Midterm 2 Solutions

15-122 Principles of Imperative Computation

Thursday $2^{\text {nd }}$ April, 2020

Name: \qquad
Andrew ID: \qquad bovik \qquad
Recitation Section: \qquad S

Instructions

- This exam is closed-book with one sheet of notes permitted.
- You have 80 minutes to complete the exam.
- There are 4 problems on 21 pages (including 0 blank pages at the end).
- Read each problem carefully before attempting to solve it.
- Do not spend too much time on any one problem.
- Consider if you might want to skip a problem on a first pass and return to it later.

		Max
Score		
Priority Queues	20	
Heterogeneous Data Structures	31	
Tree Sort		
Scanning Hash Tables	40	
Total:	136	
T.		

1 Priority Queues (20 points)

This task is about priority queues implemented as min-heaps.
Task 1.1 Consider the min-heap shown below. The numbers indicate the priority of a node.

a. Draw the resulting heap after inserting a new node with priority 2 into the heap above, using the pq_add function discussed in class:

b. Draw the resulting heap after removing the node with the highest priority from the original heap above, using the pq_rem function discussed in class:

Task 1.2 In the next tasks, you may assume the min-heap implementation of priority queues seen in class.
a. What is the asymptotic complexity (tightest and simplest) of using the function pq-add to insert n items into an initially empty priority queue? Justify your answer briefly.

$O(\underline{n \log n})$
Because we make n calls, each bounded by $\log n$.

b. What is the asymptotic complexity (tightest and simplest) of using the function pq-rem, to remove 7 items from an n-element heap (you may assume $n>7$)? Justify your answer briefly.

$$
O(\quad \log n \quad)
$$

Because we make 7 calls, each bounded by $\log n$.
c. What is the asymptotic complexity (tightest and simplest) of calling the function pq-peek n times on a non-empty n-element heap? Justify your answer briefly.

$$
O(\square)
$$

Because we make n call to an $O(1)$ function.
(Note that this is especially silly since each call returns the same item.)
d. When inserting or removing an element, one of the heap invariants is temporarily violated while the other holds throughout. Circle the one that is temporarily violated.

Shape invariant	Ordering invariant

2 Heterogeneous Data Structures (31 points)

In this exercise, we are going to explore heterogeneous queues, allowing a client to store elements of different types in one queue. An immediate thought might be to use void* as the type for the queue's elements. However, since \hastag can only be used in contracts, but not in code in C1, we would lose the ability to process the elements depending on their type. To make an element's actual type available to C 1 code, we introduce the following struct:

```
struct tagged_elem_header {
    int tag; // 0 = int*, 1 = string*, 2 = bool*
    void* value;
};
typedef struct tagged_elem_header tagged_elem;
```

The field tag describes the type of the element and the field value its value. We use the integer 0 for type int*, the integer 1 for type string*, and the integer 2 for type bool*.
7 pts Task 2.1 Complete the function new_tagged_string, which creates a new tagged element. Make sure that your implementation satisfies the given contract:

```
tagged_elem* new_tagged_string(string s)
//@ensures \result != NULL;
//@ensures \result->tag == 1;
//@ensures string_equal(*(string*)(\result->value), s);
//@ensures \hastag(__ string* , \result->value);
{
    tagged_elem* new =
        alloc(tagged_elem) ;
    string* s_ptr = alloc(string)
    *s_ptr = s
    new->tag = 1
    new->value = (void*)s_ptr
    return new;
}
```

In addition to the function new_tagged_string that you have just implemented, you can assume the existence of analogous functions new_tagged_int and new_tagged_bool, with the following signatures and with contracts analogous to new_tagged_string's:

```
tagged_elem* new_tagged_int(int i);
tagged_elem* new_tagged_bool(bool b);
```

Here is some C1 code that uses these functions:

```
1 tagged_elem* elem1 = new_tagged_string("Cogito ergo sum.");
//@assert \hastag(string*, elem1->value);
tagged_elem* elem2 = new_tagged_int(122);
//@assert \hastag(bool*, elem2->value);
tagged_elem* elem3 = new_tagged_bool(true);
//@assert \hastag(void*, elem3->value);
int \(\mathrm{i}=*\) (int*) (elem2->value);
int t3 = elem3->tag;
```

Task 2.2 Given the above code, fill in the blanks:

The assert statement on line 2 evaluates to	true
The assert statement on line 4 evaluates to	false
The assert statement on line 6 evaluates to	false
The integer i on line 7 evaluates to	122
The integer t3 on line 8 evaluates to	2

Task 2.3 Given the above code, complete the following statements:

int $x=\frac{*(\text { int } *)}{}$	
bool $* y=\frac{(\text { bool } *)}{}$	

Task 2.4 Complete the function print_elem that prints the value field of input T. Use the appropriate print function from the conio library (see page 20 for a reference) for each possibility for the field tag.

```
void print_elem(tagged_elem* T)
//@requires T != NULL;
{
    if (T->tag == 0
                        printint(*((int*)(T->value)))
    else if (T->tag == 1 ) {
                        print(*((string*)(T->value)))
    else if (T->tag == 2 _) {
    printbool(*((bool*)(T->value)))
    else error("Unknown tag");
}
```

2 pts Task 2.5 The interface of queues is recalled on page 20 of this exam. Complete the below type definition to make the queue store pointers to tagged_elem instances:

typedef \quad tagged_elem*	elem;

Task 2.6 Here is some C1 code that uses the function print_elem that you have just implemented:

```
queue_t Q = queue_new();
enq(Q, new_tagged_int(213));
enq(Q, new_tagged_bool(true));
enq(Q, new_tagged_string("Cogito ergo sum."));
print_elem(deq(Q)); println("");
```

What will this code print? Write your answer in the box below:

Task 2.7 Define the type print_elem_fn of functions that print values of type elem, and use it to implement the function print_queue (Q, f) that prints the contents of the queue Q using print function f. Calling this function destroys the queue.

typedef \quad void \quad print_elem_fn (elem e)
void print_queue(queue_t Q, print_elem_fn* f)

```
//@requires Q != NULL;
{
    while (!queue_empty(Q))
        (*f)(deq(Q));
}
```

Task 2.8 Using print_elem, complete the function print_queue that prints the content of the queue passed as an argument. The queue interface is recalled on page 20

```
void print_queue(queue_t Q)
```

//@requires Q != NULL;
\{
while (!queue_empty(Q))
output_elem(deq(Q));
\}

3 Tree Sort (40 points)

Rob learned about binary search trees (BST) this week, and that sparked an idea about a new algorithm to sort an array: insert all elements into a BST and read them off from smallest to biggest, something he was told is called in-order traversal. He proudly calls it tree sort.
Task 3.1 Before working on the details, he asks for your help getting a good grasp on how BSTs work.
The following list of integer keys is used to build a BST, not necessarily in the order given:

$$
49, \quad 16, \quad 36, \quad 81, \quad 25, \quad 4, \quad 64, \quad 9
$$

a. The shape of the resulting tree is shown below. Fill in each node with one key from the list so that the resulting tree is a BST. (The letters $A-H$ next to the nodes will be needed in a later task.)

Note that this is the only correct answer.
b. Give a specific insertion order for the keys above that results in the tree you have just filled in.

$$
25,4,64,16,36,81,9,49
$$

(Any sequence so that a parent is inserted before a child is correct.)
c. Recall that the in-order traversal of a binary tree is the sequence of its entries which places the entries in the left subtree of each node before the entry in the node itself and continues with the entries in its right subtree.
What is the in-order traversal of the tree in task 11a?

$$
4,9,16,25,36,49,64,81
$$

This is the only correct answer.

For the next few tasks, we will be extending the code for binary search trees discussed in class. Relevant portions are repeated here for your convenience.

```
// typedef ______* entry; // Type of data in the tree
typedef struct tree_node tree;
struct tree_node {
    entry data; // != NULL
    tree* left;
    tree* right;
};
bool is_tree(tree* T); // Representation invariant for generic trees
bool is_bst(tree* T); // Representation invariant for BST
tree* bst_insert(tree* T, entry e)
/*@requires is_bst(T) && e != NULL; @*/
/*@ensures is_bst(\result); @*/ ;
```

For this exercise, you will not need anything more than what is given above.

2pts Task 3.2 As a warm-up, help Rob write the function size(T) which returns the number of nodes in the tree T. Hint: it's very short when done recursively.

```
int size(tree* T)
//@requires is_tree(T);
//@ensures \result >= 0;
{
    if (T == NULL) return 0;
    return size(T->left) + 1 + size(t->right);
}
```

Task 3.3 Emboldened by this achievement, Rob attempts to implement a recursive function inorder (T, A, lo, n) that uses in-order traversal to copy the elements of a tree T into a segment of an array A starting at index $l o$. The array has size n, which is large enough for doing this safely. The function returns the number of elements written into A. This is as far as he has gone. Please help him complete his task. Hint: draw pictures!

```
int inorder(tree* T, entry[] A, int lo, int n)
//@requires n == \length(A);
//@requires 0 <= lo && lo <= n;
//@requires is_tree(T);
//@requires lo + size(T) <= n;
//@ensures \result == _ size(T)
{
    if (T == NULL) return }
    int s_left = inorder(__T->left _, A, __ lo n);
    A[_lo + s_left ] = T->data__
    int s_right = inorder(__T->right , A, lo + s_left + 1__ n);
    return s_left + 1 + s_right ;
}
```

2 pts Task 3.4 What is the complexity of inorder as a function of the size t of the input tree T ?
$O(\square)$

Task 3.5 With inorder done, Rob is ready (for you) to implement his new sorting algorithm. Recall that tree sort sorts an array A by inserting each of its n elements into a BST and then by doing an in-order traversal to read them off.

```
void tree_sort(entry[] A, int n)
//@requires n == \length(A) && ____(SEE NEXT TASK)__- ;
//@ensures is_sorted(A, 0, n);
{
    tree*T = NULL
    for (int i = 0; i < n; i++) {
        T = bst_insert(T, A[i])
    }
    inorder(T, A, 0, n)
}
```

2 pts Task 3.6 Tree sort, as conceived by Rob and implemented above, has a flaw: it will fail its postconditions for some arrays that the sorting algorithms you have studied would happily process. Give a 3-element array (using integers for simplicity) for which tree sort will produce an incorrect result. Then, give a precondition on its input that disallows such arrays (either write it in English or use a function seen in a previous homework).

Example array that tree sort will sort incorrectly: | 2 | 3 | 2 |
| :--- | :--- | :--- |

Additional precondition: A contains no duplicates (or no_dupes (A, 0, n))

4pts Task 3.7 How good is this fixed-up tree sort? Answer the following questions.

Worst-case complexity: $O(\ldots)$		
The worst-case can occur when	the array is already sorted	
Tree sort is an in-place algorithm? (circle one)	Yes	

A few days later, Rob learns about AVL trees. Since AVL trees are a special form of binary search trees, tree sort will work also if he were to use an implementation of AVL trees!
6 pts Task 3.8 Again, he first needs to wrap his head around AVL trees. Answer the following questions to help him out. Refer to the nodes of the tree in task 1 using the letters $A-H$.

2 pts
Task 3.9 What is the worst-case complexity of tree sort after updating it to use AVL trees?
\square

Rob mentions tree sort to Frank. Frank shows him the following non-recursive implementation of in-order traversal, which uses a (generic) stack to remember the parts of the tree that still need to be visited. (The stack interface is recalled on page 20 of this exam.)

```
void inorder2(tree* T, entry[] A, int n)
//@requires is_tree(T) && n == size(T);
//@requires n == \length(A);
{
    stack_t S = stack_new();
    int i = 0;
    while (T != NULL || !stack_empty(S))
    //@loop_invariant 0 <= i && i <= n;
    {
        if (T != NULL) {
            push(S, (void*)T);
            T = T->left;
        } else { // T == NULL
            T = (tree*)pop(S);
            A[i] = T->data; // THIS LINE
            i++;
            T = T->right;
        }
    }
}
```

Rob is not convinced of the safety and termination of this function.
2pts Task 3.10 Line 9 does not support the safety of the array access A[i] on line 16. Why? How could you extend the loop guard on line 8 to ensure this access is safe?

Because the loop invariant allows $\mathrm{A}[\mathrm{n}$], which is unsafe since $\mathrm{n}==$ length (A) Change loop guard to ((/*as above */) \&\& \qquad i < n)
$2 p t s$ Task 3.11 In English, describe a loop invariant about the stack S that ensures that the dereference T->data on line 16 is safe.

S contains only non-empty trees.

Task 3.12 Why does the loop on lines 8-20 terminate? Frank explains that this is because of a variant of the method seen in class. This new method relies on two bounded quantities and goes as follows: at each iteration of the loop,

- either the first quantity strictly decreases but cannot go below a certain value (and we don't care how the second quantity changes),
- or the first quantity stays the same but the second quantity strictly decreases and is bounded by another value.
In the function above, what are these quantities and what are their bounds?

Quantity 1: \qquad n i \qquad , which is bounded by \qquad
Quantity 2: size(T) -- or height(T) , which is bounded by \qquad

4 Scanning Hash Tables (45 points)

With just creation, lookup and insertion functions, the hash library interface seen in class for hash dictionaries was minimal. It is reproduced on page 21 of this exam. In this exercise, we will equip it with two operations that allow iterating through the entries in a hash dictionary. These operations, together called an iterator, are

- entry hdict_first(hdict_t H) /*@requires H != NULL; @*/;

The call hdict_first(H) returns the first entry in the hash dictionary H , or NULL if H is empty.

- entry hdict_next(hdict_t H) /*@requires H != NULL; @*/;

Each call to hdict_next (H) returns a next entry from H, or NULL if there are no more entries in H .

One can iterate through all the entries in a hash dictionary H by first calling hdict_first (H) and then repeatedly calling hdict_next (H) until NULL is returned.
For example, given the operation print_entry(e) which prints entry e on one line, the following function prints all the entries in hash dictionary H .

```
void print_hdict(hdict_t H) {
    for (entry e = hdict_first(H); e != NULL; e = hdict_next(H))
        print_entry(e);
}
Applied to the hash table on the right, the initial call to hdict_first will return entry \(A\) and print it. This will be followed by three calls to hdict_next: the first two will returns entries \(B\) and \(C\) in that order; the last will return NULL since the hash table does not contain other entries.
```


We begin by implementing the functions hdict_first and hdict_next. To do so, we extend the struct hdict_header seen in class with two fields:

- last_node points to the node containing the entry that the iterator reported the last time hdict_first or hdict_next were called. If the hash dictionary is empty or all nodes have been visited, last_node is NULL.
- last_idx is the hash table index of the chain where last_node is found. It can be arbitrary when last_node is NULL.

In the above example, after returning A, last_node points to that entry and last_idx contains 1 ; after returning B, last_idx still contains 1 but last_node points to B; after returning C, last_idx is 3 . After the final call to hdict_next, last_node is NULL.
The relevant type declarations are as follows:

```
typedef struct chain_node chain;
struct chain_node {
    entry entry;
    chain* next;
};
typedef hdict* hdict_t;
```

```
typedef struct hdict_header hdict;
```

typedef struct hdict_header hdict;
struct hdict_header {
struct hdict_header {
int size;
int size;
chain*[] table;
chain*[] table;
int capacity;
int capacity;
int last_idx; // NEW
int last_idx; // NEW
chain* last_node; // NEW
chain* last_node; // NEW
};

```
};
```

7 pts Task 4.1 Implement the helper function first_from(H, i) that returns the entry of the first node in the first non-empty chain of H starting at table index i , and NULL if no such node exists. You will need to update the fields last_node and last_idx appropriately.
In the previous example, first_from(H, 1) returns A^{\prime} s node, first_from(H, 2) returns C's node, and first_from(H, 4) returns NULL.

```
entry first_from(hdict* H, int i)
//@requires is_hdict(H) && 0 <= i && i <= H->capacity;
{
    for (H->last_idx = i ; H->last_idx < H->capacity; H->last_idx++) {
        chain* bucket = H->table[H->last_idx] ;
        if (__ bucket != NULL ) { // Found!
            H->last_node =
                bucket
                                    ;
            return H->last_node->entry ;
        }
    }
    return NULL__; // Not found
}
```

2 pts Task 4.2 Implement hdict_first so that it returns the entry of the first node in the first non-empty chain of H , and NULL if no such node exists. In the previous example, that's A 's node.

```
entry hdict_first(hdict* H) //@requires is_hdict(H);
{
    return
        first_from(H, 0)
}
```

Task 4.3 Implement hdict_next so that it returns the entry of the next node in the current chain or the first node in the first non-empty chain thereafter. It returns NULL if no such entry exists. In our example, successive calls return B^{\prime} 's node, then C^{\prime} 's node, and finally NULL.

```
entry hdict_next(hdict* H) //@requires is_hdict(H);
{
    if (H->last_node == NULL) return NULL
    if (_H->last_node->next != NULL ) { // Next entry in current chain
            H->last_node = H->last_node->next ;
        return H->last_node->entry ;
    }
    // Look for next entry in later chains
    return first_from(H, H->last_idx + 1) ;
}
```

Task 4.4 We now consider the cost of iterating through a hash dictionary H with n entries and whose table has capacity m. Our measure of cost will consist of the number of accesses to the underlying table (e.g., as H ->table[i]) and to an entry in a chain node (e.g., as p->entry).
a. Consider the example function print hdict on page 15. To print all n entries in the dictionary, how many times are the functions hdict_first and hdict_next called?

hdict_first is called	1	time(s)
hdict_next is called	n	time(s).

b. What is the worst-case cost of each call separately?

| hdict_first has worst-case $\operatorname{cost} O(\ldots)$ |
| :--- | :--- |
| hdict_next has worst-case $\operatorname{cost} O(\square)$ |

c. Assume that printing a single entry has constant cost. What is the worst-case complexity of print_hdict based only on these figures?
$O(\ldots)$
d. But is this the real cost of print_hdict? Overall, how many accesses (see above definition) are effectively carried out when calling this function to print all entries in the dictionary? Give the exact value, not a complexity bound.

Total number of accesses: \qquad
e. Chances are that your answers to the last two questions are very different. We can use the techniques of amortized analysis to charge a cost (in terms of tokens) to use hdict_first and hdict_next so that the number of tokens collected during a call to print_hdict is at most 1 more than the number of accesses made by this function. Recall that we always need to have enough saved tokens to pay for the true cost of an operation in full.

Cost of hdict_first: _ m+1 token(s), to be used as follows:

- $\quad \mathrm{m}$ token(s), used to pay for all future table accesses
- 1 token(s), used to pay for the first entry access (if any)

Cost of hdict_next: \qquad token(s), to be used as follows

- 1 token(s), used to pay for the next entry access (if any)
\qquad token(s), used to \qquad

Iterators make it easy to implement operations that require scanning all the elements in one or more hash dictionaries. We will examine a couple.
5pts
Task 4.5 Complete the implementation of the function hdict_merge. The call hdict_merge (H1, H2 returns a new dictionary containing all the elements of H 1 and H 2 . If an entry with the same key appears in both, the new dictionary will contain the one in H 2 . The initial capacity of the new dictionary should be big enough to hold the contents of both H 1 and H 2 without collisions, if we are lucky.

```
hdict* hdict_merge(hdict* H1, hdict* H2)
//@requires is_hdict(H1) && is_hdict(H2);
//@ensures is_hdict(\result);
{
    hdict* H = hdict_new(_ H1->size + H2->size
    for (__ entry e = hdict_first(H1); e != NULL; e = hdict_next(H1) __)
                                    hdict_insert(H, e)
    for (__ entry e = hdict_first(H2); e != NULL; e = hdict_next(H2)) )
                                    hdict_insert(H, e)
    return H;
}
```

Task 4.6 Complete the implementation of the function hdict_inboth. The call hdict_inboth (H1, returns a new dictionary containing the entries of H 1 whose key are also present in H 2 . The initial capacity of the new dictionary should be big enough to hold the contents of the smallest among H 1 and H 2 without collisions, if we are lucky.

```
hdict* hdict_inboth(hdict* H1, hdict* H2)
//@requires is_hdict(H1) && is_hdict(H2);
//@ensures is_hdict(\result);
{
    hdict* H = hdict_new(__min(H1->size, H2->size) __);
    for (entry e = hdict_first(H1); e != NULL; e = hdict_next(H1))
            if (hdict_lookup(H2, entry_key(e)) != NULL)
            hdict_insert(H, e);
    return H;
}
```

Task 4.7 Iterators even make it easy to resize a hash dictionary H once its load factor becomes too big: create a temporary hash dictionary with the new capacity, insert all entries from H into it, and finally update the header of H to the values of the header of the temporary dictionary - you do not need to concern yourself with the new iterator fields. Complete the implementation of resize to realize this idea.

```
void resize(hdict* H, int new_capacity)
/* H may not be a valid hash table since H->size == H->capacity */
//@requires H != NULL;
//@requires 0 <= H->size && H->size < new_capacity;
//@requires \length(H->table) == H->capacity;
//@ensures is_hdict(H);
{
    hdict* tmp = hdict_new(new_capacity) ;
    // Copy contents of H into tmp
    for (entry e = hdict_first(H); e != NULL; e = hdict_next(H))
    hdict_insert(tmp, e);
    // Copy header values of tmp into header of H
    H->capacity = new_capacity;
    H->size = tmp->size; // not needed
    H->table = tmp->table;
}
```

```
The Queue Interface (semi-generic)
```

```
/*************************/
```

/*************************/
/*** Client interface ***/
/*** Client interface ***/
/*************************/
/*************************/
// typedef _-_-_-* elem;
// typedef _-_-_-* elem;
/***************************/
/***************************/
/*** Library interface ***/
/*** Library interface ***/
/*************************/
/*************************/
// typedef ___-__* queue_t;
// typedef ___-__* queue_t;
bool queue_empty(queue_t Q)
bool queue_empty(queue_t Q)
/*@requires Q != NULL; @*/ ;
/*@requires Q != NULL; @*/ ;
queue_t queue_new()
queue_t queue_new()
/*@ensures \result != NULL; @*/
/*@ensures \result != NULL; @*/
/*@ensures queue_empty(\result); @*/ ;
/*@ensures queue_empty(\result); @*/ ;
void enq(queue_t Q, elem e)
void enq(queue_t Q, elem e)
/*@requires Q != NULL; @*/ ;
/*@requires Q != NULL; @*/ ;
elem deq(queue_t Q)
elem deq(queue_t Q)
/*@requires Q != NULL; @*/
/*@requires Q != NULL; @*/
/*@requires !queue_empty(Q); @*/ ;

```
/*@requires !queue_empty(Q); @*/ ;
```

The stack Interface (generic)
$/ * /$
/*** Library interface $* * * /$
$/ * /$
typedef void* elem;

```
// typedef
``` \(\qquad\)
``` * stack_t;
```

bool stack_empty(stack_t S)
/*@requires S != NULL; @*/ ;
stack_t stack_new()
/*@ensures \result != NULL; @*/
/*@ensures stack_empty(\result); @*/ ;
void push(stack_t S, elem x)
/*@requires S != NULL; @*/ ;
elem pop(stack_t S)
/*@requires S != NULL; @*/
/*@requires !stack_empty(S); @*/ ;

Basic Printing Functions

```
void print(string s); // print string s to standard output
void printint(int i); // print integer i to standard output
void printbool(bool b); // print boolean b to standard output
```


The Hash Dictionary Interface (semi-generic)

```
/*************************/
/*** Client interface ***/
/**************************/
// typedef ______* entry; // Supplied by client
// typedef _---_- key;
key entry_key(entry x) // Supplied by client
    /*@requires x != NULL; @*/ ;
int key_hash(key k); // Supplied by client
bool key_equiv(key k1, key k2); // Supplied by client
/***************************/
/*** Library interface ***/
/***************************/
// typedef
```

\qquad

``` * hdict_t;
hdict_t hdict_new(int capacity)
/*@requires capacity > 0; @*/
/*@ensures \result != NULL; @*/ ;
entry hdict_lookup(hdict_t H, key k)
/*@requires H != NULL; @*/
/*@ensures \result == NULL || key_equiv(entry_key(\result), k); @*/ ;
void hdict_insert(hdict_t H, entry x)
/*@requires H != NULL && x != NULL; @*/
/*@ensures hdict_lookup(H, entry_key(x)) == x; @*/ ;
```

