Midterm 2 Exam

15-122 Principles of Imperative Computation

Thursday 2" April, 2020

Name:

Andrew ID:

Recitation Section:

Instructions

e This exam is closed-book with one sheet of notes permitted.
¢ You have 80 minutes to complete the exam.

e There are 4 problems on 22 pages (including 2 blank pages at the end).

Read each problem carefully before attempting to solve it.

Do not spend too much time on any one problem.

Consider if you might want to skip a problem on a first pass and return to it later.

Max | Score

Priority Queues 20

Heterogeneous Data Structures| | 25

Tree Sort] 40
Scanning Hash Tables 40
Total: 125
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1 Priority Queues (20 points)
This task is about priority queues implemented as min-heaps.

Task 1.1 Consider the min-heap shown below. The numbers indicate the priority of a node.

a. Draw the resulting heap after inserting a new node with priority 2 into the heap
above, using the pg_add function discussed in class:

b. Draw the resulting heap after removing the node with the highest priority from the
original heap above, using the pg_rem function discussed in class:
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Task 1.2 In the next tasks, you may assume the min-heap implementation of priority queues seen

in class.
a. What is the asymptotic complexity (tightest and simplest) of using the function pg_add
to insert n items into an initially empty priority queue? Justify your answer briefly.
o( )
Because
b. What is the asymptotic complexity (tightest and simplest) of using the function pq_rem,
to remove 7 items from an n-element heap (you may assume n > 7)? Justify your an-
swer briefly.
o( )
Because
c¢. What is the asymptotic complexity (tightest and simplest) of calling the function
pg_peek n times on a non-empty n-element heap? Justify your answer briefly.
O( )
Because
d. When inserting or removing an element, one of the heap invariants is temporarily

violated while the other holds throughout. Circle the one that is temporarily violated.

Shape invariant Ordering invariant
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2 Heterogeneous Data Structures (25 points)

In this exercise, we are going to explore heterogeneous queues, allowing a client to store ele-
ments of different types in one queue. An immediate thought might be to use void+ as the type
for the queue’s elements. However, since \hastag can only be used in contracts, but not in
code in C1, we would lose the ability to process the elements depending on their type. To make
an element’s actual type available to C1 code, we introduce the following struct:

struct tagged_elem_header {
int tag; // 0 = int*, 1 = string*x, 2 = boolx
void* value;

b

typedef struct tagged_elem_header tagged_elem;

The field tag describes the type of the element and the field value its value. We use the integer
0 for type intx, the integer 1 for type stringx, and the integer 2 for type boolx.

Task 2.1 Complete the function new_tagged_string, which creates a new tagged element. Make
sure that your implementation satisfies the given contract:

tagged_elem* new_tagged_string(string s)

//@ensures \result != NULL;

//@ensures \result->tag == 1;

//@ensures string_equal(*(stringx) (\result->value), s);

//@ensures \hastag( , \result->value);
{

tagged_elem* new =

return new;

}
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In addition to the function new_tagged_string that you have just implemented, you can
assume the existence of analogous functions new_tagged_int and new_tagged_bool, with
the following signatures and with contracts analogous to new_tagged_string’s:

tagged_elem* new_tagged_int(int i);
tagged_elemx new_tagged_bool(bool b);

Here is some C1 code that uses these functions:

1 tagged_elem* eleml = new_tagged_string("Cogito ergo sum.");
2 //@assert \hastag(stringx, eleml->value);

3 tagged_elemx elem2 = new_tagged_int(122);

4 //@assert \hastag(boolx, elem2->value);

5 tagged_elem* elem3 = new_tagged_bool(true);

6 //@assert \hastag(voidx, elem3->value);

7 int i = *x(intx) (elem2->value);

8 int t3 = elem3->tag;

Task 2.2 Given the above code, fill in the blanks:

The assert statement on line 2| evaluates to

The assert statement on line 4| evaluates to

The assert statement on line [f|evaluates to

The integer i on line[7|evaluates to

The integer 13 on line [§ evaluates to
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Task 2.3 Complete the function print_elem that prints the value field of input T. Use the appro-
priate print function from the conio library (see page [19|for a reference) for each possi-
bility for the field tag.

void print_elem(tagged_elemx T)
//@requires T !'= NULL;

{
if (T->tag == )
else if (T->tag == ) {
else if (T->tag == ) {

else error("Unknown tag");

}

Task 2.4 The interface of queues is recalled on page |19 of this exam. Complete the below type
definition to make the queue store pointers to tagged_elem instances:

typedef elem;

Task 2.5 Define the type print_elem_fn of functions that print values of type elem, and use it to
implement the function print_queue(Q, f) that prints the contents of the queue Q using
print function f. Calling this function destroys the queue.

typedef print_elem_fn

void print_queue(queue_t Q, print_elem_fnx f)
//@requires Q '= NULL;
{
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3 Tree Sort (40 points)

Rob learned about binary search trees (BST) this week, and that sparked an idea about a new
algorithm to sort an array: insert all elements into a BST and read them off from smallest to
biggest, something he was told is called in-order traversal. He proudly calls it tree sort.

Task 3.1 Before working on the details, he asks for your help getting a good grasp on how BSTs
work.

The following list of integer keys is used to build a BST, not necessarily in the order given:
49, 16, 36, 81, 25, 4, 64, 9

a. The shape of the resulting tree is shown below. Fill in each node with one key from
the list so that the resulting tree is a BST. (The letters A—H next to the nodes will be needed
in a later task.)

b. Give a specific insertion order for the keys above that results in the tree you have just
filled in.
c. Recall that the in-order traversal of a binary tree is the sequence of its entries which

places the entries in the left subtree of each node before the entry in the node itself
and continues with the entries in its right subtree.

What is the in-order traversal of the tree in task &R
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For the next few tasks, we will be extending the code for binary search trees discussed in class.
Relevant portions are repeated here for your convenience.

// typedef ______ * entry; // Type of data in the tree

typedef struct tree_node tree;
struct tree_node {
entry data; // '= NULL
treex left;
treex right;

}

bool is_tree(treex T); // Representation invariant for generic trees
bool is_bst(treex T); // Representation invariant for BST

treex bst_insert(treex T, entry e)

/*@requires is_bst(T) && e !'= NULL; @*/
/*@ensures is_bst(\result); @x/ ;

For this exercise, you will not need anything more than what is given above.

Task 3.2 As a warm-up, help Rob write the function size(T) which returns the number of nodes
in the tree T. Hint: it's very short when done recursively.

int size(treex T)
//@requires is_tree(T);
//@ensures \result >= 0;

{
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Task 3.3

Task 3.4

Task 3.5

Emboldened by this achievement, Rob attempts to implement a recursive function
inorder(T, A, lo, n) that uses in-order traversal to copy the elements of a tree T into
a segment of an array A starting at index lo. The array has size n, which is large enough
for doing this safely. The function returns the number of elements written into A. This is
as far as he has gone. Please help him complete his task. Hint: draw pictures!

int inorder(treex T, entry[] A, int lo, int n)

//@requires n == \length(A);

//@requires 0 <= lo && lo <= n;

//@requires is_tree(T);

//@requires lo + size(T) <= n;

//@ensures \result == ;

{
if (T == NULL) return ;

int s_left = inorder( , A, y N);
Al ] = ;
int s_right = inorder( , A, , N);
return ;

What is the complexity of inorder as a function of the size ¢ of the input tree T?

o( )

With inorder done, Rob is ready (for you) to implement his new sorting algorithm. Re-
call that tree sort sorts an array A by inserting each of its n elements into a BST and then
by doing an in-order traversal to read them off.

void tree_sort(entry[] A, int n)

//@requires n == \length(A) & ____(SEE NEXT TASK)___;
//@ensures is_sorted(A, 0, n);
{

for (int i = 0; i < n; i++) {
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Task 3.6

Task 3.7

Tree sort, as conceived by Rob and implemented above, has a flaw: it will fail its post-
conditions for some arrays that the sorting algorithms you have studied would happily
process. Give a 3-element array (using integers for simplicity) for which tree sort will
produce an incorrect result. Then, give a precondition on its input that disallows such
arrays (either write it in English or use a function seen in a previous homework).

Example array that tree sort will sort incorrectly:

Additional precondition:

How good is this fixed-up tree sort? Answer the following questions.

Worst-case complexity: O( )

The worst-case can occur when

Tree sort is an in-place algorithm? (circle one) Yes No
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A few days later, Rob learns about AVL trees. Since AVL trees are a special form of binary
search trees, tree sort will work also if he were to use an implementation of AVL trees!

Task 3.8 Again, he first needs to wrap his head around AVL trees. Answer the following questions
to help him out. Refer to the nodes of the tree in task[I|using the letters A~H.

Is the tree in task [l an AVL tree? (circle one) Yes No
If not, it has height violations at node(s)

To fix them, we need to do the following rotations: (you may not need all lines)

Rotate at node
Rotate at node
Rotate at node
Rotate at node

Draw the resulting AVL tree here: (enter numbers in the nodes)

Task 3.9 What is the worst-case complexity of tree sort after updating it to use AVL trees?

o( )
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Rob mentions tree sort to Frank. Frank shows him the following non-recursive implementa-
tion of in-order traversal, which uses a (generic) stack to remember the parts of the tree that
still need to be visited. (The stack interface is recalled on page |19 of this exam.)

1 void inorder2(treex T, entry[] A, int n)
» //@requires is_tree(T) && n == size(T);
s //@requires n == \length(A);

4 {

5 stack_t S = stack_new();

6 int i = 0;

7

s while (T != NULL || !stack_empty(S))
9 //@Qloop_invariant 0 <= i && i <= n;
10 {

1 if (T != NULL) {

12 push(S, (voidx)T);

13 T = T->left;

14 } else { // T == NULL

15 T = (treex)pop(S);

16 A[i] = T->data; // THIS LINE
17 i++;

18 T = T->right;

19 }

20 }

n }

Rob is not convinced of the safety and termination of this function.

Task 3.10 Line 9 does not support the safety of the array access A[1i] on line 16. Why? How could
you extend the loop guard on line 8 to ensure this access is safe?

Because

Change loop guard to ((/+as above */) && )

Task 3.11 In English, describe a loop invariant about the stack S that ensures that the dereference
T->data on line 16 is safe.
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-I Task 3.12 Why does the loop on lines 8-20 terminate? Frank explains that this is because of a variant
of the method seen in class. This new method relies on two bounded quantities and goes
as follows: at each iteration of the loop,

e cither the first quantity strictly decreases but cannot go below a certain value (and we
don’t care how the second quantity changes),

e or the first quantity stays the same but the second quantity strictly decreases and is
bounded by another value.

In the function above, what are these quantities and what are their bounds?

Quantity 1: , which is bounded by

Quantity 2: , which is bounded by
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4 Scanning Hash Tables (40 points)

With just creation, lookup and insertion functions, the hash library interface seen in class for
hash dictionaries was minimal. It is reproduced on page 20| of this exam. In this exercise, we
will equip it with two operations that allow iterating through the entries in a hash dictionary.
These operations, together called an iterator, are

e entry hdict_first(hdict_t H) /+@requires H '= NULL; @*/;
The call hdict_first(H) returns the first entry in the hash dictionary H, or NULL if H is
empty.

e entry hdict_next(hdict_t H) /*@requires H !'= NULL; @x/;
Each call to hdict_next(H) returns a next entry from H, or NULL if there are no more
entries in H.

One can iterate through all the entries in a hash dictionary H by first calling hdict_first(H)
and then repeatedly calling hdict_next (H) until NULL is returned.

For example, given the operation print_entry(e) which prints entry e on one line, the fol-
lowing function prints all the entries in hash dictionary H.

void print_hdict(hdict_t H) {
for (entry e = hdict_first(H); e !'= NULL; e = hdict_next(H))
print_entry(e);

} °| @

Applied to the hash table on the right, the initial call to ! .——>| A |.—|—>| B | .-|—||.
hdict_first will return entry A and print it. This will be 2 @——ir-

followed by three calls to hdict_next: the first two will re- 3 o[ c e

turns entries B and C in that order; the last will return NULL 4 o Y

since the hash table does not contain other entries.

We begin by implementing the functions hdict_first and hdict_next. To do so, we extend
the struct hdict_header seen in class with two fields:

e last_node points to the node containing the entry that the iterator reported the last time
hdict_first or hdict_next were called. If the hash dictionary is empty or all nodes
have been visited, last_node is NULL.

e last_idx is the hash table index of the chain where last_node is found. It can be arbi-
trary when last_node is NULL.

In the above example, after returning A, last_node points to that entry and last_idx con-
tains 1; after returning B, last_idx still contains 1 but last_node points to B; after returning
C, last_idx is 3. After the final call to hdict_next, last_node is NULL.

The relevant type declarations are as follows:

typedef struct chain_node chain; typedef struct hdict_header hdict;
struct chain_node { struct hdict_header {
entry entry; int size;
chainx next; chainx[] table;
}; int capacity;
int last_idx; // NEW
chainx last_node; // NEW
typedef hdictx hdict_t; };
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Task 4.1 Implement the helper function first_from(H, i) thatreturns the entry of the first node
in the first non-empty chain of H starting at table index i, and NULL if no such node exists.
You will need to update the fields last_node and last_idx appropriately.
In the previous example, first_from(H, 1) returns A’s node, first_from(H, 2) re-
turns C’s node, and first_from(H, 4) returns NULL.

entry first_from(hdict* H, int i)
//@requires is_hdict(H) && 0 <= i && i <= H->capacity;
{

for (H->last_idx = ; ; H->Tlast_idx++) {

chainx bucket = ;

if ( ) { // Found!

H->last_node = ;

return ;

}
}
return ; // Not found

}

Task 4.2 Implement hdict_first so thatit returns the entry of the first node in the first non-empty
chain of H, and NULL if no such node exists. In the previous example, that’s A’s node.

entry hdict _first(hdict* H) //@requires is hdict(H);
{

return ;

}

Task 4.3 Implement hdict_next so that it returns the entry of the next node in the current chain
or the first node in the first non-empty chain thereafter. It returns NULL if no such entry
exists. In our example, successive calls return B’s node, then C’s node, and finally NULL.

entry hdict_next(hdictx H) //@requires is_hdict(H);

{
if (H->last_node == NULL) return ;

if ( ) { // Next entry in current chain

H->last_node = '

return ;

}

// Look for next entry in later chains

return ;
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Task 4.4 We now consider the cost of iterating through a hash dictionary H with n entries and whose

. What is the worst-case cost of each call separately?

table has capacity m. Our measure of cost will consist of the number of accesses to the under-
lying table (e.g., as H->table[i]) and to an entry in a chain node (e.g., as p->entry).

a. Consider the example function print_hdict on page (14} To print all » entries in the

dictionary, how many times are the functions hdict_first and hdict_next called?

hdict_first is called time(s)

hdict_next iscalled time(s).

hdict_first has worst-case cost O( )

hdict_next has worst-case cost O( )

. Assume that printing a single entry has constant cost. What is the worst-case com-

plexity of print_hdict based only on these figures?

o( )

. But is this the real cost of print_hdict? Overall, how many accesses (see above defi-

nition) are effectively carried out when calling this function to print all entries in the
dictionary? Give the exact value, not a complexity bound.

Total number of accesses:

. Chances are that your answers to the last two questions are very different. We can

use the techniques of amortized analysis to charge a cost (in terms of tokens) to use
hdict_first and hdict_next so that the number of tokens collected during a call to
print_hdict is at most 1 more than the number of accesses made by this function.
Recall that we always need to have enough saved tokens to pay for the true cost of
an operation in full.

Cost of hdict_first: token(s), to be used as follows:
e  token(s), used to
e token(s), used to

Cost of hdict_next: token(s), to be used as follows
e token(s), used to
e token(s), used to
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Iterators make it easy to implement operations that require scanning all the elements in one
or more hash dictionaries. We will examine a couple.

Task 4.5 Complete the implementation of the function hdict_inboth. The callhdict_inboth(H1, H2)
returns a new dictionary containing the entries of H1 whose key are also present in H2.
The initial capacity of the new dictionary should be big enough to hold the contents of
the smallest among H1 and H2 without collisions, if we are lucky.

hdictx hdict_inboth(hdict* H1l, hdictx H2)

//@requires is_hdict(H1) && is_hdict(H2);

//@ensures is_hdict(\result);

{
hdictx H = hdict_new( );
return H;

}
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Task 4.6 Iterators even make it easy to resize a hash dictionary H once its load factor becomes too
big: create a temporary hash dictionary with the new capacity, insert all entries from H
into it, and finally update the header of H to the values of the header of the temporary
dictionary — you do not need to concern yourself with the new iterator fields. Complete
the implementation of resize to realize this idea.

void resize(hdictx H, int new_capacity)
/* H may not be a valid hash table since H->size == H->capacity x/
//@requires H !'= NULL;
//@requires 0 <= H->size && H->size < new_capacity;
//@requires \length(H->table) == H->capacity;
//@ensures is_hdict(H);
{
hdictx tmp =

// Copy contents of H into tmp

// Copy header values of tmp into header of H
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The Queue Interface (semi-generic)

[ Kok skokskok ok ok ok ok kok ok ok kokk ok /

/*xx Client interface xxx/
[ Kok skok Kok ok ok ok ok kok ok ok ok ok ok /

// typedef ______ x elem;

[k skokskok ok ok ok ok ok Kok ok ok ok ok /
/xx*x Library interface xxx/
[/ kKo skokok ok sk ok ok ok sk ok ok ok ok ok /

// typedef ______ x queue_t;

bool queue_empty(queue_t Q)
/*@requires Q '= NULL; @x/ ;

queue_t queue_new()
/x@ensures \result '= NULL; @x/
/*@ensures queue_empty(\result); @/ ;

void enqg(queue_t Q, elem e)
/*@requires Q '= NULL; @x/ ;

elem deq(queue_t Q)
/*@requires Q !'= NULL; @/
/*@requires !'queue_empty(Q); @/ ;

Basic Printing Functions

void print(string s);
void printint(int i);
void printbool(bool b);

// print string
// print integer i to standard output
// print boolean b to standard output

The stack Interface (generic)

[k skok ook ok okok ok ok ok ok ok ok kok ok kok ok /

/*xx Library interface *xx*x/
/KR skokokkok ok ok ok ok ok ok ok ok ok ok /

typedef voidx elem;
// typedef ______ * stack_t;

bool stack_empty(stack_t S)
/*@requires S != NULL; @/ ;

stack_t stack_new()
/*@ensures \result != NULL; @/
/*@ensures stack_empty(\result); @/ ;

void push(stack_t S, elem x)
/*@requires S !'= NULL; @/ ;

elem pop(stack_t S)
/*@requires S !'= NULL; @/
/*@requires !stack_empty(S); @/ ;

s to standard output
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The Hash Dictionary Interface (semi-generic)

[ %3k sk sk sk sk sk sk ok sk ok sk ok sk ok sk sk sk sk sk sk k sk ok /

/xxx Client interface *xx/
[/ %3k 3k sk sk sk sk sk sk sk ok sk ok sk ok sk sk sk sk sk sk ok sk ok /

// typedef ______ * entry;
// typedef ______ key;

key entry_key(entry x)
/*@requires x !'= NULL; @x/ ;

int key_hash(key k);

bool key_equiv(key k1, key k2);

/3K 3k 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok /

/**x Library interface xxx/
[/ 3% 3k sk sk sk sk sk sk sk ok sk sk sk ok ok sk ok ok ok ok ok ok kk ok

// typedef ______ * hdict_t;

hdict_t hdict_new(int capacity)
/*@requires capacity > 0; @/

/*@ensures \result !'= NULL; @*/ ;

entry hdict_lookup(hdict_t H, key k)

/*@requires H '= NULL; @x/

// Supplied by client
// Supplied by client

// Supplied by client

// Supplied by client
// Supplied by client

/*@ensures \result == NULL || key_equiv(entry_key(\result), k); @/ ;

void hdict_insert(hdict_t H, entry x)
/*@requires H != NULL && x '= NULL; @/

/*@ensures hdict_lookup(H, entry_key(x)) == x; @/ ;
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