
15-122 Programming Homework 6 Page 1 of 8

15-122: Principles of Imperative Computation, Spring 2023

Programming Homework 6: Text Buffers

Due: Wednesday 8th March, 2023 by 9pm

For the programming portion of this week’s homework, you’ll use a doubly linked list to
implement some of the basic features of a text editor.

Download the assignment handout from the course website or Autolab. The file README.txt
in the code handout goes over the contents of the handout and explains how to hand the
assignment in. There is a SIX (6) PENALTY-FREE HANDIN LIMIT. Every additional
handin will incur a small (5%) penalty (even if using a late day). Your score for this
assignment will be the score of your last Autolab submission.

Warning: In the course so far, we have previously considered interfaces (like pixels, stacks,
queues, and dictionaries) that did not expose their internal representation to the user and
that were tested as an opaque interface (black-box testing). The data structures and inter-
faces we implement for this assignment expose their internal representation to the client.

The expectation is that the client (who is sometimes the text editor, and sometimes you!)
will mostly use this representation to read from the data structures, but they will usually
not write to the data structures themselves. However, clients are allowed to manipulate the
data structures, and so we expose the data structure invariants (like is_tbuf) as part of
the interface.

This means that your data structure invariants will need to be very good, and we will
test them very thoroughly. They need to permit anything permitted by the specification,
and disallow anything that is not allowed by the specification. One thing we will not require
you to do in this assignment is circularity checking: we will never test your data structures
against a doubly linked list where you can follow next pointers forever without reaching
NULL or one where you can follow prev pointers forever without reaching NULL.

© Carnegie Mellon University 2023

https://web2.qatar.cmu.edu/~mhhammou/15122-s23
https://autolab.andrew.cmu.edu/courses/15122q-s23
https://autolab.andrew.cmu.edu/courses/15122q-s23


15-122 Programming Homework 6 Page 2 of 8

1 Doubly linked lists with cursors
We have seen singly-linked lists used to represent stacks and queues — sequences of nodes,
each node containing some data and a pointer to the next node. The nodes in a doubly-linked
list contain instead two pointers: one to the next element (next) and one to the previous
element (prev). They have a data field just like those of a singly-linked list.

We will use doubly-linked lists to hold the contents of an editor. An editable sequence
is represented in memory by a doubly-linked list and two pointers: one to the start of the
sequence, one to the end of the sequence. We employ our usual trick of terminating the list
(on both ends!) with “dummy” nodes whose contents we never inspect.

typedef struct dll_node dll;
struct dll_node {

dll* prev;
char data;
dll* next;

};

The following doubly linked list contains the text “spaces”:

To use a doubly linked list as a text buffer, we need to add a cursor, which represents
the position where edits can be made in the buffer. In an Emacs-like interface, the cursor
frequently appears as a black rectangle, so that if the cursor was pointing to the node
containing the character ’e’, we’d see it displayed as

spacesspaces e spaces

Pressing the left arrow key in a text editor moves the cursor one character backward (to the
left).

spacesspaces c spaces

We can now draw the linked list corresponding to this text buffer along with its header,
which contains start, cursor, and end fields:

© Carnegie Mellon University 2023



15-122 Programming Homework 6 Page 3 of 8

Edits in a text buffer take place to the left of the cursor. If we press the “delete” key in
the previous picture, it will delete the character to the left of the cursor:

Insertions also happen to the left of the cursor. If we next typed the “i” key, that character
would be entered in to the left of the cursor.

One consequence of this design is that, in order for additions and deletions to be made to
the end of the buffer, the cursor needs to be able to go to the right of all the text. In other
words, it must be possible for the cursor field to point to the same node that end points
to. Starting from the buffer above, we can see what that looks like from the editor’s point
of view:

spicesspices c spices(hit the right arrow key to move the cursor forward. . . )

spicesspices e spices(hit the right arrow key to move the cursor forward. . . )

spicesspices s spices(hit the right arrow key to move the cursor forward. . . )

spicesspices spices(hit the right arrow key to move the cursor forward. . . )(hit delete. . . )

spicesspices spices(hit the right arrow key to move the cursor forward. . . )(type “d”. . . )

spicedspices spices(hit the right arrow key to move the cursor forward. . . )

As a doubly-linked list, this final buffer looks like this:

A new, empty text buffer B containing no text has a header and two nodes and the cursor
at the end:

© Carnegie Mellon University 2023



15-122 Programming Homework 6 Page 4 of 8

1.1 Data structure invariants

We use doubly-linked lists to implement text buffers, which have type tbuf*.

typedef struct tbuf_header tbuf;
struct tbuf_header {

dll* start;
dll* cursor;
dll* end;

};

A valid text buffer is a non-NULL tbuf* with the following properties:

• the next links proceed from the start node to the end node, with the cursor node
included in the segment from start (exclusive) to end (inclusive).

• the prev links mirror the next links.

These are our linking invariants.

Task 1 (5 points) In the file tbuf.c0, implement the function

bool is_tbuf(tbuf* B)

that formalizes the linking invariants on a doubly-linked list text with a cursor.

You may find that writing a helper function bool is_dll_segment(dll* a, dll* b)
will help you implement is_tbuf. You are not required to check for circularity, but you may
find it to be a useful exercise (it’s actually easier for a doubly linked list than for singly-linked
ones).

This task is not trivial. There are many ways for a doubly-linked list to be invalid, even
without circularity. For instance, your is_tbuf function will be tested against structures
with NULL pointers in various locations and against almost-correct doubly-linked lists:

Not a doubly-linked list (the
cursor isn’t on the path from
start to end).

Not a doubly-linked list (the
prev links don’t mirror the
next links).

© Carnegie Mellon University 2023



15-122 Programming Homework 6 Page 5 of 8

You can test your is_tbuf by writing test cases in test-is_tbuf.c0. It is highly
recommended to test extensively as the rest of the assignment will rely on is_tbuf as a
data structure invariant and having a working is_tbuf will help with debugging for the rest
of the assignment.

1.2 Manipulating doubly-linked lists

Task 2 (9 points) Implement the following utility functions on doubly-linked lists with
cursors:

Function: Returns true iff...
bool tbuf_at_left(tbuf* B) . . . the cursor is as far left as possible
bool tbuf_at_right(tbuf* B) . . . the cursor is as far right as possible

and the following interface functions for manipulating doubly-linked lists with cursors:

tbuf* tbuf_new() Create a new and empty text buffer
void tbuf_forward(tbuf* B) Move the cursor forward, to the right
void tbuf_backward(tbuf* B) Move the cursor backward, to the left
char tbuf_delete(tbuf* B) Remove the node to the cursor’s left

(should return the deleted char)
void tbuf_insert(tbuf* B, char c) Insert c to the cursor’s left

If an operation cannot be performed, a contract (precondition) should fail. These
functions should require and preserve the data structure invariant you wrote above, and you
should both document this fact and use it to help write the code.

1.3 Rows and columns

Up until now, nothing that we’ve written has been specific to doubly-linked lists of characters.
One thing we care a great deal about in a text editor is which characters are newlines, because
that is what lets us know our position in the document: the row and column. In Emacs
(and the remaining tasks of this assignment), the first row is row 1, and the first column
is column 0. In these Emacs buffers, you can see the (row, column) displayed in the lower
right corner:

We can calculate the column of the cursor by working backwards until we find a newline,
and we can calculate the row of the cursor by working backwards to the beginning of the
buffer and counting the newlines. Note that in the middle example, the cursor is atop a cell
containing a newline ’\n’, but the cursor is at the end of row 1, not the beginning of row 2.

© Carnegie Mellon University 2023



15-122 Programming Homework 6 Page 6 of 8

Task 3 (2 points) Implement the following functions on doubly-linked lists with cursors:

Function:
int tbuf_row(tbuf* B) Return the row of the cursor
int tbuf_col(tbuf* B) Return the column of the cursor

These functions should not modify the text buffer. Furthermore, they should be as efficient
as possible, only scanning necessary portions of the doubly-linked list.

1.4 Testing

You can test your doubly-linked-list implementation interactively by compiling and running
the provided tbuf-test.c0, which treats elements as C0 characters as in the illustration
above. You do not need to modify this file (nor test-main.c0), but you are encouraged to
use it as a starting point for writing your own unit tests.� �
% cc0 -d -w -o tbuf-test tbuf.c0 tbuf-test.c0 test-main.c0
% ./tbuf-test
Visualizing an initially-empty text buffer.
The ’<’ character mimics going backwards (left arrow key)
The ’>’ character mimics going forwards (right arrow key)
The ’^’ character mimics deletion (delete key)
The ’@’ character mimics a newline (enter key)
All other characters just insert that character

Give initial input (empty line quits):� �
Suggestion: try entering “steady^<<<<^>>^>>^@<<@^^” the initial input.

© Carnegie Mellon University 2023



15-122 Programming Homework 6 Page 7 of 8

2 Editor
One desirable feature of a text editor is the ability to report the current row and col-
umn. (You can display this information in Emacs by typing “M-x line-number-mode”
and “M-x column-number-mode”.) In this section, we’ll introduce an editor type which
keeps track of both the cursor and the row and column position.

Remember: You’ve already implemented your code for doubly-linked lists with cursors,
and hopefully you’ve tested that implementation extensively. Avoid re-implementing fea-
tures in this part of the assignment! Whenever possible, reuse the functions you’ve already
implemented.

2.1 Data structure invariants

An editor keeps track of both the text buffer and int fields storing the row and column.

typedef struct editor_header editor;
struct editor_header {

tbuf* buffer;
int row;
int col;

};

A valid editor data structure is non-NULL, has a valid text buffer, and has recorded row
and col fields that match the information returned by the tbuf_row and the tbuf_col
functions.

Task 4 (3 points) In the file editor.c0, implement the function

bool is_editor(editor* E)

that formalizes the data structure invariants on an editor.

2.2 Manipulating text in the editor

By tracking the row and column in the data structure, we can report this information to
the user without ever having to recalculate the row using tbuf_row. It’s good to avoid this,
because tbuf_row can be expensive to run. We will sometimes, but only rarely, need to
recalculate the column by calling tbuf_col. Any single row is usually relatively short (80
columns maximum, if you’re using good style), so this should be fast.

Specifically, we only need to recalculate the column by calling tbuf_col when we delete
a newline character or move left from the beginning of one line to the end of the previous
line.

© Carnegie Mellon University 2023



15-122 Programming Homework 6 Page 8 of 8

Task 5 (6 points) Efficiently implement the following interface functions for manipulating
editors:

editor* editor_new() Create a new and empty editor
void editor_forward(editor* E) Move the cursor forward, to the right
void editor_backward(editor* E) Move the cursor backward, to the left
void editor_delete(editor* E) Remove the node to the cursor’s left
void editor_insert(editor* E, char c) Insert c to the cursor’s left

These functions directly respond to a user’s input. That means that if an oper-
ation cannot be performed (e.g., pressing the “left” key to move the cursor backward with
editor_backward when it’s already at the left end), the function should leave the text
buffer unchanged instead of raising an error or assertion violation.

2.3 Testing

The same testing program you used for testing your tbuf implementation can also be used
for this part of the assignment:� �
% cc0 -d -w -o editor-test tbuf.c0 editor.c0 editor-test.c0 test-main.c0
% ./editor-test� �
You can additionally test your code with a visual text editor designed by legendary former
TA and instructor William Lovas:� �
% cc0 -d -w -o E0 tbuf.c0 editor.c0 lovas-E0.c0
% ./E0� �
Task 6 (bonus) In editor.c0, implement the functions editor_up and editor_down.
They will enable you to use the up and down arrow keys to move around the E0 text editor
more effectively.

The up and down keys should take you up or down a row unless you’re on the first or last
row (respectively) already. If possible, this operation should leave you on the same column
as before. This is not possible when the row you’ve landed on has too few columns. In that
case, you should leave the cursor at the rightmost end of the row.

© Carnegie Mellon University 2023


	Doubly linked lists with cursors
	Data structure invariants
	Manipulating doubly-linked lists
	Rows and columns
	Testing

	Editor
	Data structure invariants
	Manipulating text in the editor
	Testing


