
Midterm 1 Solutions

15-122 Principles of Imperative Computation

Thursday 6th October, 2016

Name: Harry Bovik

Andrew ID: bovik

Recitation Section: S

Instructions

• This exam is closed-book with one sheet of notes permitted.

• You have 80 minutes to complete the exam.

• There are 5 problems on 20 pages (including 0 blank pages at the end).

• Use a dark pen or pencil to write your answers.

• Read each problem carefully before attempting to solve it.

• Do not spend too much time on any one problem.

• Consider if you might want to skip a problem on a first pass and return to it later.

• You can assume the presence of #use <util> and the arrayutil.c0 library throughout the
exam. The interface for some of these functions is repeated at the end of this exam.

Max Score

Short answer 25

Predictive Search 25

Shuttle Sort 25

Max-Stacks 25

Min-Stacks (makeup) 25

Total: 125

1

15-122 (Fall 2016) Midterm 1 Solutions Page 2/20

1 Short answer (25 points)

Task 110pts In the C0 expressions below, assume that x and y are both strictly positive integers and
that POW(a, b) calculates ab as described in class, with the precondition that b >= 0.
For each expression, either. . .

1. write “always true” if the statement will evaluate to true whenever x and y are both
strictly positive

. . . or . . .
2. give specific, concrete, and strictly positive values of the relevant variables in either hex

or decimal such that the statement will either evaluate to false, raise an arithmetic
error, or fail a precondition.

x > 0 && y > 0 always true

x >> 4 == x / 8 x = 17

POW(3, POW(2, y)) >= 0 y = 31

y * x + 25 * y == y * (25 + x) always true

(x / y) * y + x % y == x always true

0 <= x / y && x / y < x y = 1

c© Carnegie Mellon University 2018

15-122 (Fall 2016) Midterm 1 Solutions Page 3/20

Task 26pts These questions are about the definition of big-O. Recall that f(n) ∈ O(g(n)) if

there exists a c > 0 and n0 > 0 such that forall n ≥ n0, f(n) ≤ cg(n).

In each box below indicate a value of c and n0 that makes the statement true. If none exist,
write NONE.

2n2 + 3n+ 1 ∈ O(n2) c = c = 4 n0 = n0 = 3

n2 + 2 ∈ O(15122n) c = NONE n0 = NONE

c© Carnegie Mellon University 2018

15-122 (Fall 2016) Midterm 1 Solutions Page 4/20

Task 39pts In the following boxes, give an assertion that allows you to prove that the lines following
it are safe. You should assume that y, k, and p are initialized and have the correct types,
but that you don’t know their values.
The assertion should itself be safe (it shouldn’t be possible for the assertion to do some-
thing besides return true or false). The assertion should also be as weak as possible: it
should only fail when the lines following it would definitely cause an error.

//@assert p != NULL && *p != NULL ;

return **p;

//@assert y != 0 && y != -1 ;

return int_min() / y;

//@assert k >= 2 ;

int[] A = alloc_array(int, k);
return A[k-2];

c© Carnegie Mellon University 2018

15-122 (Fall 2016) Midterm 1 Solutions Page 5/20

2 Predictive Search (25 points)
Binary search works by looking at the middle element of the portion of a sorted array still
to be examined. But that’s not the way we, people, look up words in a dictionary! Say we
are searching for the word “ARRAY”. Rather than opening the dictionary in the middle (like
binary search would), we will open it towards the beginning because that’s where words
starting with “A” are found. Say we land on the word “ASSERTION”. We would then repeat
the process by flipping just a few pages towards the beginning of the dictionary rather than
to the middle of what is remaining, because “AR” is close to “AS”. We proceed this way until
we reach the word “ARRAY”. This promises to find words very fast.

In this exercise, we will tweak binary search as seen in class to implement this strategy. Say
we are searching for an integer x in array segment A[lo, hi): at each iteration, the next index to
examine will be an educated guess where x should be based on the smallest and largest values
seen so far and on x itself.

Here’s some code — most of it is identical to binary search seen in class:

5 int search(int x, int[] A, int n)
6 //@requires 0 <= n && n <= \length(A);
7 //@requires is_sorted(A, 0, n);
8 /*@ensures (\result == -1 && !is_in(x, A, 0, n))
9 @ || (0 <= \result && \result < n

10 @ && A[\result] == x); @*/
11 {
12 int max = int_max();
13 int min = int_min();
14 int lo = 0;
15 int hi = n;
16

17 while(lo < hi)
18 //@loop_invariant 0 <= lo && lo <= hi && hi <= n;
19 //@loop_invariant gt_seg(x, A, 0, lo);
20 //@loop_invariant lt_seg(x, A, hi, n);
21 //@loop_invariant min <= x && x <= max && min < max;
22 {
23 int guess = predict(x, lo, min, hi, max);
24 //@assert lo <= guess && guess < hi;
25

26 if (A[guess] == x) return guess;
27 else if (A[guess] < x) {
28 min = A[guess];
29 lo = guess+1;
30 } else {
31 //@assert A[guess] > x;
32 max = A[guess];
33 hi = guess;
34 }
35 }
36 return -1;
37 }

c© Carnegie Mellon University 2018

15-122 (Fall 2016) Midterm 1 Solutions Page 6/20

Task 110pts Show that the loop invariant on line 21 is a valid. (You may not need all the lines.)

Initialization:

max = int_max() by line 12

min = int_min() by line 13

int_min() <= x <= int_max() by definition

int_min() < int_max() by definition

min <= x <= max && min < max by substitution

Preservation:

Assumption: min <= x <= max && min < max

To show: min‘ <= x <= max‘ && min‘ < max‘

There are 3 cases to examine based on the value of A[guess]

Case A[guess] == x: Nothing to do as the function returns.

Case A[guess] < x:

min‘ = A[guess] by line 28

max‘ = max (unchanged in this branch)

min‘ < x by case assumption

min‘ < x <= max‘ by the previous line and the assumption

min‘ <= x <= max‘ && min‘ < max‘ by the properties of the ordering relations

Case A[guess] > x: Similar.

The function predict(x, lo, min, hi, max) returns an index between lo and hi that is as
close to lo as x is close to min. Here is an implementation:

1 int predict(int x, int lo, int min, int hi, int max) {
2 return (x - min) / (max - min) * (hi - lo) + lo;
3 }

Task 24pts You should be suspicious! For one, predict does not have any contracts. Write pre- and
post-conditions for this functions as to match its use in the function search.

//@requires 0 <= lo && lo < hi;
//@requires min <= x && x <= max && min < max;
//@ensures lo <= \result && \result < hi;

c© Carnegie Mellon University 2018

15-122 (Fall 2016) Midterm 1 Solutions Page 7/20

Task 32pts Although the formula used in predict is mathematically correct, the return value may
violate the @assert statement on line 24 of search. In fact it does precisely this on the
very first iteration! Explain why this is the case.

The subexpression (max - min) may overflow, which will produce a negative result.
This will always happen on the first iteration of the loop in search, because of the ini-
tialization of min and max on lines 12 and 13: int_max() - int_min() = -1, which
violates the assertion on line 24 that 0 <= guess.

Task 45pts Modify the above code for predict so that it implements the same mathematical idea IGNORE:
BROKEN
TASK

and yet the @assert statement on line 24 will never be violated for valid inputs.

int predict(int x, int lo, int min, int hi, int max) {
// ... contracts omitted ...

return (x/2 - min/2) / (max/2 - min/2) * (hi - lo) + lo;

}

Task 54pts What is the worst-case asymptotic complexity of search for an array of length n? Give a
concrete 5-element array A and value x that witness this worst case.

Worst-case complexity: O(n)

Worst-case scenario:

A: [0, 0, 0, 0, 1]

x: 1

c© Carnegie Mellon University 2018

15-122 (Fall 2016) Midterm 1 Solutions Page 8/20

3 Shuttle Sort (25 points)
The other day, Rob had an idea for a new sorting algorithm. He explained it to me as follows:

To sort an array A, we allocate an auxiliary array T and maintain two indices left
and right so that T [0, left) ≤ T [right , n) and are sorted.

We compare each element A[i] with what’s at T [left − 1] and keep moving that el-
ement to the right side of T as long as it is larger than A[i]. We do the same thing
with T [right], moving smaller elements to the left side of T . When we’re done with
that, then we know that T [0, left) ≤ A[i] ≤ T [right , n) and we put A[i] in T [left] and
update left .

Once all A[i] have been placed in this way, we copy the contents of T back onto A.

He drew this picture on a napkin:

Rob called his algorithm “shuttle sort”. He started implementing it but he ran out of time. The
code he wrote is in Figure 1 on page 9. The comments in ALL CAPS are where the parts he
didn’t have time to work on need to go. He is pretty confident about the rest of his code.

Task 13pts Give the missing invariants that relate variables left, right, i and n on lines 12 and 19.

12 //@loop_invariant i == left + n - right ;

19 //@loop_invariant i == left + n - right ;

Task 22pts Prove that the loop starting at line 17 terminates.

By line 23, the quantity left is strictly decreasing in any given iteration. By line 17, it
is bounded by 0.

c© Carnegie Mellon University 2018

15-122 (Fall 2016) Midterm 1 Solutions Page 9/20

1 void sort(int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@ensures is_sorted(A, 0, n);
4 {
5 int[] T = alloc_array(int, n);
6 int left = 0; // next free position on the left
7 int right = n; // 1 + next free position on the right
8

9 for (int i = 0; i < n; i++)
10 //@loop_invariant 0 <= i && i <= n;
11 //@loop_invariant 0 <= left && left <= right && right <= n;
12 // SOME LOOP INVARIANT ABOUT HOW left AND right RELATE TO i AND n
13 //@loop_invariant is_sorted(T, 0, left) && is_sorted(T, right, n);
14 //@loop_invariant le_segs(T, 0, left, T, right, n);
15 {
16 // Move bigger elements, if any, from left side to right side
17 while (left > 0 && T[left-1] > A[i])
18 //@loop_invariant 0 <= left && left <= right && right <= n;
19 // SOME LOOP INVARIANT ABOUT HOW left AND right RELATE TO i AND n
20 //@loop_invariant is_sorted(T, 0, left) && is_sorted(T, right, n);
21 {
22 swap(T, left-1, right-1);
23 left--;
24 right--;
25 }
26 //@assert ge_seg(A[i], T, 0, left);
27

28 // Move smaller elements, if any, from right side to left side
29 // WILL FINISH LATER: GOT TO GO FOR COFFEE WITH TOM
30 //@assert ge_seg(A[i], T, 0, left);
31 //@assert le_seg(A[i], T, right, n);
32

33 // Place A[i] -- putting it in T[right-1] would work also
34 T[left] = A[i];
35 left++;
36 }
37 // SOME ASSERTION ABOUT HOW left AND right ARE RELATED AT THE END OF THE FOR LOOP
38 //@assert is_sorted(T, 0, n);
39

40 // Copy sorted elements back into A
41 // ARGH!! LEFT THE STOVE ON; GOT TO RUN
42 }

Figure 1: Rob’s Partial Implementation of Shuttle SortTM

c© Carnegie Mellon University 2018

15-122 (Fall 2016) Midterm 1 Solutions Page 10/20

Task 38pts Write the missing code snippet that shuttles elements smaller than A[i] from the right
side of T to the left side of T . This code starts at line 29 and may extend multiple lines.
Include loop invariants. (Hint: take inspiration to the loop starting at line 17, but additional
invariants may apply since you now have more information.)

while (right < n && T[right] < A[i])
//@loop_invariant 0 <= left && left <= right && right <= n;
//@loop_invariant i == left + n - right;
//@loop_invariant is_sorted(T, 0, left);
//@loop_invariant is_sorted(T, right, n);
//@loop_invariant ge_seg(A[i], T, 0, left);
{
swap(T, right, left);
right++;
left++;

}

Task 46pts Fill in the missing assertion about how left and right are related at the end of the main
loop on line 37, and use that to justify the assertion on line 38 (you may not need all the
lines provided).

//@assert left == right ;

Proof that line 38 holds:

a. is_sorted(T, 0, left) by line 13

b. is_sorted(T, right, n) by line 13

c. le_segs(T, 0, left, T, right, n) by line 14

d. left = right by line 37

e. is_sorted(T, 0, n) by (a-d)

Task 53pts Write the missing code fragment that copies the contents of T back into A. This code starts
at line 41 and may extend multiple lines. Include loop invariants on A and i as needed to
prove the correctness of sort.

for (int i=0; i<n; i++)
//@loop_invariant 0 <= i && i <= n;
//@loop_invariant is_sorted(A, 0, i);
{
A[i] = T[i];

}

c© Carnegie Mellon University 2018

15-122 (Fall 2016) Midterm 1 Solutions Page 11/20

Task 63pts Was Rob’s (partial) effort worthwhile? What is the worst-case asymptotic complexity of
sort for an array of length n? What does an array need to look like for this to happen?

Worst-case complexity: O(n2)

When alternating elements in array grow bigger and smaller.

For example [0, 1, -1, 2, -2, 3, -3].

c© Carnegie Mellon University 2018

15-122 (Fall 2016) Midterm 1 Solutions Page 12/20

4 Max-Stacks (25 points)
A max-stack is a data structure that, in addition to the standard stack operations, also supports
the operation of getting the maximum value in the stack in constant time.

An implementation of a max-stack can achieve this by using two regular stacks, a stack D for
the data elements and a stack M to keep track of the maxima. For each element e in M , e is
the largest element in the data stack D up to e starting from the bottom. The maxima stack M
may contain duplicate values. For example, suppose we push the values 42, 16, 29, 53, 9, 70
and 38 onto a max-stack in the order shown, then this max-stack implementation will consist
of the following two stacks (the top is on the right):

(Data) D: 42, 16, 29, 53, 9, 70, 38 �

(Maxima) M : 42, 53, 70 �

Here is an interface for regular stacks (of ints), defined as the type stack_t:

// typedef ______* stack_t;

bool stack_empty(stack_t S) /* O(1) */
/*@requires S != NULL; @*/;

stack_t stack_new() /* O(1) */
/*@ensures \result != NULL; @*/
/*@ensures stack_empty(\result); @*/;

void push(stack_t S, int x) /* O(1) */
/*@requires S != NULL; @*/;

int pop(stack_t S) /* O(1) */
/*@requires S != NULL; @*/
/*@requires !stack_empty(S); @*/;

int peek(stack_t S) /* O(1) */
/*@requires S != NULL; @*/
/*@requires !stack_empty(S); @*/;

Note the inclusion of a peek function in this stack interface.

You will manipulate the stack data structure using the type stack_t and its interface to build
a new data structure for a max-stack as described above. You do not know how the stack data
structure is implemented. You are only given the interface above.

You may assume that the specification function is_maxstack is already written and tests if
the data structure invariant for a max-stack holds.

c© Carnegie Mellon University 2018

15-122 (Fall 2016) Midterm 1 Solutions Page 13/20

Task 12pts Complete the data type definition for max-stacks below:

typedef struct maxstack_header maxstack;

struct maxstack_header {

stack_t data;

stack_t maxima;
};

Task 22pts Write a constant-time function maxstack_empty that returns true if it is empty or false
otherwise.

bool maxstack_empty(maxstack* MS) /* O(1) */
//@requires is_maxstack(MS);
{

return stack_empty(MS->data);
// OR
// return stack_empty(MS->maxima);

}

Task 34pts Write a constant-time function maxstack_new that returns a new maxstack_t that is empty.

maxstack* maxstack_new() /* O(1) */
//@ensures is_maxstack(\result);
//@ensures maxstack_empty(\result);
{

maxstack* MS = alloc(maxstack);
MS->data = stack_new();
MS->maxima = stack_new();
return MS;

}

c© Carnegie Mellon University 2018

15-122 (Fall 2016) Midterm 1 Solutions Page 14/20

Task 42pts Write a constant-time function maxstack_getmax that returns, but does not remove, the
maximum in a non-empty max-stack.

int maxstack_getmax(maxstack* MS) /* O(1) */
//@requires is_maxstack(MS);
//@requires !maxstack_empty(MS);
{

return peek(MS->maxima);
}

Task 56pts Write a constant-time function maxstack_push for max-stacks as described above.

void maxstack_push(maxstack* MS, int n) /* O(1) */
//@requires is_maxstack(MS);
//@ensures is_maxstack(MS);
{

push(MS->data, n) ;

if (stack_empty(MS->maxima) || n >= peek(MS->maxima))

push(MS->maxima, n) ;

}

Task 65pts Write a constant-time function maxstack_pop for the max-stack described above. This
returns the top data element of the max-stack.

int maxstack_pop(maxstack* MS) /* O(1) */
//@requires is_maxstack(MS);
//@requires !maxstack_empty(MS);
//@ensures is_maxstack(MS);
{

int n = pop(MS->data) ;

if (n == peek(MS->maxima))

n = pop(MS->maxima) ;

return n;
}

c© Carnegie Mellon University 2018

15-122 (Fall 2016) Midterm 1 Solutions Page 15/20

Task 74pts Here is the interface of the max-stack library you have just developed.

// typedef _________ *maxstack_t;

bool maxstack_empty(maxstack_t MS) /* O(1) */
/*@requires MS != NULL;@*/ ;

maxstack_t maxstack_new() /* O(1) */
/*@ensures \result != NULL;@*/ ;
/*@ensures maxstack_empty(\result);@*/ ;

int maxstack_getmax(maxstack_t MS) /* O(1) */
/*@requires MS != NULL;@*/
/*@requires !maxstack_empty(MS);@*/ ;

void maxstack_push(maxstack_t MS, int n) /* O(1) */
/*@requires MS != NULL;@*/ ;

int maxstack_pop(maxstack_t MS) /* O(1) */
/*@requires MS != NULL;@*/
/*@requires !maxstack_empty(MS);@*/ ;

Explain why the function is_maxstack is not used in the contracts above.

Because it refers to the internal details of the implementation,

which are not visible to the client.

c© Carnegie Mellon University 2018

15-122 (Fall 2016) Midterm 1 Solutions Page 16/20

5 Min-Stacks (makeup) (25 points)
A min-stack is a data structure that, in addition to the standard stack operations, also supports
the operation of getting the minimum value in the stack in constant time.

An implementation of a min-stack can achieve this by using two regular stacks, a stack D for
the data elements and a stack M to keep track of the minima. For each element e in M , e is the
smallest element in the data stack D up to e starting from the bottom. The minima stack M
may contain duplicate values. For example, suppose we push the values 42, 16, 29, 53, 9, 70
and 38 onto a min-stack in the order shown, then this min-stack implementation will consist
of the following two stacks (the top is on the right):

(Data) D: 42, 16, 29, 53, 9, 70, 38 �

(Minima) M : 42, 16, 9 �

Here is an interface for regular stacks (of ints), defined as the type stack_t:

// typedef ______* stack_t;

bool stack_empty(stack_t S) /* O(1) */
/*@requires S != NULL; @*/;

stack_t stack_new() /* O(1) */
/*@ensures \result != NULL; @*/
/*@ensures stack_empty(\result); @*/;

void push(stack_t S, int x) /* O(1) */
/*@requires S != NULL; @*/;

int pop(stack_t S) /* O(1) */
/*@requires S != NULL; @*/
/*@requires !stack_empty(S); @*/;

int peek(stack_t S) /* O(1) */
/*@requires S != NULL; @*/
/*@requires !stack_empty(S); @*/;

Note the inclusion of a peek function in this stack interface.

You will manipulate the stack data structure using the type stack_t and its interface to build
a new data structure for a min-stack as described above. You do not know how the stack data
structure is implemented. You are only given the interface above.

You may assume that the specification function is_minstack is already written and tests if
the data structure invariant for a min-stack holds.

c© Carnegie Mellon University 2018

15-122 (Fall 2016) Midterm 1 Solutions Page 17/20

Task 12pts Complete the data type definition for min-stacks below:

typedef struct minstack_header minstack;

struct minstack_header {

stack_t data;

stack_t minima;
};

Task 22pts Write a constant-time function minstack_empty that returns true if it is empty or false
otherwise.

bool minstack_empty(minstack* MS) /* O(1) */
//@requires is_minstack(MS);
{

return stack_empty(MS->data);
// OR
// return stack_empty(MS->minima);

}

Task 34pts Write a constant-time function minstack_new that returns a new minstack_t that is empty.

minstack* minstack_new() /* O(1) */
//@ensures is_minstack(\result);
//@ensures minstack_empty(\result);
{

minstack* MS = alloc(minstack);
MS->data = stack_new();
MS->minima = stack_new();
return MS;

}

c© Carnegie Mellon University 2018

15-122 (Fall 2016) Midterm 1 Solutions Page 18/20

Task 42pts Write a constant-time function minstack_getmin that returns, but does not remove, the
minimum in a non-empty min-stack.

int minstack_getmin(minstack* MS) /* O(1) */
//@requires is_minstack(MS);
//@requires !minstack_empty(MS);
{

return peek(MS->minima);
}

Task 56pts Write a constant-time function minstack_push for min-stacks as described above.

void minstack_push(minstack* MS, int n) /* O(1) */
//@requires is_minstack(MS);
//@ensures is_minstack(MS);
{

push(MS->data, n) ;

if (stack_empty(MS->minima) || n <= peek(MS->minima))

push(MS->minima, n) ;

}

Task 65pts Write a constant-time function minstack_pop for the min-stack described above. This
returns the top data element of the min-stack.

int minstack_pop(minstack* MS) /* O(1) */
//@requires is_minstack(MS);
//@requires !minstack_empty(MS);
//@ensures is_minstack(MS);
{

int n = pop(MS->data) ;

if (n == peek(MS->minima))

n = pop(MS->minima) ;

return n;
}

c© Carnegie Mellon University 2018

15-122 (Fall 2016) Midterm 1 Solutions Page 19/20

Task 74pts Here is the interface of the min-stack library you have just developed.

// typedef _________ *minstack_t;

bool minstack_empty(minstack_t MS) /* O(1) */
/*@requires MS != NULL;@*/ ;

minstack_t minstack_new() /* O(1) */
/*@ensures \result != NULL;@*/ ;
/*@ensures minstack_empty(\result);@*/ ;

int minstack_getmin(minstack_t MS) /* O(1) */
/*@requires MS != NULL;@*/
/*@requires !minstack_empty(MS);@*/ ;

void minstack_push(minstack_t MS, int n) /* O(1) */
/*@requires MS != NULL;@*/ ;

int minstack_pop(minstack_t MS) /* O(1) */
/*@requires MS != NULL;@*/
/*@requires !minstack_empty(MS);@*/ ;

Explain why the function is_minstack is not used in the contracts above.

Because it refers to the internal details of the implementation,

which are not visible to the client.

c© Carnegie Mellon University 2018

15-122 (Fall 2016) Midterm 1 Solutions Page 20/20

Selected library functions

int int_max();

int int_min();

/* POW: calculates a ** b */
int POW(int a, int b)
/*@requires 0 <= b; @*/ ;

/* is_in: x in A[lo,hi) */
bool is_in(int x, int[] A, int lo, int hi)
/*@requires 0 <= lo && lo <= hi && hi <= \length(A); @*/ ;

/* is_sorted: A[lo..hi) SORTED */
bool is_sorted(int[] A, int lo, int hi)
/*@requires 0 <= lo && lo <= hi && hi <= \length(A); @*/ ;

/* lt_seg: x < A[lo..hi) */
bool lt_seg(int x, int[] A, int lo, int hi)
/*@requires 0 <= lo && lo <= hi && hi <= \length(A); @*/ ;

/* le_seg: x <= A[lo..hi) */
bool le_seg(int x, int[] A, int lo, int hi)
/*@requires 0 <= lo && lo <= hi && hi <= \length(A); @*/ ;

/* gt_seg: x > A[lo..hi) */
bool gt_seg(int x, int[] A, int lo, int hi)
/*@requires 0 <= lo && lo <= hi && hi <= \length(A); @*/ ;

/* ge_seg: x >= A[lo..hi) */
bool ge_seg(int x, int[] A, int lo, int hi)
/*@requires 0 <= lo && lo <= hi && hi <= \length(A); @*/ ;

/* ge_segs: A[lo1,hi1) >= B[lo2,hi2) */
bool ge_segs(int[] A, int lo1, int hi1, int[] B, int lo2, int hi2)
/*@requires 0 <= lo1 && lo1 <= hi1 && hi1 <= \length(A); @*/
/*@requires 0 <= lo2 && lo2 <= hi2 && hi2 <= \length(B); @*/ ;

/* le_segs: A[lo1,hi1) <= B[lo2,hi2) */
bool le_segs(int[] A, int lo1, int hi1, int[] B, int lo2, int hi2)
/*@requires 0 <= lo1 && lo1 <= hi1 && hi1 <= \length(A); @*/
/*@requires 0 <= lo2 && lo2 <= hi2 && hi2 <= \length(B); @*/ ;

c© Carnegie Mellon University 2018

	Short answer
	Predictive Search
	Shuttle Sort
	Max-Stacks
	Min-Stacks (makeup)

