu.edu
machine:� �
% cd private/15122
% cp -R /afs/andrew/course/15/122/misc/lab04 .
% cd lab04� �
Reminder: it’s okay if you don’t get extra credit on every lab! The way we grade labs, you will
get all the possible points as long as you attend every lab and get full credit on a handful of labs.

Submission: . To submit, create a tar file by executing this command:� �
% tar cfzv handin.tgz set-test.c0� �
and submit it to autolab, under the lab name.

Introduction
Iliano is writing a new programming assignment called sets, where he has students represent sets of
integers as int arrays. One of the functions he wants them to write is intersect which computes
the intersection of two arrays. The relevant section of the writeup is below:

Lab 04: TA Training Page 2 of 4

int intersect(int[] A, int n, int[] B, int m, int[] intersection)
//@requires 0 <= n && n <= \length(A);
//@requires 0 <= m && m <= \length(B);
//@requires n <= \length(intersection) || m <= \length(intersection);
/*@ensures 0 <= \result && \result <= m && \result <= n; @*/ ;

The function intersect computes the intersection of two arrays A and B, defined as the array
containing all the elements that occur in both A and B (in sorted order and without duplicates).
We do not enforce that A and B have no duplicates nor that they be sorted. Here’s an example:

Unfortunately, we cannot just return the intersection as an array and expect the client to know
how long this array is, so we have to do something a little bit more fancy — we have the client
give us an array that they want to be filled with the intersection, and we just return the number
of integers in the intersection. The example above would now look like this:

Unfortunately, he is busy teaching 122, and so he decided to offload writing tests to his trusted TAs.
Then he remembered that all his TAs are busy as well, and came up with the perfect alternative:
have students write the tests so he can see who would be a good TA! A truly ingenious solution!

Testing code
The file testlib.c0 contains the following helper function, which may be useful while testing:

bool arr_eq(int[] A, int n, int[] B, int m)
/*@requires n <= \length(A) && m <= \length(B); @*/ ;

(2.a) When writing test cases, we usually run the function on sample inputs and assert whether
they match the output we expect. This can get quite repetitive — especially when working
with C0 arrays. Instead, we will write a function that takes in the inputs and the expected
output to see if the solution matches.

Complete the following function in set-test.c0. Its inputs are strings consisting of space-
delimited integers that we convert for you into the two input arrays of intersect and their
expected intersection.

void run_testcase(string A_as_str, string B_as_str, string Expected_as_str);

There are exactly two blanks you need to fill in. The rest of the function has been written for
you. You don’t need to understand the provided code, but the TAs will be happy to explain
it to you if you are curious!

Here is how you would call this function on the example given earlier:

2

Lab 04: TA Training Page 3 of 4

run_testcase("1 3 5 8 10 13 15 18", "15 55 9 1 30 5 1", "1 5 15");

3

Lab 04: TA Training Page 4 of 4

(2.b) Inside function run_tests (in file set-test.c0), create an exhaustive battery of tests for
intersect. We will execute it against 22 different student implementations of intersect.
Just two are correct, while the rest are broken in different ways.

Note: You may find it it useful to organize your test file based on what you’re testing for. That
is, you could separate it into a "Basic Tests" section, "Tests about Duplicates" section, etc.
You further can print "Basic Tests Passed!" or "Duplicates passed!" to give more information
on where a problem might lie. If you like modularity (we do), these could be helper functions!

Run ./check-test. This will run your tests on 22 student versions of intersect, some of
which are correct implementations, and some of which are incorrect. The program ./check-test
can also be run against a specific student by calling it with ./check-test -s <student_name>
(run it first without arguments to get the student names). Your tests must all pass on
correct implementations in order to get credit. A sample output can be found below:� �
% ./check-test
Testing student aardvark (Correct Implementation)

Test 1... Passed
Test 2... Failed
Test 3... Passed

Student code failed a test (expected to pass)
...
Testing student rjsimmon (Incorrect Implementation)

Test 1... Passed
Test 2... Failed
Test 3... Failed

Student code failed a test (expected to fail)... Good!
...
Tested 22 students, 9 students had no failed tests, 13 students had failed tests.
(No credit to be awarded --- your code fails students with correct code)� �

1.5pt (2.c) Your run_tests reports no failure on all correct implementations of intersect.

3pt (2.d) Additionally, your run_tests reports a failure on half the buggy implementations of intersect.

4pt (2.e) Additionally, your run_tests reports a failure on all the buggy implementations of intersect.

4

