
Midterm 2 Solutions

15-122 Principles of Imperative Computation

Thursday 2nd April, 2020

Name: Harry Bovik

Andrew ID: bovik

Recitation Section: S

Instructions

• This exam is closed-book with one sheet of notes permitted.

• You have 80 minutes to complete the exam.

• There are 5 problems on 13 pages (including 0 blank pages at the end).

• Read each problem carefully before attempting to solve it.

• Do not spend too much time on any one problem.

• Consider if you might want to skip a problem on a first pass and return to it later.

Max Score

Amortized Cost 10

Linked Lists 30

Hash Tables 25

Trees 30

Priority Queues 30

Total: 125
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1 Amortized Cost (10 points)
Consider a data structure where we perform n operations. The cost of the ith operation is i if i
is a power of 2; otherwise, the cost of operation i is 1.

Task 1.1 If we were to use standard worst case analysis, we would say that the longest single
operation has a cost in

O( n ) — or i

Since there are n operations, this would lead us to say that the worst case runtime com-
plexity for the entire series of n operations is in

O( n2 ) — or ni

But this doesn’t seem like a tight bound on the n operations: the worst case scenario does not
occur for each of the n operations. We can use amortized analysis using tokens to determine
the overall cost of n operations in this scenario.
Suppose we pay 3 tokens for each operation. Tokens that are not used to pay for the operation
are banked. Complete the following table that shows the number of tokens banked after each
operation, for n = 16.

Task 1.2
Operation Operation Cost Tokens Banked After Operation

1 1 2

2 2 3

3 1 5

4 4 4

5 1 6

6 1 8

7 1 10

8 8 5

9 1 7

10 1 9

11 1 11

12 1 13

13 1 15

14 1 17

15 1 19

16 16 6
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Task 1.3 Based on our analysis, it seems that the number of banked tokens never falls below

2

so the amount that we prepay for each operation is enough to pay for future operations.

Task 1.4 Therefore, we can say that the total amortized cost for n operations, as a function of n, is

3n

tokens, which is in

O( n )

Task 1.5 The amortized cost per operation is in

O( 1 )
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2 Linked Lists (30 points)
This question deals with linked lists, given by the following definitions:

typedef struct list_node list;
struct list_node {

int data;
list* next;

};

typedef struct linkedlist_header linkedlist;
struct linkedlist_header {

list* start;
list* end;

};

Any valid linked list structure has a list segment from the start to the end, as described by
the is_segment data structure invariant. An empty linked list structure consists of one struct
linkedlist_header where the start and end point to the same dummy node.

1 bool is_segment(list* start, list* end) {
2 if (start == NULL || end == NULL) return false; // NONE
3 if (start == end) return true; // NONE
4 if (start->next == end) return true; // 2
5 return is_segment(start->next, end); // 2
6 }

The above code has annotations to the right which explain which lines are needed to justify
safety for the given line.

Task 2.15pts Finish the is_sorted function that returns true if the linked list contains a non-decreasing
series of integers. Respect the loop invariants. You don’t have to use every line.

bool is_sorted(linkedlist* T)
//@requires T != NULL;
//@requires is_segment(T->start,T->end);
{

if (T->start == T->end) return true;

for (list* p = T->start; p->next != T->end; p = p->next)
//@loop_invariant p != T->end && is_segment(p, T->end);
{

if (p->data > p->next->data) return false;

}

return true;
}
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Task 2.210pts As in the written homework on pointer safety and the example on the previous page,
indicate to the right of each line below which line number(s) need to be referenced to
show that the line of code to the left is safe.
Your analysis must be precise and minimal: only list the line(s) upon which the safety of
a pointer dereference depends. Don’t use the lack of a memory error on one line to prove
safety on a later line.

21 void mystery(linkedlist* T)

22 //@requires T != NULL; // NONE

23 //@requires T->start != T->end; // 22

24 //@requires is_segment(T->start,T->end); // 22

25 //@ensures is_segment(T->start,T->end); // 22

26 {

27 list* A = T->start->next; // 22, 24

28 T->start->next = T->end; // 22, 24

29 while(A != T->end) // 22

30 //@loop_invariant is_segment(T->start, T->end); // 22

31 //@loop_invariant is_segment(A, T->end); // 22

32 {

33 list* B = A->next; // 31

34 A->next = T->start; // 22, 31

35 T->start = A; // 22

36 A = B; // NONE

37 }

38 }
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Task 2.35pts Explain why the loop invariants on line 30 and line 31 of the mystery function are true
initially. Cite line numbers and also give brief explanations.

Line 30: T->start->next is T->end by line 28, meaning that this is trivially a list
segment according to the definition. (We know T->start and T->end are non-NULL
from line 24.)
Line 31: Because T->start != T->end (line 23) and
is_segment(T->start, T->end) (line 24), we know that there exists a list segment
from T->start->next to T->end. Because A is initially T->start->next (line 27),
the loop invariant must be initially satisfied.

Task 2.45pts Prove that the loop invariant on line 31, is_segment(A, T->end), is preserved by an
arbitrary iteration of the loop. Cite line numbers and also give brief explanations.
You do not have to prove the loop invariant on line 30 is preserved.

To show: is_segment(A‘, T->end)

A‘ is A->next (lines 33 and 36)

is_segment(A, T->end) (line 29, loop invariant), along with
A != T->end (line 31, loop guard),
implies is_segment(A->next, T->end) (implies the segment is nonempty)

The combination of these two facts gives us is_segment(A‘, T->end).

Task 2.55pts Illustrate the result of running the mystery function on this pointer structure:

Either write “non-termination,” “assertion failure,” or “memory error” in the box below,
or else draw the pointer structure after the mystery function runs.
You do not have to label the “data” and “next” fields in your illustration.
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3 Hash Tables (25 points)
In the questions on this page, we will consider adding integers to a separate-chaining hash
table with a capacity of 7 that does not resize. Our hash table will use the rather unfortunate
hash function hash(x) = x.

Here’s one such hashtable after 16, 72, 26, and 2 have been added:

Task 3.13pts What’s the exact (not big-O) load factor of the hash table above?

4/7

Task 3.23pts Give 4 distinct nonnegative integers that, if added to an initially-empty hash table in
any order, will ensure that attempting to look up 3 in the hash table will take as long as
possible.

10, 17, 24, 31 (all equal to 3 mod 7)

Task 3.33pts The integer 3 should not be part of your answer in the above task. Why not?

If 3 is in the table, it may be at the beginning of the chain, reducing lookup time.

Task 3.43pts Give 8 distinct nonnegative integers that, if added to an initially-empty hash table in any
order, will minimize the worst-case time of attempting to look up any integer in the hash
table.

0, 1, 2, 3, 4, 5, 6, 7 (Exactly two should be equal mod 7)

Task 3.53pts For the 8 integers you added in part Task 4, give an integer that takes the worst-case time
to look up in the hash table. (Your answer should be the same regardless of the order
those 8 elements are added, and your answer needn’t be in the table.)

14 (Equal, mod 7, to the two integers in Task 4 that were equal mod 7)

c© Carnegie Mellon University 2020
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For the three tasks on this page, we will imagine we are using a hash set to implement the
kind of analysis we did in the DosLingos homework assignment. Our hash set elements
are structs containing a word and a frequency count; we want to read in a series of words
(like the Scrabble dictionary) and then update the frequency counts for those words as
we see them in our corpus (the complete works of Shakespeare). Therefore, two structs
will be treated as equivalent if they contain the same word.

Task 3.64pts Why would it be a bad idea to have the hash function always return zero?

This would cause every lookup to be O(n).

Task 3.74pts Why would it be a bad idea to have the hash function depend on the frequency counts for
those words?

The point of the doslingos assignment is to update frequency counts, and in this case
doing so would change the hash value and break the hash table’s invariants.

Task 3.82pts Which of these two bad ideas is worse, and why?

The second idea is worse; at least the first idea will result in a working hash set.

c© Carnegie Mellon University 2020
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4 Trees (30 points)

Task 4.114pts In splay trees, when a new element is inserted into a tree using the usual BST insertion
algorithm, rotations are then performed to make the newly-added element the root of
the post-insertion tree. This is the series of rotations that might be performed after the
insertion of 40 into the tree, for example:

Finish the code below for splay tree insertion, using the rotation functions discussed in
class:

tree* rotate_left(tree* T) /*@requires T != NULL && T->right != NULL @*/ ;
tree* rotate_right(tree* T) /*@requires T != NULL && T->left != NULL @*/ ;

Make sure that, for all the code you write, you can use contracts to prove the absence of
NULL pointer dereferences or precondition violations! The function leaf(x) allocates a
new leaf node with data x.

tree* tree_insert(tree* T, elem x, elem_compare_fn* comp)
//@requires is_tree(T);
//@ensures is_tree(\result);
//@ensures \result != NULL;
{
if (T == NULL) return leaf(x);
int r = (*comp)(x, T->data);
if (r == 0) {
T->data = x; /* modify in place */

} else if (r < 0) { /* x < T->data */

T->left = tree_insert(T->left, x, comp) ;

T = rotate_right(T) ;

} else { /* x > T->data */

T->right = tree_insert(T->right, x, comp) ;

T = rotate_left(T) ;
}
return T;

}

OFF TOPIC IMPORTANT NOTE: Splay trees are a real thing! But the data structure described in this question
is not actually a splay tree. Actual splay tree insertion does something a bit more complicated when you insert
into the left child of a left child or the right child of a right child.

Real splay trees have a fascinating property: lookup and insertion are O(n) in the worst case but O(logn)

amortized.
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Task 4.216pts Consider the following AVL tree where elements are integers.

In this question, we consider the insertion of several elements into this tree. Each inser-
tion is into the tree above, the insertions are not cumulative. Record all the nodes where
a regular BST insertion causes AVL balance invariant to be violated (there may be none,
or more than one!). If violations occur, list the sequence of rotations the AVL insertion
algorithm will perform tree to restore the invariant.

We’ve given you the first two examples.

Inserting 1 causes a violation at 10.
This is fixed (if necessary) by the following rotation(s): rotate right at 10.

Inserting 17 causes a violation nowhere.
This is fixed (if necessary) by the following rotation(s): N/A.

Inserting 31 causes a violation at 22 and 46
This is fixed (if necessary) by the following rotation(s):

rotate right at 36, rotate left at 22

Inserting 45 causes a violation at 42, 22, and 46
This is fixed (if necessary) by the following rotation(s):

rotate left at 42

Inserting 47 causes a violation at 57
This is fixed (if necessary) by the following rotation(s):

rotate right at 57

Inserting 62 causes a violation nowhere
This is fixed (if necessary) by the following rotation(s):

N/A
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5 Priority Queues (30 points)
This question deals with unbounded, generic priority queues implemented as heaps. These
priority queues avoid getting full by using the unbounded array trick of doubling the size of
their internal array when the heap gets full; the client doesn’t need to know how this works.

/*** Client interface for priority queues ***/
typedef void* elem; // Library treats this as an unknown pointer type

// f(x,y) returns true if x is STRICTLY higher priority than y
typedef bool higher_priority_fn(elem x, elem y)
/*@requires x != NULL && y != NULL; @*/ ;

/*** Library interface for priority queues ***/
// typedef ______* heap_t;

bool heap_empty(heap_t H)
/*@requires H != NULL; @*/ ;

heap_t heap_new(higher_priority_fn* prior)
/*@requires prior != NULL; @*/
/*@ensures \result != NULL && heap_empty(\result); @*/ ;

void heap_add(heap_t H, elem x)
/*@requires H != NULL && x != NULL; @*/ ;

elem heap_rem(heap_t H)
/*@requires H != NULL && !heap_empty(H); @*/
/*@ensures \result != NULL; @*/ ;

We’ll also use a simple interface for reading words from a file:

/*** Interface for files ***/
// typedef ______* file_t;
bool has_more_words(file_t F)
/*@requires F != NULL; @*/ ;

string get_next_word(file_t F)
/*@requires F != NULL && has_more_words(F); @*/ ;

Task 5.120pts Unbounded arrays of strings are useful when we have a file and we need to read in all
the words from a file in order without knowing how many words are in the file:

arr_t read_in_inputs(file_t F)
//@ensures \result != NULL;
{

arr_t A = arr_new(0);
while (has_more_words(F)) {

string s = get_next_word(F);
arr_add(A, s);

}
return A;

}
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Implement the read_in_inputs function using only the heap interface and the file in-
terface. Your function, like the UBA-using function above, should return an array where
the strings are in the same order as they were in the file.
You’ll need to define some helper structs and functions first. Make sure that all your
operations are provably safe. If you can’t prove that an operation is safe from the loop
invariants and preconditions, use an //@assert statement to ensure safety.

// You can use the blank pages in the back if you need more space for
// helper structs and functions, but clearly indicate this!

struct elem {
int i;
string s;

};

bool prio(void* x, void* y)
//@requires x != NULL && \hastag(struct elem*, x);
//@requires y != NULL && \hastag(struct elem*, y);
{
return ((struct elem*)x)->i < ((struct elem*)y)->i;

}

string[] read_in_inputs(file_t F)
//@requires F != NULL;
{

int n = 0;
heap_t H = heap_new(&prio) ;

while (has_more_words(F)) {

struct elem* E = alloc(struct elem);
E->i = n;
E->s = get_next_word(F);
heap_add(H, (void*)E);
n++;

}
//@assert n >= 0;
string[] A = alloc_array(string, n);
for (int j = 0; j < n; j++)
//@loop_invariant 0 <= j;
{

//@assert !heap_empty(H);
A[j] = ((struct elem*)heap_rem(H))->s;

}
return A;

}
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Task 5.210pts Heaps are implemented as they were implemented in class:

typedef struct heap_header heap;
struct heap_header {
int limit; /* limit > 1 */
int next; /* 1 <= next && next <= limit */
elem[] data; /* \length(data) == limit */
higher_priority_fn* prior; /* != NULL */

};

Write a simple recursive function (no loops!) that searches for an element in an heap; if
multiple equivalent elements exist, any one of them can be returned.
Assume that two equivalent elements will always have the same priority. Use this as-
sumption and the heap ordering invariant to make your search as efficient as possible
(though it will still have worst case performance in O(n)). Add preconditions to the
helper function to ensure safety, if necessary.

typedef bool elem_equiv_fn(elem x, elem y)
/*@requires x != NULL && y != NULL; @*/ ;

elem heap_search_helper(heap_t H, elem x, elem_equiv_fn* equiv, int i)
//@requires is_heap(H) && x != NULL && equiv != NULL;

//@requires 1 <= i;
{

if (i >= H->next) return NULL;
if ((*H->prior)(x, H->data[i])) return NULL;
if ((*equiv)(x, H->data[i])) return H->data[i];

elem res = heap_search_helper(H, x, equiv, 2*i);
if (res != NULL) return res;
return heap_search_helper(H, x, equiv, 2*i+1);

}

// Returns NULL if no elements equivalent to x are in the heap
elem heap_search(heap_t H, elem x, elem_equiv_fn* equiv)
//@requires is_heap(H) && x != NULL && equiv != NULL;
{
return heap_search_helper(H, x, equiv, 1);

}
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