
15-122: Principles of Imperative Computation, Spring 2023

Written Homework 9

Due on Gradescope: Monday 20th March, 2023 by 9pm

Name:

Andrew ID:

Section:

This written homework covers binary search trees and AVL trees.

Preparing your Submission You can prepare your submission with any PDF editor that
you like. Here are a few that prior-semester students recommended:

• PDFescape or DocHub, two web-based PDF editors that work from anywhere.
• Acrobat Pro, installed on all non-CS cluster machines, works on many platforms.
• iAnnotate works on any iOS and Android mobile device.

There are many more — use whatever works best for you. If you’d rather not edit a PDF,
you can always print this homework, write your answers neatly by hand, and scan it into
a PDF file — we don’t recommend this option, though.

Caution Recent versions of Preview on Mac are buggy: annotations get occasionally
deleted for no reason. Do not use Preview as a PDF editor.

Submitting your Work Once you are done, submit this assignment on Gradescope. Al-
ways check it was correctly uploaded. You have unlimited submissions.

Question: 1 2 Total

Points: 9 6 15

Score:

https://www.gradescope.com/courses/480030
http://www.pdfescape.com
https://dochub.com/
https://www.cmu.edu/computing/software/all/
https://www.iannotate.com/
https://www.gradescope.com/courses/480030

15-122 Written Homework 9 Page 1 of 10

1. Binary Search Trees

1.11pt Draw the final binary search tree that results from inserting the following keys
in the order given. Make sure all branches in your tree are drawn clearly so we
can distinguish left branches from right branches.

91, 85, 69, 110, 87, 98, 93, 76, 94, 108

1.21pt Using the following keys, fill in the nodes of the tree below to obtain a valid BST.

0, 2, 3, 4, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21

© Carnegie Mellon University 2023

15-122 Written Homework 9 Page 2 of 10

For the next few questions, we consider the implementation of dictionaries as binary
search trees in the lecture notes. In particular, recall the following declarations:

// typedef _______ key;
// typedef _______* entry;

key entry_key(entry e)
/*@requires e != NULL; @*/ ;

typedef struct tree_node tree;
struct tree_node {
entry data; // != NULL
tree* left;
tree* right;

};

struct dict_header {
tree* root;

};
typedef struct dict_header dict;

bool is_dict(dict* D) {
return D != NULL

&& is_bst(D->root);
}

1 bool is_tree(tree* T) {
2 if (T == NULL) return true;
3 return T->data != NULL
4 && is_tree(T->left)
5 && is_tree(T->right);
6 }
7

8 bool is_ordered(tree* T, entry lo, entry hi)
9 //@requires is_tree(T);

10 {
11 if (T == NULL) return true;
12

13 key k = entry_key(T->data);
14 return (lo == NULL || key_compare(entry_key(lo), k) < 0)
15 && (hi == NULL || key_compare(k, entry_key(hi)) < 0)
16 && is_ordered(T->left, lo, T->data)
17 && is_ordered(T->right, T->data, hi);
18 }
19

20 bool is_bst(tree* T) {
21 return is_tree(T)
22 && is_ordered(T, NULL, NULL);
23 }

Like in class, the client defines two functions: entry_key(e) that extracts the key of
entry e, and key_compare(k1,k2) that returns a negative number if key k1 is “less
than” key k2, 0 if k1 is “equal to” k2, and a positive number if k1 is “greater than” k2.

© Carnegie Mellon University 2023

15-122 Written Homework 9 Page 3 of 10

1.31pt Assume the client also provides a function entry_print(e) that prints entry e
in a readable format on one line. Complete the function dict_reverseprint
which prints the entries of the given dictionary on one line in order from largest
key to smallest key. If the dictionary is empty, nothing is printed. You will need
a recursive helper function tree_reverseprint to complete the task.
Think recursively: if you are at a non-empty node, what are the three things you need
to print, and in what order? You should not need to examine the keys since the contract
guarantees the argument is a BST.

void tree_reverseprint(tree* T)
//@requires is_bst(T);
{

}

void dict_reverseprint(dict* D)
//@requires is_dict(D);
{
tree_reverseprint();

printf("\n");
}

© Carnegie Mellon University 2023

15-122 Written Homework 9 Page 4 of 10

The function bst_lookup in the lecture notes is recursive, but it is also possible to
implement it iteratively.

1.41pt Fill in the missing code.

50 entry bst_lookup(tree* T, key k)
51 //@requires is_bst(T);
52 /*@ensures \result == NULL
53 || key_compare(k, entry_key(\result)) == 0; @*/
54 {
55 entry lo = NULL; // to support the loop invariant
56 entry hi = NULL; // to support the loop invariant
57

58 while (
59

60)
61 //@loop_invariant is_tree(T);
62 //@loop_invariant is_ordered(T, lo, hi);
63 {
64 if () {
65 hi = T->data; // to support loop invariant
66 T = T->left;
67 }
68 else {
69 lo = T->data; // to support loop invariant
70 T = T->right;
71 }
72 }
73

74 if (T == NULL) return NULL;
75 return T->data;
76 }

The rest of this task verifies the safety and correctness of various parts of the above
code using the methodology and format seen in this course. No or little credit will be
given to answers that are unclear, verbose or unjustified.

© Carnegie Mellon University 2023

15-122 Written Homework 9 Page 5 of 10

1.51pt Prove that the loop guard you wrote on lines 58–60 is safe — that pointer deref-
erences are safe and that the preconditions of any function you call are satisfied.
You may assume that the loop invariant is correct. (You may not need all lines.)

is safe because:

(a) by

(b) by

is safe because:

(a) by

(b) by

(c) by

1.60.5pts Prove that the loop invariant is true initially. You may assume it is safe.

To show: initially.

(a) by

(b) by

(c) by

(d) by

1.71pt Prove that the loop invariant on line 62 is preserved by any iteration of the loop.
Only show the case where the conditional on line 64 evaluates to true. Assume
it is safe.

Assuming , show that

(a) by

(b) by

(c) by

(d) by

(e) by

(f) by

© Carnegie Mellon University 2023

15-122 Written Homework 9 Page 6 of 10

1.82.5pts The function bst_insert in the lecture notes is recursive, but it is also possible
to implement it iteratively. Fill in the missing code.

tree* bst_insert(tree* T, entry e)
//@requires is_bst(T) && e != NULL;
//@ensures is_bst(\result);
{
key k = entry_key(e);
tree* parent = NULL;
tree* current = ;

while (current != NULL)
/*@loop_invariant current == NULL || parent == NULL

|| current ==

|| current == ;@*/

{
parent = current;
int cmp = key_compare(k, entry_key(current->data));
if (cmp == 0) {
current->data = e;
return T;

} else if (cmp < 0) {

current = ;

} else { //@assert cmp > 0;

current = ;

}
}

tree* R = alloc(tree);
R->data = e;
if (parent != NULL) {

int cmp = ;

if (cmp < 0)
;

else
;

}
else {

;

}
return T;

}

© Carnegie Mellon University 2023

15-122 Written Homework 9 Page 7 of 10

2. AVL Trees

2.12pts Draw the AVL trees that result after successively inserting the following keys
into an initially empty tree, in the order shown:

E, J, N, L, X, K, T

Show the tree after each insertion and subsequent re-balancing (if any) is com-
pleted: the tree after the first element, E, is inserted into an empty tree, then the
tree after J is inserted into the first tree, and so on for a total of seven trees.
The BST ordering invariant is based on alphabetical order. Be sure to maintain
and restore the BST invariants and the additional balance invariant required for
an AVL tree after each insert.

AVL 1: AVL 2: AVL 3:

AVL 4: AVL 5:

AVL 6: AVL 7:

© Carnegie Mellon University 2023

15-122 Written Homework 9 Page 8 of 10

2.2 Recall our definition for the height h of a tree:

The height of a tree is the maximum number of nodes on a path from the root to
a leaf. In particular, the empty tree has height 0.

The minimum and maximum number of nodes n in a valid AVL tree is related to
its height h. The goal of this question is to quantify this relationship and prove
that h ∈ O(log n), i.e., that AVL trees are balanced.

a.1pt Let m(h) be the minimum number of nodes in an AVL tree of height h. Fill
in the table to the right of this text relating h and m(h).

h m(h)

0 0

1 1

2 2

3

4

5

6

b.0.5pts Guided by this table, give an expression for m(h). You may find it useful to
use something similar to the Fibonacci function F (k) in your answer. Recall
its definition:

F (0) = 0

F (1) = 1

F (k) = F (k − 1) + F (k − 2), k > 1

Your expression for m(h) does not need to be a closed form expression; it
could be a recursive definition like the one for F (k).

© Carnegie Mellon University 2023

15-122 Written Homework 9 Page 9 of 10

c.1pt It is possible to prove that m(h) > gh − 1 for every h > 0, where g is the
golden ratio, a very special real number whose value is 1+

√
5

2
' 1.618. This

fact allows you to show that h ∈ O(log n) for any AVL tree with n nodes and
height h. Note: the exact value of g is unimportant in this task.

A. m(h) > gh − 1 given

B. n ≥ m(h) by

C. by

D. by

E. by

F. by

G. by

Therefore, since O(log(n+ 1)) ⊆ O(log n), we have that h ∈ O(log n).

© Carnegie Mellon University 2023

https://en.wikipedia.org/wiki/Golden_ratio

15-122 Written Homework 9 Page 10 of 10

2.3 Ben wants to streamline the code for AVL insertion seen in class. He rewrites it
as the following wrapper function around the function bst_insert (insertion for
plain binary search trees, not AVL trees). Assume rotate_left and rotate_right
work as in the lecture notes, and that height returns the true height of the tree
in constant time.
tree* new_avl_insert(tree* T, entry x)
// Macho programmers don’t write contracts! [see (*) below]
{
T = bst_insert(T, x);

/* REBALANCE THE TREE */
// Case: left subtree of T is too heavy compared to the right
if (height(T->left) > height(T->right) + 1) {
if (height(T->left->left) < height(T->left->right))
T->left = rotate_left(T->left);

T = rotate_right(T);
}
// Case: right subtree of T is too heavy compared to the left
if (height(T->right) > height(T->left) + 1) { // SYMMETRIC
if (height(T->right->right) < height(T->right->left))
T->right = rotate_right(T->right);

T = rotate_left(T);
}
return T;

}

a.0.5pts Draw the tree resulting from repeatedly calling new_avl_insert to insert
the characters A, B, C, D, E, F in this order into an initially empty tree. Is this
an AVL tree?

AVL tree?

Yes

No

b.1pt An n-node tree is constructed using new_avl_insert. What is the complex-
ity of calling new_avl_insert once more on it? In one sentence, justify why.
(If you aren’t sure, try inserting larger and larger entries in the last task.)

O() because

(*) Disclaimer: the real Ben would never say that. Write contracts!

© Carnegie Mellon University 2023

