
Final Exam

15-122 Principles of Imperative Computation

Friday 26th June, 2015

Name:

Andrew ID:

Recitation Section:

Instructions

• This exam is closed-book with one sheet of notes permitted.

• You have 180 minutes to complete the exam.

• There are 7 problems on 23 pages (including 2 blank pages and 2 reference sheets at the end).

• Use a dark pen or pencil to write your answers.

• Read each problem carefully before attempting to solve it.

• Do not spend too much time on any one problem.

• Consider if you might want to skip a problem on a first pass and return to it later.

Max Score

C0 and C 30

Requiring Safety 30

High-Speed Data Structures 50

Generic Exam Question 40

Graph Expansion 40

Spanning Trees 45

Minimum Spanning Trees 10

Total: 245

1

15-122 (Summer 2015) Final Page 2/23

1 C0 and C (30 points)

For the C code in this question, you can assume standard implementation-defined behavior.
In every case, assume we are calling gcc with the command

gcc -Wall -Wextra -Werror -Wshadow -std=c99 -pedantic example.c

Notice that -fwrapv was not one of the arguments. Assume the following declarations, where
“...” refers to an arbitrary unknown value.

In C0 In C

int INT_MIN = 0x80000000; #include <limits.h>

int x = ...; unsigned int x = ...;
int y = ...; int y = ...;
int z = ...; int z = ...;

int[] A = alloc_array(int, 5); int *A = xcalloc(5, sizeof(int));
int* p = alloc(int); int *p = xmalloc(sizeof(int));

For the following expressions, indicate all possible outcomes among true, false, error (for
program-stopping runtime errors), and undefined. If the behavior may be undefined then all
other outcomes are automatically possible, so you don’t need to list them explicitly. Assume
that all initializations succeed without errors. To get you started we have already filled in first
row for you.

Expression In C0 In C

x * 2 > x false, true false, true

x * 4 == x << 4

x / 8 == x >> 3

y == INT_MIN || y > y - 1

z == 0 || (y/z)*z + y%z == y

z == 0 || (122/z)*z + 122%z == 122

y + z >= 0 || y + z < 0

y <= 0 || z <= 0 || (y+z)/y <= z+y

*p == A[0]

A[0] == A[A[A[0]]]

A[5] == A[A[A[5]]]

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 3/23

2 Requiring Safety (30 points)

For the functions in this question, write (additional) preconditions that are sufficient to ensure
that there will be no undefined behavior and no memory leaks. Your preconditions allow the
function to run whenever undefined behavior and memory leaks would not occur. Make sure
it’s not possible to cause undefined behavior in the precondition itself!

If it’s not possible to ensure that a function is free of undefined behavior and memory leaks,
then you can write the precondition false, which indicates that the function cannot be run
safely. If no preconditions are needed, you can write the precondition true.

Do not assume any implementation-defined behaviors except that a byte is 8 bits. Your pre-
conditions should make your functions safe for any implementation-defined behaviors.

Task 15pts

unsigned long task1(unsigned long x, unsigned long y) {

REQUIRES();

return x << y;
}

Task 25pts

int task2(int x, int y, int z) {
REQUIRES(x >= 0 && y >= 0);

REQUIRES();
return (x * y) / z;

}

Task 35pts

int task3(size_t n) {

REQUIRES();

int x = 0;
int A[15];
for (size_t i = 0; i < n; i++) {

x += A[i];
}
return x;

}

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 4/23

Task 45pts

char *task4(size_t n, size_t m) {

REQUIRES();

REQUIRES();

unsigned int *A = xmalloc(n);
for (unsigned int i = 0; i < m; i++) {

A[i] = i << i;
}
return A;

}

Task 55pts For this task, you should assume that casting between signed and unsigned types of the
same size works the same way it does in gcc.

int task5(signed char n, int m) {

REQUIRES();

unsigned int x = (unsigned int)(unsigned char)n;
unsigned int y = (unsigned int)(signed int)n;

if (x != y) return INT_MIN + m;
return m;

}

Task 65pts

void task6(int n) {

REQUIRES();

int *A = xcalloc(5, sizeof(int));
for (int i = 0; i < n; i++) {

free(&A[i]);
}

}

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 5/23

3 High-Speed Data Structures (50 points)

Task 140pts Give best and worst-case running time bounds for the following operations. Some of the
descriptions state that multiple operations are happening: give the cost of doing the entire
sequence of operations, not the cost of doing a single operation within the sequence.

Always give the simplest, tightest big-O bound.

Best-case Worst-case

Adding n elements to an initially empty queue (im-
plemented as a linked list).

Adding n elements to an resizing unbounded array
that initially has size 0 and limit 4.

Adding n elements to a resizing unbounded array
that initially has size 0 and limit > n, using merge-
sort to re-sort the array after every single addition.

Adding n elements to a resizing unbounded array
that initially has size 0 and limit > n, using quicksort
to re-sort the array only once, after all n additions.

Adding a single element to a heap data structure that
has n elements in it already.

Adding n elements, which are all or almost all dis-
tinct, to an initially empty binary search tree that
does not do any re-balancing.

Adding n elements, which are all or almost all dis-
tinct, to an initially empty AVL tree.

Inserting n elements, which are all or almost all dis-
tinct, to an initially empty non-resizing, separate-
chaining hash table with table size m.

Looking up a single element in a non-resizing,
separate-chaining hash table that already contains n
distinct elements and has a table size m.

Adding every possible edge to an initially-empty
undirected graph with n vertices. Assume an adja-
cency matrix representation.

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 6/23

Task 210pts Grace is implementing a program for the popular word game Scrabble, and she is consid-
ering the use of a hash table (using separate chaining) or a balanced binary search tree to
store the dictionary of legal words with their definitions. In this case, Grace is not using
a separate interface for the data structure. Instead the data structure is being integrated
into the full program. (Maybe not such a good idea, but Grace has been programming
for many years and wrote very careful data structure invariants.) For the hash table, she
would use a hash function that adds up the ASCII values of all of the letters in the word.
The binary search tree is ordered by the usual ASCIIbetical ordering.

Which data structure, hash table or binary search tree, would allow her to more easily find
all words that start with the letter sequence UNI? Explain your choice in one sentence.

Which data structure, hash table or binary search tree, would allow her to more easily
find all words that can be formed using the each of letters AERST once? Explain your
choice in one sentence.

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 7/23

4 Generic Exam Question (40 points)

This question involves a slight variant of the C implementation of generic queues: we’ve
removed queue_size, queue_reverse, and queue_peek.

typedef bool check_property_fn(void* x);
typedef void* iterate_fn(void* accum, void* x);
typedef void elem_free_fn(void *x);

queue_t queue_new();
/*@ensures \result != NULL; @*/

bool queue_empty(queue_t Q);
/*@requires Q != NULL; @*/

void enq(queue_t Q, void *x);
/*@requires Q != NULL; @*/

void *deq(queue_t Q);
/*@requires Q != NULL && !queue_empty(Q) > 0; @*/

bool queue_all(queue_t Q, check_property_fn *P);
/*@requires Q != NULL && P != NULL; @*/

void* queue_iterate(queue_t Q, void *base, iterate_fn *F);
/*@requires Q != NULL && F != NULL; @*/

void queue_free(queue_t Q, elem_free_fn *F)
/*@requires Q != NULL; @*/ ;

Task 110pts Write a C function named nestring that matches the type check_property_fn. Your
function should assume the void pointers it is given are either NULL or are valid C style
strings (type char*).
Your function should be written so that queue_all(Q,&nestring) will return false if
any element of the queue is NULL or if any element of the queue is a zero-length C-style
string. (In other words, queue_all(Q,&nestring) should check that everything in the
queue is a non-NULL, non-empty string.)
Make all casts to and from void* explicit.

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 8/23

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 9/23

Task 215pts Recall that if the queue Q contains the four elements e1, e2, e3, and e4, then calling
queue_iterate(Q,base,&f) will compute

f(f(f(f(base,e1),e2),e3),e4)

whereas if Q is empty queue_iterate(Q,base,&f) will just return base.
Respecting the interface of queues above, write queue_size that takes a queue and re-
turns an integer representing the number of elements in the queue. Your solution must
use queue_iterate (not deq or enq), and you’ll need to define a helper function.
For full credit, don’t heap-allocate any memory with (x)malloc or (x)calloc.
Make all casts to and from void* explicit.

(Also, don’t cast between integer types like int and pointer types like void*. This isn’t
something we even mentioned the possibility of during class, so you don’t know what
this means you probably are not going to do it.)

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 10/23

Task 315pts Here are two different implementations of queue_all:

/* Implementation A */
bool queue_all(queue *Q; check_property_fn *P) {
REQUIRES(is_queue(Q) && P != NULL);
for (list *L = Q->front; L != NULL; L = L->next)
if (!(*P)(L->data)) return false;

return true;
}
/* Implementation B */
bool queue_all(queue *Q; check_property_fn *P) {
REQUIRES(is_queue(Q) && P != NULL);
bool res = true;
for (list *L = Q->front; L != NULL; L = L->next)
res = (*P)(L->data) && res;

return res;
}

Write a main function (and any necessary helper functions) that respects the queue in-
terface but that returns 0 if the queue is implemented with implementation A and that
returns 1 if the queue is implemented with implementation B. You can allocate memory
freely and ignore memory leaks.

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 11/23

Hint: it may be necessary for your the function you pass queue_all to modify memory.
If you’re stumped: for partial (half) credit, you can explain the difference between the
two functions without writing a test case that differentiates them.

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 12/23

5 Graph Expansion (40 points)

In this question, we use the following modified interface of undirected graphs, which incor-
porates ideas from unbounded arrays.

typedef unsigned int vertex;

unsigned int graph_size(graph_t G);
//@requires G != NULL;

graph_t graph_new();
//@ensures \result != NULL;
//@ensures graph_size(\result) == 0;

void graph_grow(graph_t G);
//@requires G != NULL;

bool graph_hasedge(graph_t G, vertex v, vertex w);
//@requires G != NULL;
//@requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph_t G, vertex v, vertex w);
//@requires G != NULL;
//@requires v < graph_size(G) && w < graph_size(G);
//@requires v != w && !graph_hasedge(G, v, w);

void graph_free(graph_t G);
//@requires G != NULL;

A new graph is always created with 0 vertices (meaning graph_size is initially 0), and graph_grow
increments graph_size by one:

graph_t G = graph_new();
graph_grow(G); // Adds the vertex 0
graph_grow(G); // Adds the vertex 1
graph_addedge(G, 0, 1);
graph_grow(G); // Adds the vertex 2
graph_grow(G); // Adds the vertex 3
graph_addedge(G, 2, 3);
graph_addedge(G, 0, 3);
assert(graph_size(G) == 4); // 4 vertices, numbered 0, 1, 2, and 3

Task 16pts We create a large graph, and in the process call graph_new once, call graph_grow k times,
and call graph_addedge 3k times. Is the graph sparse or dense?

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 13/23

We can implement this interface using adjacency matrices: we’ll hold the adjacency ma-
trix in a 1-D array, using the same layout we used for the images assignment, where the
element in row i and column j is stored at index i*G->limit + j in the array.

typedef struct graph_header graph;
struct graph_header {

size_t size;
size_t limit;
bool *adj;

};

A well-formed undirected graph (the is_graph(G) data structure invariant) is a non-
NULL struct with size strictly less than limit. The array of boolean values adj must be
a non-NULL array adj, and all the unused cells in the array (the grayed-out portion in the
illustration above) must be set to false. Finally, the length of G->adj must be equal to
limit*limit, but in C, it is impossible to actually check this last condition.
Because the graphs are undirected, we also require that G->adj[i*G->limit + j] is
equal to G->adj[j*G->limit + i] for every i and j in the range [0..G->limit).

Task 26pts Implement graph_addege for the data structure described above.

void graph_addedge(graph *G, vertex v, vertex w) {
REQUIRES(is_graph(G) && v < G->size && w < G->size);
REQUIRES(v != w && !graph_hasedge(G, v, w));

ENSURES(is_graph(G));
}

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 14/23

When we call graph_grow, we increase the size: if it’s still less than limit, we’re done.

If size is equal to limit, we double limit, which quadruples the length of the array.

Task 319pts Implement graph_grow according to the description above. Avoid memory leaks.

void graph_grow(graph *G) {
REQUIRES(is_graph(G));

ENSURES(is_graph(G));
}

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 15/23

Task 49pts In most cases, graph_grow requires 0 array writes. In the worst case, we will have size =
limit = n, and the running time of graph_grow in terms of n will be in

O()

Assuming the array has resized before, that expensive operation was necessarily pre-
ceded by exactly. . .

. . . cheap calls to graph_grow. The amortized cost of graph_grow is therefore in

O()

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 16/23

6 Spanning Trees (45 points)
In this problem we consider a version of Prim’s algorithm for computing a minimum weight
spanning tree for connected graphs, the way we presented it in class. First, a summary of the
algorithm.

We start with a partial spanning tree T consisting of a single arbitrary vertex v0 and empty set
of edges A. We also initialize a candidate set H to contain all the edges incident to v0.

We now repeatedly remove a minimum weight edge e from H . If it connects two vertices
already in T we just drop it. If it connects one vertex in T with one not in T (call it u), we
add u to T and e to A. We then add all the edges from u to vertices not already in T to the
candidate set H .

We stop when we have constructed a spanning tree.

Task 110pts State the invariants of this algorithms in terms of the sets V (vertices), E (edges), T (ver-
tices of partial spanning tree), A (edges added to make up a partial spanning tree), and
H (candidate edges). Your invariants should be strong enough to prove that we have a
spanning tree when the algorithm terminates. You may state more than two additional
invariants.

1. T is a subset of V , and A is a subset of E.

2.

3.

Task 24pts Let D represent the set of edges that are dropped in this algorithm as the minimum span-
ning tree is constructed. State the variant of this algorithm, that is, the quantity that either
strictly increases and is bounded above or strictly decreases and is bounded below. Also
state the bound. For partial credit, you may explain instead why the algorithm terminates
in one or two sentences.

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 17/23

Because of the operations we have to perform on H (adding an edge, removing the minimum
weight edge), it is both efficient and convenient to maintain it as a min-heap.

Task 315pts For the following graph fill in the table below to show how the sets T , A, and H change
with each step. Draw the min-heaps as trees. The edge weights are unique so we can,
for example, write 2 to denote the edge AF of weight 2. Write “Add k” to add an edge of
weight k to the tree and “Drop k” if an edge of weight k is deleted from the heap but not
added to the tree. When multiple edges have to be added to the heap add them in order
of increasing weight. We have started with vertex A.
The table continues on the next page, where there is space for scratch work and an empty
graph as a sketching aid. Note that we will not grade your graph drawings.

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 18/23

Operation T A H

vertices in tree edges in tree candidate heap

Init A (none) 2

Add 2 A,F 2 ←− start here

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 19/23

Operation T A H

vertices in tree edges in tree candidate heap

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 20/23

Task 410pts Next we are interested in applying Kruskal’s algorithm to the same graph. Since this was
discussed in lecture in more detail, we do not review the algorithm here. Please fill in the
table below with the union-find data structure where each array element stores either (a)
the array index of its parent, or (b) for a root, the negated value of the maximal length of
a path to this root (counting the number of vertices). When the update of the union-find
data structure is not uniquely defined by the algorithm, point the vertex with the higher
array index to the lower one. Do not perform path compression!
We have filled in the beginning for you and already listed the edges in the order they are
considered. Please write “Add” if the edge is added to the spanning tree or “Drop” if it
is not added.

Edge Action union-find data structure

considered A B C D E F

initialize −1 −1 −1 −1 −1 −1

1 Add ←− start here

2

3

4

5

6

7

Task 56pts What is the worst-case asymptotic time complexity of this exam’s version of Prim’s algo-
rithm in term of v = |V | and e = |E|? Use big O notation.

Answer:

What is the worst-case asymptotic time complexity of this exam’s version of Kruskal’s
algorithm in term of v = |V | and e = |E|? Use big O notation.

Answer:

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 21/23

7 Minimum Spanning Trees (10 points)

In this question, we look at Kruskal’s algorithm for computing the minimum spanning tree
(MST) of a graph. Kruskal’s algorithm requires a sorted sequence of edges by weight.

We can apply Kruskal’s algorithm to find a minimum spanning tree for the graph shown
below:

In the table below, fill in the edges in the order considered by Kruskal’s algorithm and indicate
for each whether it would be added to the spanning tree (Yes) or not (No).

DO NOT LIST any edges that would not even be considered by Kruskal’s algorithm. We have filled
in the first two edges for you, and listed all the weights in ascending order

Weight Edge Considered Added to MST?

5 (E,G) Yes

19 (H,G) Yes

20

29

34

42

57

63

75

82

89

94

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 22/23

(This page intentionally left blank.)

c© Carnegie Mellon University 2018

15-122 (Summer 2015) Final Page 23/23

(This page intentionally left blank.)

c© Carnegie Mellon University 2018

	C0 and C
	Requiring Safety
	High-Speed Data Structures
	Generic Exam Question
	Graph Expansion
	Spanning Trees
	Minimum Spanning Trees

