
15-122: Principles of Imperative Computation Spring 2023
Recitation 12: C-ing is Believing Thursday April 6th

printf

Like C0, C provides printf to print values to terminal. However, C supports many more format
specifiers than C0 (which has only %d, %s and %c). Particularly useful are

• %u to print an unsigned int,
• %ld to print a long,
• %lu to print an unsigned long, and
• %zu to print a size_t, and

Feel free to search online for format specifiers for more types.1

An argument corresponding to %d (or %i) must have type int (or smaller signed types like short
and signed char). Providing an argument of any other type is undefined behavior — it may print
the expected result, or it may not on any given execution. Thus,

int z = -500;
printf("%u\n", z);

is undefined behavior.

structs on the stack
In C0 and C1, if we ever wanted to create a struct, we had to explicitly allocate memory for it
using alloc. C doesn’t have this restriction — you can declare struct variables on the stack, just
like int’s. We set a field of a struct with dot-notation, below. Recall that when we had a pointer
p to a struct, we accessed its fields with p->data. This is just syntactic sugar for (*p).data.

Checkpoint 0
#include <stdio.h>

struct point {
int x;
char y;

};

int main () {
struct point a;
a.x = 3;
a.y = ’c’;
struct point b = a;
b.x = 4;
printf("a.x, a.y: %d, %c\n", a.x, a.y); // what gets printed out here?
printf("b.x, b.y: %d, %c\n", b.x, b.y); // how about here?

}

1The C++ document http://cplusplus.com/reference/cstdio/printf is a good reference (C behaves simi-
larly).

http://cplusplus.com/reference/cstdio/printf

Recitation 12: C-ing is Believing Page 2 of 5

Addressing all things
We have already seen the “address-of” operator, &, used to find function pointers in C1. In C, we
can do the same thing with variables. This is useful if you want to give a function a reference to a
local variable. Remember to only free pointers returned from malloc!

Checkpoint 1

#include <stdio.h>
#include "lib/contracts.h"

void bad_mult_by_2(int x) {
x = x * 2;

}

void mult_by_2(int* x) {
REQUIRES(x != NULL);

*x = *x * 2;
}

int main () {
int a = 4;
int b = 4;
bad_mult_by_2(a);
mult_by_2(&b);
printf("a: %d b: %d\n", a, b);
return 0;

}

#include <stdio.h>
#include "lib/contracts.h"
struct point {
int x;
int y;

};
void swap_points(struct point* P) {
REQUIRES(P != NULL);
int temp = P->x;
P->x = P->y;
P->y = temp;

}
int main() {
struct point A;
A.x = 122;
A.y = 15;
swap_points(&A);
printf("A: (%d, %d)\n", A.x, A.y);
return 0;

}

What is the output when each of these programs are run?

2

Recitation 12: C-ing is Believing Page 3 of 5

Casting
C provides many different types to represent in-
teger values. Some are signed while other are
unsigned, and they don’t necessarily are 32-bit
long (for example a short is commonly 16 bits).

Sometimes, if we really know what we are do-
ing, we may want or need to convert between
these types. We can do so by casting. The
flow chart to the right summarizes what hap-
pens when casting a numerical expression exp
of type old_type to type new_type.

The general rule of thumb is that value is pre-
served whenever possible, and the bit pattern is
preserved otherwise.

Here is one example of each situation:

// -3 is representable as an int
signed char x = -3; // x is -3 (= 0xFD)
int y = (int)x; // y is -3 (= 0xFFFFFFFD)

// -241 is NOT representable as a SIGNED char and the new type is signed
int x = -241; // x is -241(= 0xFFFFFF0F)
signed char y = (signed char)x; // y is ?? (often 0x0F)

// -3 is NOT representable as a UNSIGNED int, the new type is bigger
signed char x = -3; // x is -3 (= 0xFD)
unsigned int y = (unsigned int)x; // y is 4294967293 (= 0xFFFFFFFD)

// -3 is NOT representable as a UNSIGNED char, the new type and smaller or equal
signed char x = -3; // x is -3 (= 0xFD)
unsigned char y = (unsigned char)x; // y is 253 (= 0xFD)

Most casts between pointers and integers are implementation-defined.

3

Recitation 12: C-ing is Believing Page 4 of 5

switch statements
A switch statement is a different way of expressing a conditional. Here’s an example:

void print_dir(char c) {
switch (c) {
case ’l’:
printf("Left\n");
break;

case ’r’:
printf("Right\n");
break;

case ’u’:
printf("Up\n");
break;

case ’d’:
printf("Down\n");
break;

default:
fprintf(stderr, "Specify a valid direction!\n");

}
}

Each case’s value should evaluate to a constant integer type (this can be of any size, so chars, ints,
long long ints, etc).

The break statements here are important: If we don’t have them, we get fall-through: without the
break on line 11 we’d print “Up” and then “Down” for case ’u’.

Checkpoint 2
Fall-through is useful but can be tricky. What’s wrong with the following code? How do you fix it?

#include <stdio.h>
#include <stdlib.h>
void check_parity(int x) {
switch (x % 2) {
case 0:
printf("x is even!\n");

default:
printf("x is odd!\n");

}
}

4

Recitation 12: C-ing is Believing Page 5 of 5

Checkpoint 3
What’s wrong with each of these pieces of code?

(a) 1 int* add_sorta_maybe(int a, int b) {
2 int x = a + b;
3 return &x;
4 }

(b) 1 void print_int(int* i) {
2 printf("%d\n", *i);
3 free(i);
4 }
5

6 int main() {
7 int x = 6;
8 print_int(&x);
9 return 0;

10 }

(c) 1 int main() {
2 int x = 0;
3 if (x = 1)
4 printf("woo\n");
5 return x;
6 }

(d) 1 int main () {
2 unsigned int x = 0xFE1D;
3 short y = (short)x;
4 return 0;
5 }

(e) 1 int main() {
2 char* s = "15-122";
3 s[4] = ’1’; // blasphemy
4 printf(s);
5 return 0;
6 }

(f) 1 int main() {
2 char s[] = {’a’, ’b’, ’c’};
3 printf("%s\n", s);
4 return 0;
5 }

5

