
Lecture 12
Hash Tables

15-122: Principles of Imperative Computation (Spring 2024)
Frank Pfenning, Rob Simmons

Dictionaries, also called associative arrays as well as maps, are data structures
that are similar to arrays but are not indexed by integers, but by possibly
other forms of data such as strings. One popular data structure for the
implementation of dictionaries are hash tables. To analyze the asymptotic
efficiency of hash tables we have to explore a new point of view, that of
average case complexity. Another computational thinking concept that we
revisit is randomness. In order for hash tables to work efficiently in practice
we need hash functions whose behavior is predictable (deterministic) but
has some aspects of randomness.

Additional Resources
• Review slides

– Generic Pointers (https://cs.cmu.edu/~15122/handouts/slides/review/
12-voidstar.pdf)

– Hashing (https://cs.cmu.edu/~15122/handouts/slides/review/12-hashing.
pdf)

• Code for this lecture (https://cs.cmu.edu/~15122/handouts/code/12-hashing.
tgz)

• There is one short video associated with this lecture:

– Hash Tables (https://youtu.be/TngAkEAAA5s)

Relating to our learning goals, we have

Computational Thinking: We consider the importance of randomness in
algorithms, and also discuss average case analysis, which is how we
can argue that hash tables have acceptable performance.

Algorithms and Data Structures: We describe a linear congruential genera-
tor, which is a certain kind of pseudorandom number generator. We also
discuss hash tables and their implementation with separate chaining
(an array of linked lists).

Programming: We review the implementation of the rand library in C0.

LECTURE NOTES © Carnegie Mellon University 2024

https://cs.cmu.edu/~15122/handouts/slides/review/12-voidstar.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/12-voidstar.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/12-voidstar.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/12-hashing.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/12-hashing.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/12-hashing.pdf
https://cs.cmu.edu/~15122/handouts/code/12-hashing.tgz
https://cs.cmu.edu/~15122/handouts/code/12-hashing.tgz
https://cs.cmu.edu/~15122/handouts/code/12-hashing.tgz
https://youtu.be/TngAkEAAA5s
https://youtu.be/TngAkEAAA5s


Lecture 12: Hash Tables 2

1 Dictionaries, Associative Arrays, or Maps

An array A can be seen as a mapping i 7→ v that associates a value v (which
we denote A[i]) with every index i in the range [0, \length(A)). It is fini-
tary, because its domain, and therefore also its range, is finite. There are
many situations when we want to index elements differently than just by
contiguous integers starting at 0. Common examples are strings (for dic-
tionaries, phone books, menus, database records), or structs (for dates, or
names together with other identifying information). Such generalized ar-
rays are called dictionaries or associative arrays or maps. These situations are
so common that dictionaries are primitive in some languages such as PHP,
Python, or Perl and perhaps account for some of the popularity of these
languages. In many applications, dictionaries are implemented as hash ta-
bles because of their performance characteristics. We will develop them
incrementally to understand the motivation underlying their design.

2 Keys, Entries and Values

In many applications requiring dictionaries, we are storing complex data
and want to access them by a key which is derived from the data. For ex-
ample, the key might be a student id (a string) and the data might be this
student’s record, which may itself record her grades in a dictionary whose
keys are the name of each assignment or exam and the data is a score. We
make the assumption that keys are unique in the sense that in a dictionary
there is at most one data item associated with a given key — here no two
students have the same id and no two assignments have the same name.

The data item associated to a key in a dictionary is variously called an
entry or a value. We tend to use the word entry when the key is part of the
data (like a student record) and the word value when it is not (for example,
the average temperature of each day of the year).

We can think of built-in C0 arrays as dictionaries having a set number of
keys: a C0 array of length 3 has three keys 0, 1, and 2. Our implementation
of unbounded arrays allowed us to add a specific new key, 3, to such an ar-
ray. We do want to be able to add new keys to the dictionary. We also want
our dictionaries to allow us to have more interesting keys (like strings, or
non-sequential integers) while keeping the property that there is a unique
entry for each valid key.



Lecture 12: Hash Tables 3

3 Chains

A first idea to explore is to implement the dictionary as a linked list, called
a chain. If we have a key k and look for it in the chain, we just traverse
it, compute the intrinsic key for each data entry, and compare it with k. If
they are equal, we have found our entry, if not we continue the search. If
we reach the end of the chain and do not find an entry with key k, then no
entry with the given key exists. If we keep the chain unsorted this gives
us O(n) worst case complexity for finding a key in a chain of length n,
assuming that computing and comparing keys is constant time.

Given what we have seen so far in our search data structures, this seems
very poor behavior, but if we know our data collections will always be
small, it may in fact be reasonable on occasion.

Can we do better? One idea goes back to binary search. If keys are or-
dered we may be able to arrange the elements in an array or in the form of
a tree and then cut the search space roughly in half every time we make a
comparison. Designing such data structures is a rich and interesting sub-
ject, but the best we can hope for with this approach is O(log n), where n is
the number of entries. We have seen that this function grows very slowly,
so this is quite a practical approach.

Nevertheless, the challenge arises if we can do better than O(log n), say,
constant time O(1) to find an entry with a given key. We know that it can
done be for arrays, indexed by integers, which allow constant-time access.
Can we also do it, for example, for strings?

4 Hashing

The first idea behind hash tables is to exploit the efficiency of arrays. So:
to map a key to an entry, we first map a key to an integer and then use the
integer to index an array A. The first map is called a hash function. We write
it as hash(_). Given a key k, our access could then simply be A[hash(k)].

There is an immediate problem with this approach: there are 231 pos-
itive integers, so we would need a huge array, negating any possible per-
formance advantages. But even if we were willing to allocate such a huge
array, there are many more strings than int’s so there cannot be any hash
function that always gives us different int’s for different strings.

The solution is to allocate an array of smaller size, say m, and then look
up the result of the hash function modulo m, for example, A[hash(k)%m].
This idea has an obvious problem: it is inevitable that multiple strings will
map to the same array index. For example, if the array has size m then if
we have more then m elements, at least two must map to the same index



Lecture 12: Hash Tables 4

— this simple observation is an instance of what is known as the pigeonhole
principle. In practice, this will happen much sooner than this.

If a hash function maps two keys to the same integer value (modulo
m), we say we have a collision. In general, we would like to avoid col-
lisions, because some additional operations will be required to deal with
them, slowing down search and taking more space. We analyze the cost of
collisions more below.

5 Separate Chaining

How do we deal with collisions of hash values? The simplest is a technique
called separate chaining. Assume we have hash(k1)%m = i = hash(k2)%m,
where k1 and k2 are the distinct keys for two data entries e1 and e2 we want
to store in the table. In this case we just arrange e1 and e2 into a chain
(implemented as a linked list) and store this list in A[i].

In general, each element A[i] in the array will either be NULL or a chain of
entries. All of these must have the same hash value for their key (modulo
m), namely i. As an exercise, you might consider other data structures
here instead of chains and weigh their merits: how about sorted lists? Or
queues? Or doubly-linked lists? Or another hash table?

We stick with chains because they are simple and fast, provided the
chains don’t become too long. This technique is called separate chaining
because the chains are stored separately, not directly in the array. Another
technique, which we will not discuss at length, is linear probing where we
continue by searching (linearly) for an unused spot in the array itself, start-
ing from the place where the hash function put us.

Under separate chaining, a snapshot of a hash table might look some-
thing like this picture.



Lecture 12: Hash Tables 5

6 Average Case Analysis

See the short video on Hash Tables at https://www.youtube.com/embed/
TngAkEAAA5s.

How long do we expect the chains to be on average? For a total number
n of entries in a table of size m, it is n/m. This important number is also
called the load factor of the hash table. How long does it take to search for
an entry with key k? We follow these steps:

1. Compute i = hash(k)%m. This will be O(1) (constant time), assuming
it takes constant time to compute the hash function.

2. Go to A[i], which again is constant time O(1).

3. Search the chain starting at A[i] for an element whose key matches k.
We will analyze this next.

The complexity of the last step depends on the length of the chain. In the
worst case it could be O(n), because all n elements could be stored in one
chain. This worst case could arise if we allocated a very small array (say,
m = 1), or because the hash function maps all input strings to the same
table index i, or just out of sheer bad luck.

Ideally, all the chains would be approximately the same length, namely
n/m. Then for a fixed load factor such as n/m = 2.0 we would take on
average 2 steps to go down the chain and find k. In general, as long as we
don’t let the load factor become too large, the average time should be O(1).

If the load factor does become too large, we could dynamically adapt
the size of the array, like in an unbounded array. As for unbounded arrays,
it is beneficial to double the size of the hash table when the load factor
becomes too high, or possibly halve it if the size becomes too small. Ana-
lyzing these factors is a task for amortized analysis, just as for unbounded
arrays. If we do so, insertion would have an amortized average time com-
plexity of O(1) — amortized because the table needs to be resized from time
to time and average if we manage to have all the chains be about the same
length. Searching for a key would cost O(1) on average for the same reason
– not amortized though because search never triggers a resize.

7 Randomness

The average case analysis relies on the fact that the hash values of the key
are relatively evenly distributed. This can be restated as saying that the
probability that each key maps to an array index i should be about the
same, namely 1/m. In order to avoid systematically creating collisions,

https://www.youtube.com/embed/TngAkEAAA5s
https://www.youtube.com/embed/TngAkEAAA5s
https://www.youtube.com/embed/TngAkEAAA5s


Lecture 12: Hash Tables 6

small changes in the input string should result in unpredictable change in
the output hash value that is uniformly distributed over the range of C0 in-
tegers. We can achieve this with a pseudorandom number generator (PRNG).
A pseudorandom number generator is just a function that takes one num-
ber and obtains another in a way that is both unpredictable and easy to
calculate. The C0 rand library is a pseudorandom number generator with
a fairly simple interface:

/* library file rand.h0 */
typedef struct rand* rand_t;
rand_t init_rand (int seed);
int rand(rand_t gen);

One can generate a random number generator (type rand_t) by initializing
it with an arbitrary seed. Then we can generate a sequence of random
numbers by repeatedly calling rand on such a generator.

The rand library in C0 is implemented as a linear congruential generator.
A linear congruential generator takes a number x and finds the next num-
ber by calculating (a×x)+ c modulo d, a number that is used as the next x.
In C0, it’s easiest to say that d is just 232, since addition and multiplication
in C0 are already defined modulo 232. The trick is finding a good multiplier
a and summand c.

If we were using 4-bit numbers (from −8 to 7 where multiplication and
addition are modulo 16) then we could set a to 5 and c to 7 and our pseudo-
random number generator would generate the following series of numbers:

0 → 7 → (−6) → (−7) → 4 → (−5) → (−2) →
− 3 → (−8) → (−1) → 1 → (−4) → 3 → 6 → 5 → 0 → . . .

The PRNG used in C0’s library sets a to 1664525 and c to 1013904223
and generates the following series of numbers starting from 0:

0 → 1013904223 → 1196435762 → (−775096599) → (−1426500812) → . . .

This kind of generator is fine for random testing or (indeed) the basis for
a hashing function, but the results are too predictable to use it for cryp-
tographic purposes such as encrypting a message. In particular, a linear
congruential generator will sometimes have repeating patterns in the lower
bits. If one wants numbers from a small range it is better to use the higher
bits of the generated results rather than just applying the modulus opera-
tion.

It is important to realize that these numbers just look random, they aren’t
really random. In particular, we can reproduce the exact same sequence if



Lecture 12: Hash Tables 7

we give it the exact same seed. This property is important for both test-
ing purposes and for hashing. If we discover a bug during testing with
pseudorandom numbers, we want to be able to reliably reproduce it, and
whenever we hash the same key using pseudorandom numbers, we need
to be sure we will get the same result.

1 /* library file rand.c0 */
2 struct rand {
3 int seed;
4 };
5

6 rand_t init_rand (int seed) {
7 rand_t gen = alloc(struct rand);
8 gen->seed = seed;
9 return gen;

10 }
11

12 int rand(rand_t gen) {
13 gen->seed = gen->seed * 1664525 + 1013904223;
14 return gen->seed;
15 }

Observe that some choices of the numbers a and c would be terrible. For
example, if we were to work with 4-bit numbers, so that d = 16, choosing
a = 0 would mean that our “pseudo-random” generator always returns
c. Were we to choose a = c = 4, it would only return values among −8,
−4, 0, and 4. In general, we want, at a minimum, that the factor c and the
modulus d be relatively prime, i.e., that their greatest common divisor be 1.



Lecture 12: Hash Tables 8

8 Exercises

Exercise 1 (sample solution on page ??). In a separate-chaining hash dictio-
nary, what happens when you implement buckets with some data structure other
a linked list? Discuss the changes and identify benefits and disadvantages when
using the data structures seen so far in this course (e.g., an array,a sorted list, a
queue, a stack, or another hash table for separate chaining).

Exercise 2 (sample solution on page ??). We are writing a hash function for
strings of length exactly two, and they consist of only the characters ’A’ to ’Z’.
There are 26×26 = 676 different such strings. Your applications only uses 79 out
of those 676 two-letter words. So, you were hoping to implement a hash function
that does that does not cause collisions on your string. But you still see collisions
most of the time. Look up the birthday paradox and use it to explain this phe-
nomenon.

Exercise 3 (sample solution on page ??). Assume you have a separate-chaining
hash dictionary of size 10, which stores keys of type int.

1. Given a hash function: hash(x) = 2x+ 1 and a sequence of values: 8, 122,
127, 42, 13, 15. If we insert this sequence of values into the hash table in
order:

• How many chains are non-NULL (have values inserted into it)?

• What’s the size of the longest chain? What values are stored in it?

2. Give a hash function such that the chain at index 9 contains the following
values: 16, 37, 56, 17, 36



Lecture 12: Hash Tables 9

Sample Solutions

Solution of exercise ??
Let’s go through the data structures we know about, besides linked lists.
Throughout the following discussion, we will assume the hash dictionary
contains n entries. We will consider the worst case, where the table is not
self-resizing and the hash function may not be very good. We know that,
in this setup, implementing buckets using linked lists yields an O(n) cost
for both looking up a key and inserting and entry.

Arrays: An array wouldn’t do us much good since arrays have fixed size.
This would not be a viable bucket implementation.

Unbounded arrays: On the other hand, an unbounded array can grow as
needed. Looking up a key would rely on linear search and cost O(n).
Although a new entry could simply be added at the end of the un-
bounded array, at a cost of O(1) average and amortized, we first need
to make sure it is not in the unbouded array. This bumps up the cost
to O(n).

But we can do better if we keep the unbounded array sorted! Then,
we can use binary search for both operations, which lower the cost to
O(log n).

Sorted lists: Maintaining our buckets sorted by keys does not help much.
We would still need to perform linear search to lookup a key or insert
an entry, which causes the worst-case complexity to be O(n). In prac-
tice, sorted buckets enable to stop the search early if we encounter a
larger key than we one we are looking for or trying to insert. This
would not affect the asymptotic complexity of the search.

Queues: When we look up a key, in the worst case all n entries will be in
one queue and we would have to dequeue everything off the queue
to find it. Thus, the worst case lookup costs O(n). Inserting an entry
would have similar cost. The runtime of using a queue isn’t very
different from that of the linked list.

Stacks: The analysis we performed for queues applied identically to stacks.

Hash tables: When looking up an key in a bucket, a good hash table im-
plementation of buckets would return the associated entry in time
O(1) average, with insertion being O(1) average and amortized. If
the hash table implementation of buckets is not too good, we may
run into the same problem of having all the entries in one chain of



Lecture 12: Hash Tables 10

the hash table implementing the bucket, thus the worst case scenario
would be O(n).

Based on this analysis, our best bet is to either us a sorted unbounded array
or, even better, a good hash table. However, if the hash dictionary employs
a good hash function and resizes the underlying table when the load fac-
tor reaches a constant value (e.g., 1.0), then the expected performance will
be indistinguishable from using a linked list to implement buckets. And
linked lists are a lot easier to implement than those data structures.

Solution of exercise ??
First of all, you will have collision if your table size is any less than 79. This
is by a different mathematical law: the pigeon-hole principle.

Knowing this, you picked a table size greater than 79, but less than 676
since that would be wasting a lot of space in your mind. Let’s say your
table has length 100. The villain this time is the birthday paradox, which is
maps out the probability that two people have the same birthday in a group
of n randomly chosen individuals. For example, it takes only 23 people to
get a 50% probability that two of them will have the same birthday. This
probability jumps to 90% with 70 people.

The birthday paradox applied to collisions in hash tables as follows.
The number of people sharing a birthday corresponds to the number of
entries we insert in the hash table. The capacity of the table replaces the
number of days in a year, 365. With this in mind, the birthday paradox
tells us that there’s a high probability that two of our 79 keys will collide
given a smallish table with 100 positions. Of course, given a reasonable
hash function, the larger the table size the less likely it is to have a collision.
It cannot be ruled out however, unless the table has more position than the
possible number of keys (here 676).

Solution of exercise ??
After this sequence of insertions, the resulting hash table is as follows (for
simplicity, we assume entries are inserted at the end of a chain):



Lecture 12: Hash Tables 11

Therefore:

1. • There are 3 non-NULL chains.

• The longest chain, at table index 5, has size 3, and it contains the
value 122, 127 and 42.

2. There are many possible answers of course, the simplest being hash(x) =
9, which would be a horrible has function. A better function would
be hash(x) = x/2 + 1.


