
15-122 Programming Homework 1 Page 1 of 6

15-122: Principles of Imperative Computation, Spring 2023

Programming Homework 1: Scavenger Hunt

Due: Wednesday 18th January, 2023 by 9pm

Welcome to 15-122! This first programming homework is designed as an opportunity for you
to tour the course tools and workflow that we will use in 15-122.

The assignment takes the form of a scavenger hunt; you will add pieces of code to three
files, scavhunt.c0, compilation.c0 and puzzle.c0, and then turn these files in through
Autolab (https://autolab.andrew.cmu.edu/courses/15122q-s23). To do so, please
create a zipped tarball (tgz), for example:� �
% tar -czvf handin.tgz scavhunt.c0 compilation.c0 puzzle.c0� �

and then upload it to Autolab. There, you can also see scores and feedback of your last
submission.

Your score for this assignment will be the score of your last Autolab submis-
sion. The same will be true of all future assignments.

© Carnegie Mellon University 2023

https://autolab.andrew.cmu.edu/courses/15122q-s23
https://autolab.andrew.cmu.edu/courses/15122q-s23
https://autolab.andrew.cmu.edu/courses/15122q-s23
https://autolab.andrew.cmu.edu/courses/15122q-s23

15-122 Programming Homework 1 Page 2 of 6

1 Obtaining the handout code

Task 1 (2 points) Obtain the handout file scavhunt.c0, containing a function greet.
The handout of this aasginment is on the Autolab website under

Programming > Scavenger Hunt > Download Handout

Clicking on the link will download a gzipped tarball file called scavhunt-handout.tgz
which you need to unpack. Note that some browsers uncompress downloaded files.

IMPORTANT: if you are using Andrew AFS, make sure that you only put code for 15-122
into your private directory or into another directory with appropriate AFS permissions
set. Failing to do this will cause you to run afoul of the course’s academic integrity policy.

In all assignments, you will find the file README.txt. It contains instructions for sub-
mitting and testing, as well as an overview of the files in this assignment. We recommend
referring back to this file as you complete the assignment.

You can’t use scavhunt-main.c0 yet, but you can test the greet function contained
in scavhunt.c0 using coin.� �
% cd scavhunt
% coin -d -lconio scavhunt.c0
C0 interpreter (coin) 0.3.3 ’Nickel’ (r718, Wed Sep 2 16:02:44 EDT 2020)
Type ‘#help’ for help or ‘#quit’ to exit.
--> greet("Hello", "world");
"Hello, world!" (string)
--> printf("%s\n", greet("Hello", "world"));
Hello, world!
(void)
--> printf("%s", greet("Hi", "friend"));
(void)
--> printf("\n");
Hi, friend!� �
Here, “-lconio” allows you to use printing functions in coin.

This demonstrates something important (and potentially confusing) about C0 programs.
When you use the print function to print strings, the output is buffered and does not
generally get printed out until a newline is printed. The escape sequence \n represents a
newline, so printing the string "\n" empties the buffer, printing Hi, friend!.

2 Using the C0 tutorial

Task 2 (2 points) The C0 tutorial’s page on “Statements” contains the code for a C0 file
named fact.c0. Copy all the contents of this file (it’s just one function) into scavhunt.c0.

The C0 tutorial at https://bitbucket.org/c0-lang/docs/wiki/Tutorial will help
with early assignments. The point about buffered output above is explained on the page
entitled “Debugging C0 Programs” in the C0 tutorial.

© Carnegie Mellon University 2023

https://autolab.andrew.cmu.edu/courses/15122q-s23
https://bitbucket.org/c0-lang/docs/wiki/Tutorial
https://bitbucket.org/c0-lang/docs/wiki/Tutorial

15-122 Programming Homework 1 Page 3 of 6

3 Viewing images from AFS

Task 3 (2 points) The file /afs/andrew/course/15/122/misc/scavhunt/snippet.png
(notice the leading ’/’) is an image file that, when viewed, contains a C0 function. Copy
the code in that image into scavhunt.c0.

For the next two programming assignments, it will be very helpful for you to already
know how to view images that live on AFS. You can easily do this using a program
like display if you are logged into a Linux cluster machine or connected with SSH to
unix.andrew.cmu.edu (see the posts entitled “Laptop Setup for Mac/Windows/Linux” on
Piazza for how to do this). If you use VSCode with the ssh or sftp extension, you can copy
the image to your ~/private/15122 directory using the cp command, and then open it
like any other file. Alternatively, you can transfer the image from AFS to your computer
with the scp command-line program or with a program like WinSCP, and then view it with
whatever built-in image-viewing software your operating system uses. Play around and find
a method you like.1

Once you have added the function from snippet.png, you can use the cc0 compiler and
the provided scavhunt-main.c0 program to compile and run your scavenger hunt code.� �
% cc0 -d -o scavhunt scavhunt.c0 scavhunt-main.c0
% ./scavhunt� �

The -d, which also appeared in the call to coin, makes sure contracts are checked. The
arguments -o scavhunt tells the compiler to produce an executable file named scavhunt.
You could omit this argument and the executable file would be named a.out.� �
% cc0 -d scavhunt.c0 scavhunt-main.c0
% ./a.out� �

1Note that some of these methods may take a few seconds or minutes on a slow Internet connection.

© Carnegie Mellon University 2023

https://piazza.com/cmu/spring2023/15122q/home

15-122 Programming Homework 1 Page 4 of 6

4 Updates, clarifications and questions on Piazza

Task 4 (2 points) Modify the function from snippet.png as described in the “How to
use Piazza (effectively)” post on 15-122 Piazza.

Piazza can be found at https://piazza.com/. Please read through the whole “How to
use Piazza (effectively)” post, as it explains some of the guidelines for how we will be using
Piazza.

5 Fixing Syntax Errors
In the next task, you will be learning how to read and fix local compilation errors. Specifically,
you will be making additions to the file compilation.c0 so that it compiles. Let’s compile
this file together:� �
% cc0 compilation.c0 compilation-test.c0� �
Because the file has issues, this command will display the following compilation error:

The compilation error gives you a lot of handy information for figuring out what is wrong.

• It tells the name of the file where the compilation error occurred, here compilation.c0.

• It also tells the line number where cc0 noticed the problem, in this case 17.3-17.5.
This means the issue starts on line 17 column 3 up to line 17 column 5 — sometimes
the reported line number is a few lines after where the issue actually is.

• Next, it tells what the error is, in this case “expected ’;’, found ’if’” which
means that cc0 expected to see a semicolon but ended up finding an if. This says we
are missing a semicolon. If we look at the previous line of code, line 15 (since line 16
is empty), we find that indeed we were missing a semicolon.

Go ahead and add a semicolon at the end of line 15.

Task 5 (2 points) Identify and fix the remaining syntax issues in this file by repeatedly
compiling it and using the error message to find and correct the next issue. Once there are
no more compilation errors, you have successfully completed this task.

Do compile the files even if the fix is obvious from a quick glance at the code. In this
way, you will practice reading compilation messages, which will help you deal with your own
compilation errors in future programming assignments.

All your fixes should be additions to the file compilation.c0. In particular, you should
not be deleting anything. In the event you do something wrong and don’t know how to undo
it, you can go back to the original compilation.c0 by running the following command:� �
% cp compilation-backup.c0 compilation.c0� �

© Carnegie Mellon University 2023

https://piazza.com/

15-122 Programming Homework 1 Page 5 of 6

6 Satisfying library function contracts
Now that compilation.c0 is free of syntax error, let’s run the fruit of your labors:� �
% ./a.out� �
This will abort with a safety failure caused by the call to the library function string_charat.

Task 6 (1 point) Find what caused this issue by looking up the contracts of string_charat
in the C0 library documentation at https://c0.cs.cmu.edu/docs/c0-libraries.pdf.
Then, fix it by deleting a single character in function fixme_later.

Once you are done, compile and execute this code again. It should now run to completion
and display a friendly message.

7 Getting feedback from Autolab
To proceed, you’ll need to submit the work you have so far to Autolab. The instruc-
tions for doing this are on the first page of this writeup. Autolab always allows multiple
submissions, and your last submission is the one we count. For this assignment, there
is no limit to the number of times you are allowed to submit (but there will be in future
homework).

Task 7 (2 points) Add a function (that takes no arguments and returns a string) to
scavhunt.c0. It does not matter what string this function returns.

You’ll be able to figure out what the name of the missing function should be by looking
at the output that Autolab gives you. The autograder we use for 15-122 doesn’t give a ton
of feedback, but it does give some feedback when tests fail. First, it says why the test failed
(for instance, File did not compile), and then it gives a hint. However, the hints almost
always assume that the test compiled, so if the test reports that the file did not compile, you
should look to the first part of the autograder’s feedback to see the output from the
C0 compiler and get an idea of what went wrong, rather than paying attention to the hint.

Don’t make a habit of doing things this way. Autolab is not your compiler, and you
should test your code before you hand in your work. In fact, future programming assignments
will limit substantially the number of submissions you are allowed.

There are two other critical features in the Autolab website, found at https://autolab.
andrew.cmu.edu/courses/15122q-s23.

• First, the Gradebook link lets you see your performance, including the number of late
days you have used.

• Second, you can view the code you handed in with Autolab; when there’s a manually-
graded piece of a programming assignment you’ll get comments from TAs on Autolab.

© Carnegie Mellon University 2023

https://c0.cs.cmu.edu/docs/c0-libraries.pdf
https://c0.cs.cmu.edu/docs/c0-libraries.pdf
https://autolab.andrew.cmu.edu/courses/15122q-s23
https://autolab.andrew.cmu.edu/courses/15122q-s23
https://autolab.andrew.cmu.edu/courses/15122q-s23

15-122 Programming Homework 1 Page 6 of 6

8 Puzzle hunt
This last task will require you to think a little bit harder, and also read through the C0
tutorial page on “Strings and Characters” in the C0 tutorial, as well as the C0 library docu-
mentation at https://c0.cs.cmu.edu/docs/c0-libraries.pdf. You must implement
three functions:

int f(string s1, string s2)
//@ensures 0 <= \result && \result <= string_length(s1);
//@ensures 0 <= \result && \result <= string_length(s2);
//@ensures string_equal(string_sub(s1, 0, \result), string_sub(s2, 0, \result));
/*@ensures \result == string_length(s1)
@ || \result == string_length(s2)
@ || string_charat(s1, \result) != string_charat(s2, \result); @*/

int g(string s)
//@requires string_length(s) > 0;
//@requires string_charat(s, 0) != string_charat(s, string_length(s) - 1);
//@ensures 0 <= \result && \result < string_length(s)-1;
//@ensures string_charat(s, \result) == string_charat(s, 0);
//@ensures string_charat(s, \result+1) != string_charat(s, 0);

string h(string s)
//@ensures is_substring(\result, s);
/*@ensures string_length(s) < 128
@ || (string_length(\result) > 1
@ && string_charat(\result, 0)
@ == string_charat(\result, string_length(\result) - 1)); @*/

Note: some of these postconditions rely on short-circuiting evaluation, which is discussed in
the C0 tutorial page on Booleans and in the first recitation notes.

It is possible to write loop invariants to prove that each function satisfies its postcondition.
You aren’t required to do that for this assignment, but you are encouraged to try! You will
definitely want to write test cases for these functions and run them; it’s a good idea to enable
contract checking when you do so:� �
% cc0 -d -o puzzle puzzle.c0 puzzle-test.c0
% ./puzzle� �
For the first function, some test cases are provided in puzzle-test.c0. For the second
function, the autograder’s feedback will indicate what string your function failed on. For the
third function, which involves finding two characters in the string that are the same, you’ll
need to think through test cases on your own. You might want to look up the pigeonhole
principle to understand why the postcondition for that function looks like it does. (Hint:
there are 127 different characters that can appear in C0 strings.)

Task 8 (12 points) Fill in the three functions in puzzle.c0. Any implementation that
always satisfies the postconditions will be accepted, even though there may be multiple
correct implementations that give different answers.

© Carnegie Mellon University 2023

https://bitbucket.org/c0-lang/docs/wiki/Tutorial
https://c0.cs.cmu.edu/docs/c0-libraries.pdf
https://c0.cs.cmu.edu/docs/c0-libraries.pdf
https://c0.cs.cmu.edu/docs/c0-libraries.pdf

	Obtaining the handout code
	Using the C0 tutorial
	Viewing images from AFS
	Updates, clarifications and questions on Piazza
	Fixing Syntax Errors
	Satisfying library function contracts
	Getting feedback from Autolab
	Puzzle hunt

