
15-122: Principles of Imperative Computation Spring 2024

Lab 09: Legacy of the void* Tuesday March 19th

Collaboration: In lab, we encourage collaboration and discussion as you work through the prob-

lems. These activities, like recitation, are meant to get you to review what we've learned, look

at problems from a di�erent perspective and allow you to ask questions about topics you don't

understand. We encourage discussing problems with other students in this lab!

Setup: Download the lab handout and code from the course website, and move it to your private

directory in your unix.qatar.cmu.edu machine. Following that create a directory, move the handout

to it, and unzip the handout �le by executing the following commands:� �
% mkdir lab_09
% mv 09-handout.tgz lab_09
% cd lab_09
% tar -xvf 09-handout.tgz� �
Submission:

To submit, create a tar �le by executing the command below and submit it to autolab, under the

lab name:� �
% tar cfzv handin.tgz rollcall.c1� �
Using generic hash tables

In this lab, we'll be using the hash dictionaries discussed in lecture.

/**************************** Client Interface **************************/

typedef void* entry;
typedef void* key;

typedef key entry_key_fn(entry x) // Supplied by client
/*@requires x != NULL; @*/ ;

typedef int key_hash_fn(key k); // Supplied by client
typedef bool key_equiv_fn(key k1, key k2); // Supplied by client

/*************************** Library Interface **************************/

// typedef ______* hdict_t;

hdict_t hdict_new(int capacity,
entry_key_fn* entry_key,
key_hash_fn* hash,
key_equiv_fn* equiv)

/*@requires capacity > 0; @*/
/*@requires entry_key != NULL && hash != NULL && equiv != NULL; @*/
/*@ensures \result != NULL; @*/ ;

entry hdict_lookup(hdict_t H, key k)
/*@requires H != NULL; @*/ ;

void hdict_insert(hdict_t H, entry x)
/*@requires H != NULL && x != NULL; @*/ ;

© Carnegie Mellon University 2024

Our sample application will be used in checking student attendance. Your code for this should go

in a �le called rollcall.c1.

2

(1.a) De�ne a struct that represents students. Its �elds should include andrew_id (string),
days_present (int), and days_absent (int). You can include other �elds if you want,

but you need these �elds with these types.

Write out the de�nition of this struct. Include a typedef so that you can allocate structs

with alloc(student).1.5pt

(1.b) Write client functions for a hashtable based on student information. For this lab we will think

of our keys as being Andrew IDs, and therefore be using pointers to strings (string*) to
represent them. We will think of the entries as being students, and therefore use pointers to

students (student*) to represent the value.

Hint: Your functions should have the requirement that x and y are both non-NULL and have

string* as their tag.

key get_andrewid(entry e);
int hash_andrewid(key x);
bool same_andrewid(key x, key y);

(1.c) Write a function that initializes a hdict_t with students that have no attendance record.

Don't worry about what happens if there are duplicates in this array.

hdict_t new_roster(string[] andrew_ids, int len)
//@requires \length(andrew_ids) == len;

3pt

At this point, you should create a trivial main() function inside rollcall.c1 just to make sure

your code compiles:� �
cc0 -d lib/*.o1 rollcall.c1� �
You'll need to delete this main() function before compiling with test-rollcall.c1 below.

(1.d) Write functions that increment a student's attendance record.

void mark_present(hdict_t H, string andrew_id)
//@requires H != NULL;

void mark_absent(hdict_t H, string andrew_id)
//@requires H != NULL;

These functions should manipulate the days_present and days_absent �elds stored in the

hash table, so that hdict_lookup can access these �elds later on.4pt

3

You can compile and run your code with test-rollcall.c1:� �
% cc0 -d lib/*.o1 rollcall.c1 test-rollcall.c1
% ./a.out
Enrolling bovik, rjsimmon, fp, and niveditc... done.
Student gburdell is not enrolled...
Student bovik is enrolled...
Student rjsimmon is enrolled...
Student twm is not enrolled...

Student bovik: 5 present, 4 absent...
Student rjsimmon: 8 present, 1 absent...
Student niveditc: 8 present, 1 absent...
Student fp: 2 present, 7 absent...
Done!� �

4

