
15-122: Principles of Imperative Computation Spring 2023
Lab 14: Spend Some Cycles Thinking Tuesday April 18th

Collaboration: In lab, we encourage collaboration and discussion as you work through the prob-
lems. These activities, like recitation, are meant to get you to review what we’ve learned, look
at problems from a different perspective and allow you to ask questions about topics you don’t
understand. We encourage discussing problems with other students in this lab!

Setup: Download the lab handout and code from the course website https://web2.qatar.cmu.edu/∼mhhammou/15122-
s23/schedule.html, and move it to your private directory in your unix.qatar.cmu.edu machine. Fol-
lowing that create a directory, move the handout to it, and unzip the handout file by executing the
following commands:� �
% mkdir lab_14
% mv 14-handout.tgz lab_14
% cd lab_14
% tar -xvf 14-handout.tgz� �
Submission:
Create a tar file by executing the command below and submit it to autolab, under the lab name:� �
% tar cfzv handin.tgz graph-search.h graph-search.c graph-test.c graph.c� �
The graph interface
This lab involves implementing a graph using an adjacency matrix rather than an array of adjacency
lists. Graphs will be specified by the following C interface (as in graph.h):

typedef unsigned int vertex;
// typedef ______* graph_t;
// typedef ______* neighbors_t;

// New graph with v vertices
graph graph_new(unsigned int v);
//@ensures \result != NULL;

void graph_free(graph G);
//@requires G != NULL;

unsigned int graph_size(graph G);
//@requires G != NULL;

bool graph_hasedge(graph G,
vertex v,
vertex w);

//@requires G != NULL;
//@requires v < graph_size(G);
//@requires w < graph_size(G);

void graph_addedge(graph G, vertex v, vertex w);
//@requires G != NULL;
//@requires v != w;
//@requires v < graph_size(G);
//@ensures w < graph_size(G);
//@requires !graph_hasedge(G, v, w);

neighbors_t graph_get_neighbors(graph_t G, vertex v);
//@requires G != NULL && v < graph_size(G);
//@ensures \result != NULL;

bool graph_hasmore_neighbors(neighbors_t nbors);
//@requires nbors != NULL;

vertex graph_next_neighbor(neighbors_t nbors);
//@requires nbors != NULL;
//@requires graph_hasmore_neighbors(nbors);

void graph_free_neighbors(neighbors_t nbors);
//@requires nbors != NULL;

https://web2.qatar.cmu.edu/~mhhammou/15122-s23/schedule.html
https://web2.qatar.cmu.edu/~mhhammou/15122-s23/schedule.html


Lab 14: Spend Some Cycles Thinking Page 2 of 3

Representing undirected graphs with an adjacency matrix
In class, we discussed the adjacency list implementation of graphs. In this lab, we’ll work through
the adjacency matrix implementation.

Recall that if a graph has n vertices, then its adjacency matrix adj is an n × n array of booleans
such that adj[i][j] is true if there is an edge from vertex i to vertex j (for valid i and j), false
otherwise. Since the graph is undirected, if adj[i][j] is true, then adj[j][i] should also be
true, and if adj[i][j] is false, then adj[j][i] should also be false. The graph should not
have any self-loops (i.e., a vertex with an edge to itself).

(2.a) Complete the data structure invariant function is_graph that returns true if G points to a
valid graph given the definition above, or false otherwise.

Make sure to capture the fact that the graph is undirected in your data structure invariant! Compare
notes with a neighbor before you move on.1.5pt

(2.b) Complete the graph_new function that creates a new graph using a dynamically-allocated 2D
array of boolean for the adjacency matrix. Create the 2D array in two steps: first create a new
1D array of type bool*, then for each array element, have it point to a new 1D array of type
bool. You can then access the array using the 2D notation (e.g., G->adj[0][1] = true).

Note: Don’t ever do this in practice! C has ways of supporting 2D arrays that don’t require an
extra array of pointers; you’ll learn about this more efficient way of doing things in later classes,
like 15-213.

(2.c) Complete the functions graph_hasedge that checks if an edge is in the graph and graph_addedge
that adds a new edge to the graph.

(2.d) Complete the graph_free function that frees any dynamically-allocated memory for the given
graph G.

The functions graph_get_neighbors, graph_hasmore_neighbors, graph_next_neighbor and
graph_free_neighbors have been pre-implemented for you at the very bottom of file graph.c,
but for an extra challenge write them yourself.

Once you are done implementing the functions above, you should have a complete graph.c. Compile
your code and test it with the given DFS and BFS searches in graph-search.c and the given graphs
in graph-test.c:� �
% make graphtest
% ./graphtest� �
All tests should pass. (Look at the graphs in graph-test.c to see why.) Be sure to use valgrind
also to make sure you have freed all memory you allocated!3pt

2



Lab 14: Spend Some Cycles Thinking Page 3 of 3

Testing for graph connectedness
We say that a graph G is connected if there is a path from any vertex to any other vertex in G.1

For example the following graph is connected:

In an undirected graph, this definition is equivalent to saying that there is a path from a single
arbitrary vertex to any other vertex. Can you see why?

(3.a) Write a function connected(G) in graph-search.c that returns true if a graph G is con-
nected, or false otherwise. Make sure your implementation is as efficient as possible.

Hint: Your function should work similarly to BFS, but it should count the number of vertices
visited. For a connected graph, the total should be a specific value. Test your function on
several graphs, connected and not connected.

(3.b) Write at least two test cases in graph-test.c: one where connected returns true, and one
where it returns false.4pt

1A graph where there is an edge from any vertex to any other vertex is called complete. Complete graphs are a
special case of connected graphs.

3


