
Final Solutions

15-122 Principles of Imperative Computation

Monday 4th May, 2015

Name: Harry Bovik

Andrew ID: bovik

Recitation Section: S

Instructions

• This exam is closed-book with one sheet of notes permitted.

• You have 180 minutes to complete the exam.

• There are 7 problems on 23 pages (including 0 blank pages at the end).

• Use a dark pen or pencil to write your answers.

• Read each problem carefully before attempting to solve it.

• Do not spend too much time on any one problem.

• Consider if you might want to skip a problem on a first pass and return to it later.

Max Score

Union Find [C0] 40

Grab Bag [C] 30

Circular Queues 20

Strings [C] 40

Clac Revisited [C] 40

Spanning Trees [C] 40

I can C clearly now [C] 40

Total: 250

1

15-122 (Spring 2015) Final Solutions Page 2/23

1 Union Find [C0] (40 points)

In this question, we consider a C0 implementation of the union find data structure from class.
This is the more efficient version that stores tree heights, but without path compression.

typedef struct ufs_header* ufs;
struct ufs_header {
int size;
int[] data;

};

bool is_ufs(ufs U) {
return U != NULL && is_arr_expected_length(U->data, U->size);

}

Task 110pts The is_ufs data structure invariant above is not sufficient to ensure the correctness of
ufs_find.

1 int ufs_find(ufs U, int x)
2 //@requires is_ufs(U);
3 //@requires 0 <= x && x < U->size;
4 {
5 int i = x;
6 while (U->data[i] >= 0) {
7 i = U->data[i];
8 }
9 return i;

10 }

If U contains the address of the data structure above, ufs_find(U, 4) will return

0

Show a U such that is_ufs(U) holds but ufs_find(U, 4) will cause a memory error:

(many answers possible)

Show a U such that is_ufs(U) holds but ufs_find(U, 4) will never terminate:

(many answers possible)

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 3/23

Task 25pts In order to ensure that ufs_find can never cause a memory error, we need to extend the
data structure invariant to check that every integer in the array U->data is. . .

. . . less than U->size (or, equivalently, less than \length(U->data))

Task 310pts Give loop invariant(s) for ufs_find that would ensure the array accesses on lines 6 and 7
are safe. Using the data structure invariant improvement described in Task 2, you should
be able to reason that this loop invariant is true initially and preserved by an arbitrary
iteration of the loop. You don’t necessarily have to use all the lines.

//@loop_invariant 0 <= i && i < U->size ;

//@loop_invariant ;

//@loop_invariant ;

Task 410pts The union operation of union-find uses ufs_find:

1 void ufs_union(ufs U, int x, int y)
2 //@requires is_ufs(U);
3 //@ensures is_ufs(U);
4 {
5 int[] A = U->data;
6 int i = ufs_find(U, x);
7 int j = ufs_find(U, y);
8 //@assert A[i] < 0 && A[j] < 0;
9

10 if (i == j) return;
11 else if (A[i] == A[j]) { (A[i])--; A[j] = i; }
12 else if (A[i] < A[j]) { A[j] = i; }
13 else { A[i] = j; }
14 }

What postconditions does ufs_find need in order for us to reason that the assertion
on line 8 always returns true – even if we know nothing about the implementation of
ufs_find? You don’t necessarily have to use all lines.

//@ensures 0 <= \result&& \result< U->size && U->data[\result] < 0 ;

//@ensures ;

//@ensures ;

Task 55pts In this implementation, if U->data[0] == -9, then that means U->sizemust be at least. . .

256 = 2(9−1)

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 4/23

2 Grab Bag [C] (30 points)

Task 16pts The following run times were obtained when using two different algorithms on a data set
of size n. You are asked to determine asymptotic complexity of the algorithms based on
this time data. Determine the asymptotic complexity of each algorithm as a function of n.
Use big-O notation in its tightest, simplest form.

n Execution Time
1000 0.564 milliseconds
2000 2.271 milliseconds
4000 8.992 milliseconds
8000 36.150 milliseconds

O(n2)

n Execution Time
1000 0.042 milliseconds
1000000 0.042 milliseconds
1000000000 0.042 milliseconds

O(1)

Task 26pts

Represent the min-heap pictured above as an array by the method discussed in class:

If the number 5 is added to this heap structure, what will the array look like afterwards?

If, after adding the number 5, we then remove the minimum element from the heap, what
will the final contents of the array be?

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 5/23

Task 38pts Note: 15-122 stopped covering tries in Spring 2015.
The ternary search trie (TST) pictured below stores a set of numerical strings. List all
numerical strings stored in the trie.

1, 15, 18, 20, 36, 4, 755, 791

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 6/23

Task 410pts Consider the following C function that computes the integer square root of n, n > 0.
The integer square root i of a positive integer n is the value of i such that i2 ≤ n and
(i+ 1)2 > n. For example, isqrt(15) = 3 and isqrt(16) = 4.

1 int isqrt(int n) {
2 REQUIRES(n < 46000);
3

4 if (n == 1) return 1;
5 int lower = 0;
6 int upper = 1 + n/2;
7

8 while(lower + 1 < upper) {
9 printf(" lower = %d, upper = %d\n", lower, upper);

10 int mid = lower + (upper - lower)/2;
11 int square = mid * mid;
12 if (square == n) {
13 lower = mid;
14 break; // break out of loop, go straight to line 21
15 } else if (square < n) {
16 lower = mid;
17 } else {
18 upper = mid;
19 }
20 }
21 printf(" lower = %d, upper = %d\n", lower, upper);
22 return lower;
23 }

Trace the function for the following values of n, showing the values printed for lower and
upper at the start of each iteration, along with their values after the loop terminates. You
may not need to use all the available space provided. The first values output for lower
and upper are given for you.

n = 25
lower 0 0 3 4 5

upper 13 6 6 6 6

n = 42
lower 0 0 5 5 6 6

upper 22 11 11 8 8 7

What is the worst case runtime complexity of the function above in terms of n using big
O notation in its simplest, tighest form?

O(log n)

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 7/23

3 Circular Queues (20 points)
Consider the following implementation of a bounded queue of integers in C:

typedef struct queue_header queue;
struct queue_header {

int capacity; // maximum size of queue (overflow not allowed)
int front; // index of front element of queue
int rear; // index of rear element of queue
int *data; // queue data, length of the array is capacity

};

An empty queue is always represented by front = -1 and rear = -1. Otherwise, front is the
index of the first element of the queue and rear is the index of the last element of the queue.
If an element is enqueued on to an empty queue, it is always stored at index 0 of the array.
Elements of the queue are stored in contiguous cells of the array. Note that front index can be
greater than rear index. In this case, the queue wraps around from the end of the array back
to the beginning, as shown in the example below.

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 8/23

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 9/23

Assume there is a function is_queue that tests the data structure invariant for a queue* as
described and illustrated above. Complete the following functions to implement the queue
described above. All functions should run in constant time.

queue *queue_new(int n) {
REQUIRES(n > 0);

queue *Q = xmalloc(sizeof(struct queue_header)) ;

Q->data = xcalloc(n, sizeof(int)) ;

Q->front = -1;
Q->rear = -1;
Q->capacity = n;
ENSURES(is_queue(Q) && queue_empty(Q));
return Q;

}

void queue_free(queue *Q) {
REQUIRES(is_queue(Q));

free(Q->data);

free(Q);
}

bool queue_empty(queue *Q) {
REQUIRES(is_queue(Q));
return Q->front == -1 && Q->rear == -1;

}

bool queue_full(queue *Q) {
REQUIRES(is_queue(Q));

return (Q->rear + 1) % Q->capacity == Q->front ;

}

void enq(queue *Q, int element) {
REQUIRES(is_queue(Q) && !queue_full(Q));

if (Q->front == -1) Q->front = 0 ;

if (Q->rear == -1) Q->rear = 0 ;

else Q->rear = (Q->rear + 1) % Q->capacity ;

Q->data[Q->rear] = element;
ENSURES(is_queue(Q));

}

CONTINUED ON NEXT PAGE...
c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 10/23

... CONTINUED FROM PREVIOUS PAGE

int deq(queue *Q) {
REQUIRES(is_queue(Q) && !queue_empty(Q));

int element = Q->data[Q->front];

if (Q->front == Q->rear) {

Q->front = -1 ;
Q->rear = -1;

} else {

Q->front = (Q->front + 1) % Q->capacity ;

}

ENSURES(is_queue(Q));
return element;

}

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 11/23

4 Strings [C] (40 points)

Task 120pts String buffers are useful as a data structure because concatenating strings naively can get
really expensive. Concatenating a string of length x and a string of length y with the
library function strcat requires x+ y constant-time operations.
(In your answers below, both n and k can vary: don’t treat k as a constant.)
If we are concatenating n strings with C’s strcat, where each string has length k, by
joining them one at a time (so we have n strings of length k, then n − 2 strings of length
k and 1 string of length 2k, and then we have n − 3 strings of length k and one string of
length 3k. . .), the total running time of the process taking n length-k strings and returning
a single string of length nk will be in

O(kn2)

If we instead only concatenate pairs of strings with equal length (so we have n strings of
length k, then n/2 strings of length 2k, and then n/4 strings of length 4k), the total running
time of the process taking n length-k strings and returning a single string of length nk will
be in

O(kn log n)

If we use a single correctly-implemented string buffer to add the n strings of length k to
the buffer one at a time, and then we use strbuf_str to make a copy of the final string
with size nk, the running time of this whole process will be in

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 12/23

O(kn)

During the process described immediately above, the worst-case running time of a single
call to the function strbuf_addstr could be in

O(kn)

Despite this, our amortized analysis of the problem ensures most calls to strbuf_addstr
will have a running time that is in

O(k)

Task 216pts For these questions, imagine that we have placed n Andrew IDs, represented as strings of
2-8 characters, into a separate-chanining hashtable with a capacity (table size) of m, where
n and m are both very large. (Don’t assume anything about their relationship, though: n
could be much larger than m or vice-versa.)

If our hash function takes s and returns strlen(s) * 1664525 + 1013904223, where
strlen gives us the length of the Andrew ID we expect that a single lookup or insertion
to take time in

O(n)

If our hash function always returns 4, we expect that a single lookup or insertion to take
time in

O(n)

If we know the n Andrew IDs in advance, then the best possible hash function for those
andrew IDs would ensure that a single lookup or insertion takes time in

O(n/m)

Is the pseudorandom number generator hash_lcg discussed in lab and lecture, which
applies a linear congruential generator to every character in the string, always going to
ensure this best possible performance? Briefly justify your answer (a sentence or two at
most).
(Hint: The specifics of hash_lcg aren’t important here, it’s just an example of a good hash
function.)

No: it’s possible to create collisions with any hash function.

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 13/23

Task 34pts If a hashtable using open addressing (specifically linear probing) contains k elements and
has a table with size k, then looking up any key that is not in the table will take time in

O(k)

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 14/23

5 Clac Revisited [C] (40 points)
One of the jobs of a parser is to take an infix expression like 7 + 7 * 1 < 9 and figure out that
it is supposed to be understood as (7 + (7 * 1)) < 9. This unambiguous representation of
the structure of an expression can be represented as a tree structure:

Clac gave us another way to unambiguously represent expressions without using parentheses.
We can represent the expression given as a tree above in Clac by writing 7 7 1 * + 9 <.

Before After
Stack Queue Stack Queue Cond

S || n,Q −→ S, n || Q
S, x, y || +, Q −→ S, x+ y || Q
S, x, y || -, Q −→ S, x− y || Q
S, x, y || *, Q −→ S, x ∗ y || Q
S, x, y || <, Q −→ S, 1 || Q if x < y
S, x, y || <, Q −→ S, 0 || Q if x ≥ y

Task 15pts Draw the tree corresponding to the C0 expression (17 - 8*2 + 3), which evaluates to 4.

Task 25pts Draw the tree corresponding to the Clac expression 2 -2 17 1 - * <.

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 15/23

Task 315pts Expression trees can be written in C as elements of the type exp*. The specification func-
tion is_binop checks that a char* is a well-formed C string representing a binary oper-
ato: either "<", "*", "+", or "-". The specification function is_int checks that a char* is
a well-formed C string that can be parsed as a 32-bit signed integer.

typedef struct exp_node exp;
struct exp_node {
char *data;
exp *left;
exp *right;

};
bool is_exp(exp *E) {
if (E == NULL) return false;
if (E->left == NULL && E->right == NULL && is_int(E->data)) return true;
return is_exp(E->left) && is_exp(E->right) && is_binop(E->data);

}

Clac programs are represented by queues of strings: we represent the Clac program
2 -2 17 1 - * < as a queue with "2" is at the front of the queue and "<" at the back of
the queue. Strings are pointers to char in C, so generic queues can easily hold strings.

bool queue_empty(queue_t Q);
void enq(queue_t Q, void *x);
void *deq(queue_t Q); // Requires !queue_empty(Q);

Write a (simple and efficient!) recursive procedure for converting a exp* expression into a
Clac program and adding that program to the end of a queue. Don’t modify the existing
tree E, don’t call the specification functions is_int and is_binop, and don’t explicitly
allocate or free memory (calling enq and deq is fine, though). Explicitly write a cast
whenever you convert pointers.

void convert(exp *E, queue_t Q) {
REQUIRES(is_exp(E));

if (E->left != NULL) {
convert(E->left, Q);
convert(E->right, Q);
enq(Q, (void*)E->data);

} else {
enq(Q, (void*)E->data);

}

}

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 16/23

Task 415pts Clac and the C0VM behave in essentially the same way, except that one is based on queues
and the other is based on a program counter that can move around more freely. Here are
some bytecode instructions you’ll use in this question (you don’t need to use them all):

0x60 iadd S, x:w32, y:w32 -> S, x+y:w32
0x7E iand S, x:w32, y:w32 -> S, x&y:w32
0x6C idiv S, x:w32, y:w32 -> S, x/y:w32
0x68 imul S, x:w32, y:w32 -> S, x*y:w32
0x64 isub S, x:w32, y:w32 -> S, x-y:w32
0x10 bipush S -> S, x:w32 (x = (w32)b, sign extended)
0x00 nop S -> S
0xA1 if_icmplt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x < y)
0xA7 goto <o1,o2> S -> S (pc = pc+(o1<<8|o2))
0xB0 return ., v -> . (return v to caller)

Write C0VM bytecode that behaves, as much as possible, the same way as the Clac code
2 -2 17 1 - * <. Your code should return either 0 or 1.

You only have to write the direct bytecode (“15 02”), but you can also write the memonic
forms (“vload 2”). You don’t have to use every line.

C0 bytecode that mimics the Clac code 2 -2 17 1 - * <

10 02 # bipush 2

10 FE # bipush -2

10 11 # bipush 17

10 01 # bipush 1

64 # isub

68 # imul

A1 00 08 # if_cmplt 8

10 00 # bipush 0

A7 00 05 # goto 5

10 01 # bipush 1

B0 # return

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 17/23

6 Spanning Trees [C] (40 points)

The C interface for a weighted undirected graph with positive integer weights is given below:

typedef unsigned int vertex;

void graph_free(graph G);
unsigned int graph_size(graph G); // Number of vertices in the graph
graph graph_new(unsigned int n);
// New graph with n vertices and no edges, requires n > 0

bool graph_hasedge(graph G, vertex v, vertex w);
// Requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph G, vertex v, vertex w, int weight);
// Requires v < graph_size(G) && w < graph_size(G);
// Requires !graph_hasedge(G, v, w);
// Requires weight > 0;

int graph_getweight(graph G, vertex v, vertex w);
// Requires v < graph_size(G) && w < graph_size(G);
// Requires graph_hasedge(G, v, w);

Task 110pts Assume an adjacency list implementation of graphs, as indicated below.

typedef struct graph_header *graph;
typedef struct adjlist_node adjlist;
struct adjlist_node {
vertex vert;
int weight; // weight on edge to vertex vert
adjlist *next;

};
struct graph_header {
unsigned int size;
adjlist **adj; // An array of adjacency lists

};

Write the graph function graph_getweight, assuming the existence of is_graph.

int graph_getweight(graph G, vertex v, vertex w) {
REQUIRES(is_graph(G) && v < graph_size(G) && w < graph_size(G));
REQUIRES(graph_hasedge(G, v, w));

adjlist* p = G->adj[v];
while (p != NULL) {
if (p->vert == w) return p->weight;
p = p->next;

}
return -1;

}

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 18/23

Prim’s algorithm is another way to compute a minimum spanning tree for a graph. In
this implementation of Prim’s algorithm, we need an array of booleans to mark when
each vertex is added to the minimum spanning tree. We also need a priority queue to
hold edges under consideration, ordered based on weight: the edge with the highest
priority in the priority queue is the edge with minimum weight.
Assume the following C interface for priority queues.

typedef void *elem;
typedef bool higher_priority_fn(elem e1, elem e2);

// (*prior)(e1,e2) returns true if e1 is *strictly* higher priority than e2
pq_t pq_new(size_t capacity, /* > 0 */

higher_priority_fn *prior); /* != NULL */
bool pq_empty(pq_t P);
void pq_add(pq_t P, elem e);
elem pq_rem(pq_t P); /* Must not be empty */
void pq_free(pq_t P); /* Must be empty */

In the next two tasks, you will complete a client program to implement Prim’s algo-
rithm. Note that for these tasks, you should respect the interfaces for graphs and pri-
ority queues. From the client’s perspective, you do not know how these data structures
are implemented. Start with the following client code in prim.c:

#include <stdlib.h>
#include <stdbool.h>
#include "lib/graph.h"
#include "lib/pq.h"
#include "lib/xalloc.h"
#include "lib/contracts.h"

struct edge_header { // edge from v to w
vertex v;
vertex w;
int weight;

};
typedef struct edge_header* edge;

Task 26pts First, write a client function edgepriority of type higher_priority_fn that can be used
with this priority queue. This function will be stored in prim.c also.

bool edgepriority(elem e1, elem e2) {

REQUIRES(e1 != NULL && e2 != NULL);

return ((edge)e1)->weight < ((edge)e2)->weight ;

}

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 19/23

Task 320pts We will now write a function prim (in the same file prim.c) that will compute and return
a new graph representing the minimum spanning tree of a graph G with at most 1000
vertices. Complete the missing parts.

graph prim(graph G) {
REQUIRES(graph_size(G) <= 1000);
// Requires that the graph G is connected

unsigned int n = graph_size(G);

// Create a new priority queue whose capacity should be large enough
// to hold every edge of the graph.

pq_t PQ = pq_new(n*n , &edgepriority);

// Create the array of bool to mark each vertex that is
// added to the minimum spanning tree, all set to false.

bool *mark = xcalloc(n, sizeof(bool)) ;

// Create a new graph for the minimum spanning tree
// with the same number of vertices as G but no edges.

graph T = graph_new(n);

// Start with vertex 0 as the first vertex added to tree T
vertex v = 0;
mark[v] = true;
unsigned int numv = 1; // number of vertices in spanning tree

// While the spanning tree is not complete...

while (numv != n) {

// For each neighbor w of v, if w is not in the spanning tree,
// add the edge to the neighbor to the priority queue.
for (vertex w = 0; w < n; w++) {

if (graph_hasedge(G,v,w) && !mark[w]) {

edge e = xmalloc(sizeof(struct edge_header));
e->v = v;
e->w = w;
e->weight = graph_getweight(G,v,w);
pq_add(PQ, e);

}
}

THE BODY OF THE WHILE LOOP IS CONTINUED ON NEXT PAGE...

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 20/23

Task 3 continued...

// Retrieve the minimum weight edge from priority queue
// until you find one that leads to an unmarked vertex.

edge minedge = pq_rem(PQ);

while (mark[minedge->w]) {

free(minedge);
minedge = pq_rem(PQ);

}

// Add this edge to the minimum spanning tree
graph_addedge(T, minedge->v, minedge->w, minedge->weight);
numv++;

// Now consider edges from vertex w in the next iteration.
v = minedge->w;
mark[v] = true;
free(minedge);

}

// Free up remaining dynamically-allocated memory.
free(mark);
while (!pq_empty(PQ)) {

free(pq_rem(PQ));

}
pq_free(PQ);

// Return answer.

return T ;
}

Task 44pts If our graph has v vertices and e edges, what is the worst case runtime complexity of
any single call to pq_rem in the algorithm above if the priority queue is implemented
using a heap? Express your answer using big O notation in its simplest, tightest form as
a function of v and/or e.

O(log e)

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 21/23

7 I can C clearly now [C] (40 points)

For all the parts of this question, you can assume standard implementation-defined behav-
ior: 8-bit bytes, 2-byte shorts, and so on. In every case, assume we are calling gcc with the
command

gcc -Wall -Wextra -Werror -Wshadow -std=c99 -pedantic example.c

Task 120pts For each of the five following code examples, complete the given assignments in such
a way that undefined behavior is triggered on the specified line (and not before). Only
give values that are in range of the specified type.
If there is no way to trigger undefined behavior, check the box instead.

unsigned char i = 252, 253, 254, or 255 ;
char *S = xcalloc(63, sizeof(int));

// Cause undefined behavior on the next line:
char c = S[i] + 5;

Check this box if there is no way to trigger undefined behavior:

unsigned int x = ;

signed short y = ;

unsigned int z = (unsigned int)(signed int)y;

// Cause undefined behavior on the next line:
if (x + z < x) y = 0xbad;

Check this box if there is no way to trigger undefined behavior: X

int x = 0 /* array index verflows to SIZE_T_MAX */ ;

assert(0 <= x);
int *A = xcalloc(100, sizeof(int));

// Cause undefined behavior in this for loop
for (size_t i = (size_t)(unsigned int) x; i < 100; i++)

A[i] = A[i-1] * 2;

Check this box if there is no way to trigger undefined behavior:

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 22/23

int i = /* Anything where i+j overflows */ ;

int j = ;

int k = /* for k is in (0, 100000)*/ ;

assert(0 < k && k < 100000);
void **A = xmalloc(sizeof(void*) * k);

// Cause undefined behavior on the next line:
if (0 <= i + j && i + j < k) A[i + j] = NULL;

Check this box if there is no way to trigger undefined behavior:

size_t x = ;

assert (x <= strlen("Hello"));
char *str = "Hello";

// Cause undefined behavior in this for loop
for (size_t i = 0; i < x; i++) {

str = str + 1;
}
printf("The string is \"%s\"\n", str)

Check this box if there is no way to trigger undefined behavior: X

Task 25pts Which of the following code snippets would cause undefined behavior? Circle Error if
there is undefined behavior, otherwise circle OK.

void* x = xmalloc(sizeof(int)); (Uninitialized read)

int i = *(int*)x; Circle one: Error OK

void* x = xcalloc(1, sizeof(int)); (4 byte allocation)

int i = *(int*)x; Circle one: Error Ok

void* x = xcalloc(1, sizeof(short)); (2 byte allocation)

int i = *(int*)x; Circle one: Error OK

void* x = xcalloc(2, 3); (6 byte allocation)

int i = *(int*)x; Circle one: Error Ok

void* x = xcalloc(sizeof(void*), 1); (8(4?) byte allocation)

int i = *(int*)x; Circle one: Error Ok

c© Carnegie Mellon University 2018

15-122 (Spring 2015) Final Solutions Page 23/23

Task 312pts For each example, either say what y is at the end of the code snippet as an 8-hex-digit
constant or write undefined if any undefined behavior occurs.

short w = -1;
unsigned short x = (unsigned short)w;
x = x << 4;
unsigned int y = (unsigned int)x;

y is 0x0000FFF0

signed char x = -2;
unsigned int y = (unsigned int)(int)x;
y = y << 8;

y is 0xFFFFFE00

unsigned char x = 3;
int y = (int)(signed char)x;
y = y << 32;

y is UNDEFINED

unsigned char x = 255;
x = x >> 1;
int y = (int)(signed char)x;

y is 0x0000007F

Task 43pts The following function is intended to do a C0VM-like operation: treating an array of 3
bytes like a signed integer. Given the bytes {80, 00, 00}, for instance, this function
returns the signed quantity 0xFF800000 (or -8388608), as it should.
Reveal the bug in this function by giving a test case, the desired outcome, and the actual
result.

// Treats three bytes as a signed integer
int32_t g(uint8_t *P) {
int32_t x = (int32_t)(int8_t)P[0];
int32_t y = (int32_t)(int8_t)P[1];
int32_t z = (int32_t)(int8_t)P[2];
int32_t r = (x << 16) | (y << 8) | z;
return r;

}

Desired: 0x

Actual: 0x

POSSIBLE SOLUTIONS: Anything that causes sign extension in a low-order byte
and has something besides FF in a higher-order byte. Example: 00 FF FF

c© Carnegie Mellon University 2018

	Union Find [C0]
	Grab Bag [C]
	Circular Queues
	Strings [C]
	Clac Revisited [C]
	Spanning Trees [C]
	I can C clearly now [C]

