
15-122: Principles of Imperative Computation Spring 2023
Lab 05: Fibonacci Has Bad Internet Tuesday February 7th

Collaboration: In lab, we encourage collaboration and discussion as you work through the prob-
lems. These activities, like recitation, are meant to get you to review what we’ve learned, look
at problems from a different perspective and allow you to ask questions about topics you don’t
understand. We encourage discussing problems with other students in this lab!

Setup:
Download the lab handout and code from the course website https://web2.qatar.cmu.edu/∼mhhammou/15122-
s23/schedule.html, and move it to your private directory in your unix.qatar.cmu.edu machine. Fol-
lowing that create a directory, move the handout to it, and unzip the handout file by executing the
following commands:� �
% mkdir lab_05
% mv 05-handout.tgz lab_05
% cd lab_05
% tar -xvf 05-handout.tgz� �
Lagged Fibonacci
The regular Fibonacci numbers are given by the function F (i) where F (i) = i for i ∈ [0, 2) and
where F (i) = F (i− 1) + F (i− 2) for i >= 2. More explicitly:

F (0) = 0
F (1) = 1
F (i) = F (i− 1) + F (i− 2) for i ≥ 2

The lagged Fibonacci numbers make use of two additional parameters j and k, where 0 < j < k.
They are defined by the function LF (i) where LF (i) = i for i ∈ [0, k) and where LF (i) = LF (i −
j) + LF (i− k) otherwise. Here is a C0 function that implements this definition (note that j and k
do not change during the computation):

1 int LF(int i, int j, int k)
2 //@requires 0 < j && j < k;
3 //@requires i >= 0;
4 {
5 if (i < k) return i;
6

7 int res = 0;
8 res += LF(i-j, j, k);
9 res += LF(i-k, j, k);

10 return res;
11 }

(1.a) The regular Fibonacci numbers can easily be computed on the basis of LF . Can you do so?

F (i) = LF ()

While LF computes the desired result accurately, it is quite slow for large inputs! This is because it
repeats many of the sub-computations over and over again, which is slow, inefficient, and redundant.
Can you see why?

https://web2.qatar.cmu.edu/~mhhammou/15122-s23/schedule.html
https://web2.qatar.cmu.edu/~mhhammou/15122-s23/schedule.html

Lab 05: Fibonacci Has Bad Internet Page 2 of 3

Memoization
To avoid these redundant computations, we introduce a data structure known as a memo table —
in our case it will be an array of integers. The idea is that, the first time we compute the lagged
Fibonacci number for i, we store it at index i in the memo table. Next time we need the i-th
lagged Fibonacci number, we simply look it up in the table.

Saving the result of computations that we would do over and over is called memoization. This
requires a bit of extra space in the form of the memo table, but it can save an enormous amount
of time because it avoids recomputing these results over and over. This is known as a space-time
trade-off, a really important concept in computer science.

(2.a) Using the slow LF function, write a specification function is_memo_table that checks that,
for all i ∈ [0, len] (note the inclusive upper bound!), M[i] is either 0 or LF(i,j,k).

bool is_memo_table(int[] M, int len, int j, int k)
//@requires 0 <= len && len < \length(M);

1.5pt

(2.b) Write a new recursive function lf_memo, which returns the same results as LF but uses a
memo table to avoid re-computing results by writing them into an array of integers.

Before the function does any work, it should check whether the result is already in the memo
table, and if so just return that value. If you do have to compute the number, store it in the
memo table before returning, so that future calls will not have to do the same work again.

DANGER! Do not use the function LF in your lf_memo function outside of contracts! This
will reintroduce the problem where we perform many redundant computations, which defeats
the entire purpose of our memo table! At this point, LF has become a specification function
for us.

int lf_memo(int[] M, int i, int j, int k)
//@requires 0 < j && j < k;
//@requires 0 <= i && i < \length(M);
//@requires is_memo_table(M, i, j, k);
//@ensures is_memo_table(M, i, j, k);
//@ensures \result == LF(i, j, k);

(2.c) Using lf_memo as a helper function, write the function fast_lf(i,j,k) that initializes a
new array and calls the helper to compute the lagged Fibonacci number.

int fast_lf(int i, int j, int k)
//@requires 0 < j && j < k;
//@requires 0 <= i;
//@ensures \result == LF(i, j, k);

(2.d) Check that your fast_lf function works by running it in coin with -d for some small Fibonacci
numbers. Then run it in coin without -d so that you actually notice a speedup. Running
with -d is slow as LF is called in the postcondition.

(2.e) What is the 54,321st Fibonacci number (mod 232, of course)? What is the 100,000th lagged
Fibonacci number with j = 1 and k = 25?

How do their functions look the same? How do they look different?3pt

2

Lab 05: Fibonacci Has Bad Internet Page 3 of 3

(2.f) What is the worst-case asymptotic complexity of the call LF(n, 1, 2)? A way to approach
this problem is to estimate the number of recursive calls during this computation: try drawing
a diagram that visualizes this!

(2.g) What is the worst-case asymptotic complexity of the call fast_LF(n, 1, 2)? A way to
approach this problem is to count how many times this call will write to the memo table. Can
you see why?

4pt

Timing code
In Unix, there is a way to determine the actual running time of a program. You use the time
command followed by the program name (and its arguments) that you want to time. For example,
to time an executable a.out in your current directory, you would enter:� �
% time ./a.out
Testing with n = 1000... Done. 0
real 0m1.027s
user 0m0.952s
sys 0m0.074s� �
The second number (user time) is the best one to track for this activity. It is closer to what we
want than the system time (the amount of time the program handed control over to the operating
system) or the “real” time, which is the sum of the two.

(3.a) In the lab directory, run the following commands:� �
% cc0 -o LFtest lf.c0 LFtest.c0
% cc0 -o memotest lf.c0 memotest.c0� �
This will create the executables LFtest and memotest that take an argument n, and print
the result of lagged fibonacci performed on the arguments (n, 1, 2) — these are actually
just the regular Fibonacci numbers! You can use these to time both the specification function
and your new function. For example, to time the LF specification function using input 10,
you would enter:� �
% time ./LFtest 10� �
Timing LFtest and memotest with increasing values of n will allow you to confirm the big-O
complexity of the functions LF and fast_LF you found earlier.

This is a common approach: You can first analyze the asymptotic complexity of a program by
looking at its code. Then you can confirm your hypothesis by running the program for varying
values of n and plotting your results.

3

