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15-122: Principles of Imperative Computation, Spring 2024

Programming Homework 10 & 11: The C0VM

Due: Thursday 4th April, 2024 and
Thursday 18th April, 2024 by 9pm

In this assignment you will implement a virtual machine for C0, the C0VM. It has been
in�uenced by the Java Virtual Machine (JVM) and the LLVM, a low-level virtual machine
for compiler backends. We kept its de�nition much simpler than the JVM, following the
design of C0. Bytecode veri�cation, one of the cornerstones of the JVM design, fell victim
to this simpli�cation; in this way the machine bears a closer resemblance to the LLVM. It
is a fully functional design and should be able to execute arbitrary C0 code.

The purpose of this assignment is to give you practice in writing C programs in the kind of
application where C is indeed often used in practice. C is appropriate here because a virtual
machine has to perform some low-level data and memory manipulation that is di�cult to
make simultaneously e�cient and safe in a higher-level language. It should also help you
gain a deeper understanding of how C0 (and, by extension, C) programs are executed.

Download the assignment handout from the course website or autolab. The �le README.txt
in the code handout goes over the contents of the handout and explains how to hand
the assignment in. There is a TWENTY (20) PENALTY-FREE HANDIN LIMIT for the
checkpoint , and a TWENTY (20) PENALTY-FREE HANDIN LIMIT for the full assign-
ment. Every additional handin for each will incur a small (5%) penalty (even if using a late
day). Your score for each part of this assignment (checkpoint and full) will be the score of
your last autolab submission. The checkpoint is for Tasks 1, 2, and 3 only. This is far, far

less than half the assignment.

After the checkpoint, you can no longer earn points for Tasks 1, 2 and 3, although the
full autograder will continue to run tests against them. It will also run tests for Task 4, but
not for Task 5 until after the handin deadline has passed. This means that you must do all
your own testing for Task 5 and in order to earn full points you must convince yourself that
you fully understand it and have tested it for correct behavior and for memory leaks where
appropriate (you will see later in the writeup that certain memory leaks are unavoidable).

About this writeup The C0VM is de�ned in stages, and we have test programs which
exercise only part of the speci�cation. We strongly recommend that you construct your
implementation following these stages and debug and test each stage (on your own and with
the autograder) before moving on to the next. Each part has its own challenges, but each
part should be relatively small and self-contained.

This document describes the structure of the C0VM �rst and then the instruction set
(bytecodes) for the C0VM. After this, the document will describe the tasks you need to
perform, step by step. Read this document very carefully as you prepare to do your work.
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Notes:

� Di�erently from previous assignments, the starter code contains object-code �les (end-
ing in a .o extension) instead of C source �les. To compile and run your code, you
must be logged in on a unix.andrew.cmu.edu machine.

� This assignment will not be graded for style.

However you will still �nd it helpful to develop good style habits: reasonable contracts,
at most 80-character lines, and comments that make it clear to a reader how your
algorithm works and what invariants you expect to hold. You should use the libraries
provided for you to make your code simpler and clearer. We expect you to write your
own helper functions when appropriate. Bad style will have no direct e�ect on your
grade but will make your life harder.

1 The Structure of the C0VM

Compiled code to be executed by the C0 virtual machine is represented in a byte code format,
typically stored in a �le ending in extension .bc0 which we call the bytecode �le. This �le
contains numerical and string constants as well as byte code for the functions de�ned in the
C0 source. The precise form of this �le is speci�ed in Appendix A and in lib/c0vm.h.

1.1 The Type c0_value

C0 has so-called small types int, bool, char, string, t[], and t*. Values of these types
can be passed to or from functions and held in variables. In the C0VM, we will represent
each of these types in one of two ways: the primitive types are represented as 32-bit signed
integers (which we will abbreviate as �w32�) and the reference types are represented as void
pointers (which we will abbreviate as �*�).

C0 type C0VM type C type
int w32 int32_t
bool w32 int32_t
char w32 int32_t
t[] * void*
t* * void*

In lib/c0vm.h, we create a special type c0_value of C0 values. A c0_value can
store both values of primitive type (which we write as x, i, or n) and values of reference or
pointer type (which we write as a). We can turn primitive types into C0 values with the
function int2val, and we can turn C0 values which we know to be primitive types back into
integers with val2int. Similarly, ptr2val(x) and val2ptr(x) move between reference
types (represented by void*) and C0 values. We always have val2int(int2val(x)) == x
for any integer x and val2ptr(ptr2val(a)) == a for any pointer a. There's a function
val_equal(v1,v2) which checks whether the two C0 values v1 and v2 are equal.
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1.2 Runtime Data

The C0VM de�nes several types of data that are used during the execution of a program.
You'll need to consider the �rst three of these (the operand stack, bytecode, and the program
counter) to get started with Task 1.

The execute function you are extending in this assignment is passed a struct bc0_file
containing all the information from the bytecode. As you read this section, you should refer
to both Appendix A and lib/c0vm.h where this struct is described.

1.2.1 The Operand Stack (S)

The C0VM is a stack machine, similar in design to Clac and the JVM. This means arithmetic
operations and other instructions pop their operands from an operand stack and push their
result back onto the operand stack.

The C0VM is de�ned in terms of operand stack S, a stack of C0 values. Because these
values are such an important part of the VM, we de�ne stacks that only contain C0 values in
lib/c0v_stack.h. We recommend writing some helper functions like push_int(S, i) and
pop_ptr(S) early on so that you won't have to repetitively write c0v_push(S, int2val(i))
and val2ptr(c0v_pop(S)) over and over.

1.2.2 Bytecode (P)

In Clac, the program instructions were strings, and they were stored in a queue of strings.
In the C0VM, instructions for the current C0 function are stored in an array of (unsigned)
bytes (ubyte *P). Each function in a compiled C0 program is represented by a struct
function_info that is stored in the array bc0->function_pool. The main() function
that you want to run �rst is always stored as the �rst struct in this array, at index 0. When
you start your VM, you should initialize P to be the bytecode code stored in that struct.

You don't ever need to allocate any memory to store bytecode. Just refer to the bytecode
given to the execute function.

1.2.3 The Program Counter (pc)

The program counter pc holds the address of the program instruction currently being exe-
cuted. It always starts at 0 when you begin executing a function. Unless a non-local transfer
of control occurs (goto, conditional branch, function call or return), the program counter is
incremented by the number of bytes in the current instruction before the next instruction is
fetched and interpreted.

1.2.4 Local variables (V)

Locals should be stored in a c0_value array. Every struct function_info has a �eld
num_vars which speci�es how big this array needs to be in order to store all the locals of
that function. The four components S, P, pc, and V are everything that we need to know in
order to represent the current state of any function.
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1.2.5 The Call Stack

The C0VM has a call stack consisting of frames, each one containing local variables, a local
operand stack, and a return address. The call stack grows when a function is called and
shrinks when a function returns, deallocating the frame during the return.

Every frame consists of the four components that represent the current state of some
function call that got interrupted in order to call another function. It contains the operand
stack S for computing expression values, a pointer P to the function's byte code, a return
address pc, which is the address of the next instruction in the interrupted function, and an
array of locals V. At any point during the execution there is a current frame as well as a
calling frame. The latter becomes the current frame when a function returns to its caller.

1.2.6 Constant Pools

Numerical constants requiring more than 8 bits and all string constants occurring in the
program will be allocated in constant pools, called the integer pool and the string pool. They
never change during program execution.

1.2.7 Function Pools

Functions, either C0 functions de�ned in a source �le or library functions, are kept in pools
called the function pool and the native pool, respectively. Functions in the function pool are
stored with their bytecode instructions, while functions in the native pool store an index into
a table of C function pointers that the C0VM implementation can dereference and invoke.

Both the function pool and the native pool are arrays of structs � not arrays to struct

pointers. To access a �eld f of the i-th struct in the array A, you will need to write A[i].f
� not A[i]->f.

1.2.8 The Heap

At runtime, the C0 heap contains C0 strings, C0 arrays (t[]) and C0 cells (t*). C0 arrays
have to store size information so that dynamic array bounds checks can be performed. You
will use the C heap to implement the C0 heap: that is, you will allocate strings, arrays, and
cells directly using calls to xmalloc and xcalloc as de�ned earlier in this course.

Since C0 is designed as a garbage-collected language, you will not be able to free space
allocated on behalf of C0 unless you are willing to implement (or use) a garbage collector.
We do not view this as a memory leak of the C0VM implementation. On the other hand,
temporary data structures required for the C0VM's own operation should be properly freed.

This means that when you are testing your own code using valgrind, you must be
aware of which bc0 �les should be free of valgrind memory leak reports and which should
produce reports of memory leaks. The autograder will not penalize valgrind reports of
memory leaks for tests that allocate space on the C0 heap.

Note that the autograder will also not penalize for memory leaks for tests that are sup-
posed to end in a runtime error.
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1.3 Runtime Errors

In order to fully capture the behavior of C0 programs, you must correctly issue errors for
things like dereferencing NULL, indexing an array outside of its bounds, and dividing by zero.
Check the C0 Language Reference for details on what kinds of errors you must handle, and
then use the following provided functions (de�ned in c0vm_abort.h and c0vm_abort.c)
to issue appropriate error messages:

void c0_user_error(char *err); // for calls to error() from C0
void c0_assertion_failure(char *err); // for failed assertions from C0
void c0_memory_error(char *err); // for memory-related errors
void c0_arith_error(char *err); // for arithmetic-related errors

For unexpected situations that arise while executing bytecode, situations which could indi-
cate a bug in your VM, you may use the standard C library functions abort or assert to
abort your program. See Section 3.3 for more details on this distinction.

1.4 Freeing Memory

You must free any memory that your C0VM allocates for its own use but not the memory
allocated on behalf of the C0 program it's running.

There are three sources of memory leaks you don't need to solve:

1. new, where you allocate memory requested by the C0 program;

2. newarray, where you allocate the array header and the array itself for the C0 program;

3. invokenative as the native function may allocate memory for its own purposes.

Some C0 native functions allocate memory unbeknownst to you. For example, readline
allocates memory to store the line it reads. You can't free this memory (you didn't actually
allocate it � the native function allocated it), so it's �ne to leak it.

2 Instruction Set

We group the instructions by type, in order of increasing complexity from the implementation
point of view. We recommend implementing them in order and aborting with an appropriate
message when an unimplemented instruction is encountered. Each task in this assignment
corresponds to one or more sections, and tasks are summarized in Section 3.1.

2.1 Stack Manipulation (Task 1 � by checkpoint )

There are three instructions for direct stack manipulation without regard to types.

0x59 dup S, v -> S, v, v
0x57 pop S, v -> S
0x5F swap S, v1, v2 -> S, v2, v1
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2.2 Arithmetic Instructions (Task 1 � by checkpoint )

Arithmetic operations in C0 are de�ned using modular arithmetic based on a two's comple-
ment signed representation. This does not match your implementation language (C) very
well, where the result of signed arithmetic over�ow is unde�ned. There are two solutions to
this problem: �rst, because unsigned arithmetic over�ow is de�ned to be modular arithmetic,
you could cast int32_t values to uint32_t, perform unsigned arithmetic, then cast back.
This should not be required in your implementations, however: we will compile your code
with the -fwrapv command-line argument that forces gcc to treat integer arith-
metic to be de�ned as signed two's complement arithmetic. (Remember, however,
that this is not part of the C standard.)

Casting signed integers to unsigned integers and/or using the -fwrapv command-line
argument does not do everything that is needed to ensure C0 compliance, but it goes a long
way. We recommend a careful reading of the arithmetic operations in the C0 Reference
at https://c0.cs.cmu.edu/docs/c0-reference.pdf, as well as the notes on casting
integers in C.

For this implementation strategy to be correct, it is important to verify that our C
environment does indeed use a two's complement representation and that the C type of int
has 32 bits. The provided main function (see the �le c0vm_main.c) performs these checks
before starting the abstract machine and aborts the execution if necessary.

Another concern when implementing arithmetic operations in C is that a number of
implicit conversions may occur when performing arithmetic on values of two di�erent types

� not always the conversions you want. We recommend that, when doing any sort of
operation, the values on which you're operating have the same type � you should use
explicit casts to ensure this.

In the instruction table below (and for subsequent tables), we use w32 for the type of
primitive values and * for the type of reference values. Each line has an opcode in hex
notation, followed by the operation mnemonic, followed by the e�ect of the operation, �rst
on the stack, then any other e�ect.

0x60 iadd S, x:w32, y:w32 -> S, x+y:w32
0x7E iand S, x:w32, y:w32 -> S, x&y:w32
0x6C idiv S, x:w32, y:w32 -> S, x/y:w32
0x68 imul S, x:w32, y:w32 -> S, x*y:w32
0x80 ior S, x:w32, y:w32 -> S, x|y:w32
0x70 irem S, x:w32, y:w32 -> S, x%y:w32
0x78 ishl S, x:w32, y:w32 -> S, x<<y:w32
0x7A ishr S, x:w32, y:w32 -> S, x>>y:w32
0x64 isub S, x:w32, y:w32 -> S, x-y:w32
0x82 ixor S, x:w32, y:w32 -> S, x^y:w32

Safety violations in idiv, irem, ishr, and ishl can cause run-time errors (use the pro-
vided function c0_arith_error to generate a message). Please refer to the C0 language
speci�cation for important details.

We have omitted negation -x, which the compiler can simulate with 0-x, and bitwise
negation ~x, which the compiler can simulate with x^(-1).
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2.3 Constants (Tasks 1 and 2 � by checkpoint )

We can push constants onto the operand stack. There are three di�erent forms: (1) a
constant null which is directly coded into the instruction, (2) a small signed (byte-sized)
constant <b> which is an instruction operand and must be sign-extended to 32 bits, and (3)
a constant stored in the constant pool. For the latter, we distinguish constants of primitive
type from those of reference type because they are stored in di�erent pools.

The two constant loading instructions ildc and aldc take two unsigned bytes as operands,
which must be combined into an unsigned integer index for the appropriate constant pool.
The integer pool stores the constants directly, and the index given to ildc is an index into
the integer pool. The string pool is one large array of character strings, each terminated by
’\0’. The index given to aldc indicates the position of the �rst character; its address is
therefore of type char* in C and understood by C as a string.

0x01 aconst_null S -> S, null:*
0x10 bipush <b> S -> S, x:w32 (x = (w32)b, sign extended)
0x13 ildc <c1,c2> S -> S, x:w32 (x = int_pool[(c1<<8)|c2])
0x14 aldc <c1,c2> S -> S, a:* (a = &string_pool[(c1<<8)|c2])

You will not be able to test aldc in any interesting way until you implement athrow or
assert (see below).

2.4 Local Variables (Task 2 � by checkpoint )

We can move data generically between local variables and the stack, because all primitive
types can �t into pointers or integers and so be stored as a c0_value. The instruction
operand <i> is one byte following the opcode 0x15 or 0x36 in the instruction stream. Because
this is the only way to access a local variable, each function can have at most 256 local
variables, which includes the function arguments.

0x15 vload <i> S -> S, v (v = V[i])
0x36 vstore <i> S, v -> S (V[i] = v)

2.5 Assertions and Errors (Task 2 � by checkpoint )

The instruction athrow implements the C0 built-in error(s) which aborts execution with
error message s. In the bytecode, this error message will be at the top of the stack � it will
have been put there by aldc if it is a literal string.

The instruction assert implements all C0 contracts and assertions. You will be able to
use its full potential only after you are done with Tasks 3 and 4. For now, you can test
it with programs containing simple assertions like assert(true) or //@assert false;
(remember to compile the latter with the �ag -d).

0xBF athrow S, a:* -> S (c0_user_error(a))
0xCF assert S, x:w32, a:* -> S (c0_assertion_failure(a) if x == 0)
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2.6 Control Flow (Task 3 � by checkpoint )

Each instruction implicitly increments the program counter by the number of bytes making
up the instruction. Control �ow instructions change this by jumping to another instruction
under certain conditions. The addressing is relative to the address of the branch instruction.
The o�set is a signed 16 bit integer that is given as a two-byte operand to the instruction.
It must be signed so we can branch backwards in the program. Note that if_cmpeq and
if_cmpne can be used to compare either integers or pointers for equality or inequality,
whereas the other comparisons only make sense on integers. The nop �no-op� instruction has
no e�ect.

0x00 nop S -> S

0x9F if_cmpeq <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 == v2)
0xA0 if_cmpne <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 != v2)
0xA1 if_icmplt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x < y)
0xA2 if_icmpge <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x >= y)
0xA3 if_icmpgt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x > y)
0xA4 if_icmple <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x <= y)

0xA7 goto <o1,o2> S -> S (pc = pc+(o1<<8|o2))

2.7 Functions (Task 4)

Function calls come in two forms: invoking a C0 function de�ned in the same bytecode �le
and invoking a library function de�ned in C. In either case, their arguments are passed
on the operand stack and consumed. The C0VM implementation must guarantee that the
result is pushed onto the stack when the function returns.

2.7.1 Calling a User-de�ned Function

Function information is stored in the function pool, which is addressed by the instruction
operand consisting of two bytes, which must be reconstituted into an unsigned 16 bit quantity
indexing into the function pool.

0xB8 invokestatic <c1,c2> S, v1, v2, ..., vn -> S, v
(function_pool[c1<<8|c2] = g, g(v1,...,vn) = v)

When invoking a C0 function (instruction invokestatic), we have to preserve the state
of the calling function so that we can resume it later: a pointer to its bytecode, its program
counter pc as a return address, its current local variable array V and its current operand
stack S. We store this information in a new frame which is then pushed onto a global call
stack. Then we set the pc to the beginning of the code for the called function g, allocate a
new array for its local variables, and initialize it with the function arguments from the old
operand stack. We also create a new empty operand stack for use in the called function.

The main function always has index 0 in the function pool and takes 0 arguments. After
reading the �le, setting up appropriate data structures, etc, your C0VM implementation
should start executing byte code at the beginning of this function and at the end print the
�nal value.
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2.7.2 Returning from a Function

When returning from a function, there should be a single value on the operand stack, the
value to return from the caller. (This applies also for functions returning void: the bytecode
produced by the compiler pushes a dummy value onto the operand stack to provide a uniform
interface to functions.)

0xB0 return ., v -> . (return v to caller)

When processing a return instruction we restore the pc, the local variable array V and
the operand stack S from the last frame on the call stack. We also need to arrange that the
return value is popped from the current operand stack and pushed onto the operand stack
of the frame we return to. Some temporary data structures may need to be deallocated at
this point.

The return instruction is partially implemented in the starter code. You will need to
update it twice: �rst, you will need to free any memory you allocate for the C0VM's internal
data structures; then, you will need to generalize it when you write invokestatic.

2.7.3 Native Function Calls

Native function calls have the same form as C0 function calls, but the two-byte instruction
argument indexes into the native pool, rather than the function pool.

0xB7 invokenative <c1,c2> S, v1, v2, ..., vn -> S, v
(native_pool[c1<<8|c2] => g, g(v1,...,vn) = v)

The value native_pool[c1<<8|c2] is a struct native_info (de�ned in lib/c0vm.h and
described in Appendix A), which contains two �elds: num_args, the number n of arguments
that should be popped o� the stack, and function_table_index, which is an index i into a
separate runtime structure, the native_function_table (de�ned in lib/c0vm_c0ffi.h).
From that table you can retrieve the address of a native function g, a pointer to a function
taking an array of c0_value and returning a c0_value.

In order to call this function you have to construct an array of length n and store ar-
guments v1 through vn at indices 0 through n − 1, and then invoke the function g on this
array. The result has to be pushed back onto the operand stack.

Native function calls do not therefore involve explicitly managed stack frames. Of course,
your abstract machine implementation is using the system stack, so when you call the library
function, the library function also uses the system stack, rather than any stack managed
explicitly by your virtual machine.

The mapping between native library functions and their indices into the native function
table is given as a series of NATIVE_* macros in the �le c0vm_c0ffi.h. (You will not need
to use these de�nitions in your C0VM implementation.)

2.8 Memory Allocation, Load, and Store (Task 5)

Besides function calls, the trickiest aspect of the C0VM implementation is the management
of the C0 runtime heap. Your implementation should satisfy each C0 allocation request sep-
arately by allocating a su�cient amount of space on the C runtime heap, using C pointers to
implement C0VM references. Your implementation of allocation must take care to initialize
all memory requested by C0 to all zeros.
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2.8.1 Basic Allocation

The new <s> instruction allocates s bytes of memory (s is an unsigned byte) and pushes the
address of the newly allocated memory (a pointer) onto the stack.

0xBB new <s> S -> S, a:* (*a is now allocated, size <s>)

The data size <s> is computed statically by the C0 compiler. For example, the C0 expression
alloc(int) would translate to new 4, while alloc(struct b) would translate to new n,
where n is the size of a struct b in memory in bytes, which is always known at compile
time.

2.8.2 Accessing Memory

We read from and write to addresses in memory with the six instructions: imload and
imstore for integers, amload and amstore for pointers, and cmload and cmstore for charac-
ters. For integers and pointers, we treat the value on the stack as an integer or a pointer
and store that quantity directly. For characters, we have to be a bit more careful, because
characters (which may take on the values 0-127 in C0) are stored as integer values on the
stack. When we read a character out of memory we have to cast it to an integer, and when
we write we do the opposite, masking the given value of type w32 to 7 bits.

0x2E imload S, a:* -> S, x:w32 (x = *a, a != NULL, load 4 bytes)
0x4E imstore S, a:*, x:w32 -> S (*a = x, a != NULL, store 4 bytes)
0x2F amload S, a:* -> S, b:* (b = *a, a != NULL, load address)
0x4F amstore S, a:*, b:* -> S (*a = b, a != NULL, store address)
0x34 cmload S, a:* -> S, x:w32 (x = (w32)(*a), a != NULL, load 1 byte)
0x55 cmstore S, a:*, x:w32 -> S (*a = x & 0x7f, a != NULL, store 1 byte)

For each operation, you must check that the address a of a load or store instruction is
non-NULL and raise a memory error if a is NULL.

Most of the time, when we're reading and writing from memory in our C0 program, we're
not using pointers directly to read (*p) or write (*p=...). Rather, we're reading from or
writing to �elds of structs (T->data=...) or elements of arrays (A[i]=...). In the C0VM,
these two steps are split into di�erent VM instructions for address arithmetic and loading
from or storing to a computed address. This computation then gives us the actual address
of the integer, pointer, or character stored within the array or struct, which we can access
with the six instructions above.

There are two kinds of o�set computations: one for arrays, and one for structs. When we
access a struct's �eld, the compiler generates a �eld o�set f (an unsigned one-byte quantity).
The aaddf instruction is used to add f bytes to the pointer a at the top of the stack. If
the address a is NULL, you must raise a memory error by calling the provided function
c0_memory_error.

0x62 aaddf <f> S, a:* -> S, (a+f):* (a != NULL; f field offset)
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2.8.3 Arrays

In order to talk about array o�sets, we need to talk about how C0 arrays are represented at
runtime. C0 arrays are represented as pointers to a struct1 c0_array that has three �elds.
The �rst, count, is the number of elements in the array, and is determined at runtime (this
is n in the newarray instruction below). The second, elt_size, represents the number of
bytes in a single element; the compiler is able to determine this at compile time based on
the type (this is s in the newarray instruction below).

The third �eld is elems, a void pointer to the beginning of the memory allocated for the
actual array, which contains n*s bytes. The length of an array, stored in the count �eld,
can be retrieved with the arraylength C0VM instruction. Every C0 array you encounter
in the VM will be either a pointer to one of these structs or NULL. The C0VM uses NULL to
represent a C0 array of length 0.

The picture above is an array of three objects with elt_size of 4, perhaps a C0 integer.
The third integer (array o�set 2 in the C0 array) is stored in the bytes labeled 8-11. If we
cast the void pointer in the elems �eld to a char pointer named arr, then the o�set we
should compute to access the third integer in the array is &arr[2*4] � the address 8 bytes
into the block of allocated memory (array o�set 2 × 4 bytes per array element; recall that
a char is de�ned to be one byte).

0xBC newarray <s> S, n:w32 -> S, a:* (a[0..n) now allocated)
0xBE arraylength S, a:* -> S, n:w32 (n = \length(a))
0x63 aadds S, a:*, i:w32 -> S, (a->elems+s*i):*

(a != NULL, 0 <= i < \length(a))

The newarray <s> instruction allocates memory for an array containing n elements at size s.
The size is computed by the compiler, while the array size is determined at runtime because
it cannot in general be known at compile time. If n is negative, you should abort execution
with the provided function c0_memory_error. The aadds instruction computes the address
of an array element. The operand a on the stack must be the address of an array, and the
operand i must be a valid index for this array. The C0VM must issue an error message and
abort if i is not a valid index, which can be determined from the stored array length; use
c0_memory_error to issue this error. We then use the element size s stored with the array
to compute the address of the ith element. Note that one aadds instruction is necessary for
every array access, even if we access the element at index 0. This is in contrast to structs!
When we are accessing a �eld of a struct, we might be accessing the �rst �eld, in which case
the address of the �eld is the same as the address of the struct.

1
de�ned in lib/c0vm.h.
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2.9 Generic Pointers (Bonus Task 6)

C1 extends C0 with generic pointers, whose type is void* in C1. A C0 pointer can be cast
to void* and then back to its original pointer type (but no other pointer type). NULL can
be cast freely.

To accommodate generic pointers in the C0VM, we introduce a type of tagged pointers,
i.e., a pointer together with a tag representing the actual pointer type it has been cast to.

typedef struct c0_tagged_ptr_header c0_tagged_ptr;

The compiler automatically maps types used in casts to 16-bit unsigned integers used
as tags. Once cast, a generic pointer is represented in the C0VM as a value of type
c0_tagged_ptr*. A generic pointer that has not been cast yet or that is equal to NULL has
C type void* in the C0VM. See the header �le lib/c0vm.h for details.

As tagged pointers can be pushed in the operand stack, stored in variables, etc, the helper
functions tagged_ptr2val and val2tagged_ptr convert a tagged_ptr* to a c0_value
and vice versa. See the header �le lib/c0vm.h for details.

Generic pointers are handled by the following three C0VM instructions. In their descrip-
tion, we write a:# if a is a tagged pointer. We also upgrade a:* to describe a as either a
C0 pointer or a tagged pointer.

0xC0 checktag <c1,c2> S, a:# -> S, a:* (c0_memory_error() if a != NULL and has tag
other than c1<<8|c2)

0xC1 hastag <c1,c2> S, a:# -> S, x:w32 (x = (w32)0 if a != NULL and has tag
other than c1<<8|c2)
(x = (w32)1 otherwise)

0xC2 addtag <c1,c2> S, a:* -> S, a:# (a:# has tag c1<<8|c2)

addtag changes the (tagged or untagged) pointer at the top of the operand stack into a
tagged pointer whose tag is given by the next two bytes. checktag expects a tagged pointer
at the top of the stack. If its tag equals the next two bytes in the bytecode, it replaces it
with the same pointer stripped of its tag. It fails otherwise. Finally, hastag checks that
the tagged pointer at the top of the stack has the tag given by the next two bytes. If so, it
replaces it with the integer 1, and with 0 otherwise. Write a few simple C1 programs that
use generic pointers and observe how cc0 -b translates them. Note that this will generate
bytcode �les with extension .bc1.

2.10 Function Pointers (Bonus Task 6)

C1 extends C0 also with function pointers. The C0VM encodes a function pointer as a
normal pointer. The header �le lib/c0vm.h provides functions to obtain a function pointer
given its pool index, and vice versa to learn the type (static � for user-de�ned functions �
or native � for system library functions) and the pool index of a function given its function
pointer.

Three instructions handle function pointers. addrof_static pushes onto the operand
stack a pointer to a static function. The next two bytes are the o�set of this function
in the function pool. addrof_native does the same thing for native functions. Finally,
invokedynamic calls a function pointer on its arguments. These instructions are speci�ed as
follows:
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0x16 addrof_static <c1,c2> S -> S, a:* (a = function pointer for static at c1<<8|c2)
0x17 addrof_native <c1,c2> S -> S, a:* (a = function pointer for native at c1<<8|c2)
0xB6 invokedynamic S, v1, v2, ..., vn, a:* -> S, v

(g = function a points to, g(v1,...,vn) = v)

You will want to compile a few simple C1 programs that use function pointers with cc0 -b
and scrutinize the resulting bytecode.
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3 Programming Tasks and Coding Advice

There are many complexities in implementing a virtual machine, especially one that is rich
enough so it can execute all of C0! Fortunately, some of the complexities (such as parsing
the bytecode �le) are taken care of by code we are providing, but others remain. You will
complete the code in c0vm.c.

The following are suggested strategies to help you work e�ectively throughout this project.

3.1 Testing

We have provided a few test cases in tests/, but it is more e�ective to write your own.
Write a small �le, say test.c0 and compile it with cc0 -b test.c0, which will create a
bytecode �le test.bc0. Then run it with ./c0vmd test.bc0. Compare your answers with
the ones you get with cc0 -x mytest.c0:� �
% cc0 -x tests/iadd.c0
-2
% cc0 -b tests/iadd.c0
% ./c0vmd tests/iadd.bc0
Opcode 10 -- Stack size: 0 -- PC: 0
Opcode 10 -- Stack size: 1 -- PC: 2
Opcode 60 -- Stack size: 2 -- PC: 4
Opcode b0 -- Stack size: 1 -- PC: 5
Returning -2 from execute()
-2� �
3.2 Incremental Implementation

Implement a subset of the instruction set and test your C0VM implementation on code that
only uses the subset. Generate some test cases using cc0 -b from simple C0 sources, or use
some of the supplied examples that use limited instructions. You should recognize instruc-
tions that are valid but not in your subset and give a �not yet implemented � message and
returning rather than aborting in the same way as for other errors. Test one stage thoroughly
before moving on. After extending the machine, �rst make sure the old, simple examples
still run correctly, a process called regression testing. The stages follow our discussion of the
instruction set.

Task 1 (10 points) [See Sections 2.1 and 2.2]
Initialize the variables S, P and pc correctly in the execute function in the c0vm.c �le.

Add code to handle arithmetic instructions, plus bipush, swap, and return. (The return
instruction is mostly implemented, but needs to be checked for memory leaks.) C0 programs
with only a main function returning an expression made of small constants can be used to
test these capabilities, e.g.,

int main() {
return 15 * ((1<<10) - 24) + 122;

}
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Task 2 (8 points) [See Sections 2.3, 2.4 and 2.5]
Add code to deal with local variables, constants and assertions; you'll need to initialize the
variable V to something better than NULL. C0 source �les containing straight-line code using
variables and large constants can be used to test these capabilities, e.g.,

int main() {
int x = 15122;
assert(true);
int y = x * x;
return y;

}

Task 3 (7 points) [See Section 2.6]

Add code to handle goto and conditionals (e.g., if_icmpge). Now you should be able to
execute loops, as in

int main () {
int i; int sum = 0;
for (i = 15; i <= 122; i++)
sum += i;

return sum;
}

CHECKPOINT

Task 4 (10 points) [See Section 2.7]

Add function calls (invokestatic, invokenative); you'll probably want to initialize the
variable callStack to something better than NULL and use callStack to manage the
call stack in some form. You will also need to revisit return. You may want to focus on
ordinary C0 function calls (invokestatic, return) before moving on to native function calls
(invokenative).

Now your main function can call auxiliary functions, such as the ubiquitous recursive
factorial function, and library functions that print output:

#use <conio>

int factorial(int n) {
return n == 0 ? 1 : n * factorial(n-1);

}
int main () {
printint(factorial(15));
println(" is the factorial of 15");
return 0;

}
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Task 5 (15 points) [See Section 2.8]
Add the C0 heap, where arrays and structs are allocated. After this, you should be able to
run arbitrary C0 code, including your own C0 assignments.

Task 6 (3 bonus points) [See Sections 2.9 and 2.10]
Add support for the C1 constructs, namely generic pointers and function pointers. After
this, you should be able to run arbitrary C1 code, including your own C1 assignments.

3.3 Assertions

Ideally, we would establish invariants of the bytecode that we read from a �le to make sure no
runtime memory or type error occurs. In the JVM this is referred to as bytecode veri�cation.
Unfortunately, the current bytecode format does not provide enough information to do this.
Even if it did, it would be a major project in itself. So you have to fall back on dynamic
checks. These checks come in two categories:

1. The usual checks on the runtime structure of your own code, verifying that pointers
are not NULL, etc.

2. Checks that the C0 bytecode you have read in behaves properly.

Some of the checks in the second category are mandated:

(a) The C0 program must not dereference the C0 NULL pointer or perform pointer arithmetic
on it.

(b) The C0 program must not access memory outside the bounds of a C0 array.

(c) The C0 program must not perform illegal integer division (division by 0, or the min int
divided by -1).

(d) The C0 program must not shift left or right by a number < 0 or ≥ 32.

If you encounter these runtime errors, you should produce error messages using the provided
functions

� void c0_memory_error(char *err) � for memory-related errors

� void c0_arith_error(char *err) � for division or shift-related errors

By calling these functions, which are declared in c0vm_abort.h, you make it clear that this
is a runtime error in the bytecode you are executing and not a bug in your machine.

The �rst category of checks should in principle be redundant. For example, the cc0
compiler should never produce a bytecode �le that jumps to an invalid address. Nevertheless,
bytecode written by hand or a bug in the cc0 compiler or your VM could lead to such issues.
Since C does not guarantee detection of such incorrect jumps or accesses, your code should
do that using appropriate assert statements, or ASSERT, REQUIRES, and ENSURES. Then, if
the bytecode itself or your virtual machine implementation has a bug, it will be discovered as
soon as an unexpected incorrect behavior occurs. The macro annotations are recommended
so that there is no undue overhead for correct code when your machine has been debugged.
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3.4 Manage Your Time Well

Remember that this homework is worth 50 points, and the last three tasks are much more
di�cult than the �rst two. You should plan on working on this for a few hours every day,
so you can ask for help early on if you need it. Don't wait until the last few days! Post
general questions on Piazza (e.g., questions about the C0VM speci�cation, wording of tasks,
requirements for handin, etc).
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A Bytecode File Format

The bytecode �le, usually with extension .bc0, is produced by the cc0 compiler when
invoked with the -b or --bytecode �ag. In order to allow you to easily read bytecode, and
also write your own bytecode, the binary �le is coded in hexadecimal form, where two-digit
bytes are separated by whitespace. In addition, the �le may contain comments starting with
`#' and extending to the end of the line.

We describe the format as pseudo-structs, where we use the types described below. For
multi-byte types, each byte is given separately by two hexadecimal digits, with the most
signi�cant byte �rst.

u4 � 4 byte unsigned integer
u2 � 2 byte unsigned integer
u1 � 1 byte unsigned integer
i4 � 4 byte signed (two's complement) integer
fi � struct function_info, de�ned below
ni � struct native_info, de�ned below

The size of some arrays is variable, depending on earlier �elds. These are only arrays concep-
tually, of course. In the �le, all the information is just stored as sequences of bytes separated
by whitespace.

struct bc0_file {
u4 magic; // magic number, always 0xc0c0ffee
u2 version+arch; // version number and architecture
u2 int_count; // number of integer constants
i4 int_pool[int_count]; // integer constants
u2 string_count; // number of characters in string pool
u1 string_pool[string_count]; // adjacent ’\0’-terminated strings
u2 function_count; // number of functions
fi function_pool[function_count]; // function info
u2 native_count; // number of native (library) functions
ni native_pool[native_count]; // native function info

};

struct function_info {
u2 num_args; // number of arguments, V[0..num_args)
u2 num_vars; // number of variables, V[0..num_vars)
u2 code_length; // number of bytes of bytecode
u1 code[code_length]; // bytecode

};

struct native_info {
u2 num_args; // number of arguments, V[0..num_args)
u2 function_table_index; // index into table of library functions

};

We are providing code that reads bytecode �les and marshals the information into similar
internal C structures.
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B C0VM Instruction Reference

What follows is a reference for the C0VM bytecode, which is also given as part of the handout
(c0vm-ref.txt). Every line that describes an operation has the following format:

0xYZ omne S -> S’ (other effect)

where 0xYZ is the opcode in hex, omne is the operation mnemonic, and the remaining text
describes the e�ect of the operation. The description includes the e�ect on the stack (e.g.
transform stack S into stack S’) and any other e�ects (e.g. modify the program counter).

C0VM Instruction Reference

S = operand stack
V = local variable array, V[0..num_vars)

Instruction operands:
<i> = local variable index (unsigned)
<b> = byte (signed)
<s> = element size in bytes (unsigned)
<f> = field offset in struct in bytes (unsigned)
<c> = <c1,c2> = pool index = (c1<<8|c2) (unsigned)
<o> = <o1,o2> = pc offset = (o1<<8|o2) (signed)

Stack operands:
x, i, n : w32 = 32 bit word representing an int, bool, or char ("primitive")
a : # = tagged pointer
a : * = address ("reference"), possibly tagged
v = arbitrary value -- v:* or v:w32 or v:#

Stack operations
0x57 pop S, v -> S
0x59 dup S, v -> S, v, v
0x5F swap S, v1, v2 -> S, v2, v1

Arithmetic
0x60 iadd S, x:w32, y:w32 -> S, x+y:w32
0x64 isub S, x:w32, y:w32 -> S, x-y:w32
0x68 imul S, x:w32, y:w32 -> S, x*y:w32
0x6C idiv S, x:w32, y:w32 -> S, x/y:w32
0x70 irem S, x:w32, y:w32 -> S, x%y:w32
0x7E iand S, x:w32, y:w32 -> S, x&y:w32
0x80 ior S, x:w32, y:w32 -> S, x|y:w32
0x82 ixor S, x:w32, y:w32 -> S, x^y:w32
0x78 ishl S, x:w32, y:w32 -> S, x<<y:w32
0x7A ishr S, x:w32, y:w32 -> S, x>>y:w32

Constants
0x10 bipush <b> S -> S, x:w32 (x = (w32)b, sign extended)
0x13 ildc <c1,c2> S -> S, x:w32 (x = int_pool[(c1<<8)|c2])
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0x14 aldc <c1,c2> S -> S, a:* (a = &string_pool[(c1<<8)|c2])
0x01 aconst_null S -> S, null:*

Local Variables
0x15 vload <i> S -> S, v (v = V[i])
0x36 vstore <i> S, v -> S (V[i] = v)

Assertions and errors
0xBF athrow S, a:* -> S (c0_user_error(a))
0xCF assert S, x:w32, a:* -> S (c0_assertion_failure(a) if x == 0)

Control Flow
0x00 nop S -> S
0x9F if_cmpeq <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 == v2)
0xA0 if_cmpne <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 != v2)
0xA1 if_icmplt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x < y)
0xA2 if_icmpge <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x >= y)
0xA3 if_icmpgt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x > y)
0xA4 if_icmple <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x <= y)
0xA7 goto <o1,o2> S -> S (pc = pc+(o1<<8|o2))

Functions
0xB8 invokestatic <c1,c2> S, v1, v2, ..., vn -> S, v

(function_pool[c1<<8|c2] => g, g(v1,...,vn) = v)
0xB0 return ., v -> . (return v to caller)
0xB7 invokenative <c1,c2> S, v1, v2, ..., vn -> S, v

(native_pool[c1<<8|c2] => g, g(v1,...,vn) = v)

Memory
0xBB new <s> S -> S, a:* (*a is now allocated, size <s>)
0x2E imload S, a:* -> S, x:w32 (x = *a, a != NULL, load 4 bytes)
0x4E imstore S, a:*, x:w32 -> S (*a = x, a != NULL, store 4 bytes)
0x2F amload S, a:* -> S, b:* (b = *a, a != NULL, load address)
0x4F amstore S, a:*, b:* -> S (*a = b, a != NULL, store address)
0x34 cmload S, a:* -> S, x:w32 (x = (w32)(*a), a != NULL, load 1 byte)
0x55 cmstore S, a:*, x:w32 -> S (*a = x & 0x7f, a != NULL, store 1 byte)
0x62 aaddf <f> S, a:* -> S, (a+f):* (a != NULL; f field offset in bytes)
0xBC newarray <s> S, n:w32 -> S, a:* (a[0..n) now allocated,

each array element has size <s>)
0xBE arraylength S, a:* -> S, n:w32 (n = \length(a))
0x63 aadds S, a:*, i:w32 -> S, (a->elems+s*i):*

(a != NULL, 0 <= i < \length(a))

C1
0xC0 checktag <c1,c2> S, a:# -> S, a:* (c0_memory_error() if a != NULL and has tag

other than c1<<8|c2)
0xC1 hastag <c1,c2> S, a:# -> S, x:w32 (x = (w32)0 if a != NULL and has tag

other than c1<<8|c2)
(x = (w32)1 otherwise)
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0xC2 addtag <c1,c2> S, a:* -> S, a:# (a:# has tag c1<<8|c2)
0x16 addrof_static <c1,c2> S -> S, a:* (a = function pointer for static at c1<<8|c2)
0x17 addrof_native <c1,c2> S -> S, a:* (a = function pointer for native at c1<<8|c2)
0xB6 invokedynamic S, v1, v2, ..., vn, a:* -> S, v

(g = function a points to, g(v1,...,vn) = v)
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