
15-122 Programming Homework 3 Page 1 of 11

15-122: Principles of Imperative Computation, Spring 2024

Programming Homework 3: Images

Due: Sunday 4th February, 2024 by 9pm

This programming assignment will have you using arrays to represent and manipulate images.

Download the assignment handout from the course website or Autolab. The �le README.txt
in the code handout goes over the contents of the handout and explains how to hand the
assignment in. There is a SIX (6) PENALTY-FREE HANDIN LIMIT, with the idea that
for each task you can test your code, hand in, and then �x any bugs found by Autolab while
working on and testing the next task. Make sure to leave enough submissions to work on
the optional Task 5, if you wish to do that. Every additional handin will incur a small (5%)
penalty (even if using a late day). Your score for this assignment will be the score of your
last Autolab submission.

Style Grading: With this assignment, we will begin to emphasize programming style more
heavily. We will actually be looking at your code and evaluating it based on the criteria
outlined in the �Coding with Style� Guide to Success on Piazza. We will make comments
on your code via Autolab, and will assign an overall passing or failing style grade. A failing
style grade will be temporarily represented as a score of -15 points. This -15 will be reset to
0 once you:

1. �x the style issues,

2. see a member of the course sta� during o�ce hours within 5 days after the grades
are released, and

3. brie�y discuss the style issues and how they were addressed.

We will evaluate your code for style in two ways. We will use cc0 with the -w �ag that
gives style warnings � code that raises warnings with this �ag is almost certain to fail style
grading. Because the -w �ag does not check for good variable names, appropriate comments,
or appropriate use of the functions de�ned in pixel.o0 and imageutil.c0, these issues
will be checked by hand.

Task 1 (3 points) In addition to using good style, be sure to include appropriate contracts,
@requires, @ensures, and @loop_invariant. Your annotations should be su�cient to
ensure that all array accesses in your functions are safe and that whoever calls your functions
has su�cient information to make safe array accesses. The points for this task will be
assigned based on a visual inspection of the contracts you write throughout your code for
this assignment.

© Carnegie Mellon University 2024

https://cs.cmu.edu/~15122
https://autolab.andrew.cmu.edu/courses/15122-s24/
https://autolab.andrew.cmu.edu/courses/15122-s24/
https://autolab.andrew.cmu.edu/courses/15122-s24/
https://piazza.com/class/lr3v0qzyfpu4kd

15-122 Programming Homework 3 Page 2 of 11

1 Image manipulation

This assignment uses a pixel library similar to what you implemented in the last homework.
You can �nd its interface in Appendix A.

The programming problems you have for this assignment deal with manipulating images.
An image will be stored in a one-dimensional array of pixels. (The C0 image library
assumes the ARGB implementation of pixels that you wrote in your last assignment.) Pixels
are stored in the array row by row, left to right starting at the top left of the image. For
example, if a 5× 5 image has the following pixel �values�:

a b c d e
f g h i j
k l m n o
p q r s t
u v w x y

then these values would be stored in the array in this order:

a b c d e f g h i j k l m n o p q r s t u v w x y

In the 5× 5 image, the pixel i is in row 1, column 3 (rows and columns are indexed starting
with 0) but is stored in the one-dimensional array at index 8. An image must have at least
one pixel.

Task 2 (4 points) Complete the C0 �le imageutil.c0. As with the pixel-int.c0 im-
plementation from your last assignment, you must �ll in the missing code and translate the
English preconditions and postconditions into @requires and @ensures statements.

We do not require you to hand in the �le images-test.c0 where you can write tests
for your imageutil implementation the way you tested your pixels implementation. It is a
good idea to write a lot of tests, however! (Recall also that you have a limited number of
submissions.)

2 Image Transformations

The rest of this assignment involves implementing the core part of a series of image trans-
formations. Each function you write will take an array representation of the input image(s)
and return an array representation of the output image. These functions should not be de-
structive: you should make your changes in a copy of the array, and not make any changes
to the original array. Your implementations should be relatively e�cient, meaning both that
they should have a reasonable big-O running time and that they should take at most a few
seconds to run on our example images.

Remember that your code should have appropriate preconditions and postconditions. It
is always a precondition that the given width and height are a valid image size that matches
the length of the pixel array passed to the function. It is always a postcondition that the
returned array is a di�erent array from any array that was passed in, and that this resulting
array has the correct length.

© Carnegie Mellon University 2024

https://c0.cs.cmu.edu/docs/c0-libraries.pdf

15-122 Programming Homework 3 Page 3 of 11

In order to pass style grading, you will be expected to use functions from the pixel in-
terface (the type pixel_t and functions get_red, get_green, get_blue, get_alpha, and
make_pixel) and the imageutil interface (the functions is_valid_imagesize, get_row,
get_column, is_valid_pixel, get_index) in the next two tasks. On Autolab, we will
compile your code for the remaining tasks against our implementation of the pixel and the
imageutil interfaces, so you cannot add new functions to these interfaces.

Testing. There are two ways to test your code. We encourage you to use both.

1. Create tiny images manually in �le images-test.c0, call your functions on them, and
then print the results using the provided image_print function. This is most useful
on images smaller than, say, 10× 10 pixels.

2. Once your code works well on small images, use the provided *-main.c0 �les to test
it on larger images. How to do so is described in the README.txt in the code handout.

We are providing a program, imagediff, to help you compare your output images to
the sample images in the handout, optionally saving an image that shows you exactly
where the two images di�er. It is in the course directory on afs, so it is available on
any cluster machine or when you are connected via ssh. For example:� �
% imagediff -i img/sample.png -j img/my-image.png -o img/diff.png� �
This command compares the image img/sample.png and img/my-image.png and
creates a visual representation of the di�erence in img/diff.png. If the images are
identical pixel by pixel, it will say so:� �
% imagediff -i img/sample.png -j img/my-image.png -o img/diff.png
Loaded image img/sample.png. Dimensions are 800 by 600.
Loaded image img/my-imageg5.png. Dimensions are 800 by 600.
The two images were identical.
Saving output.
0� �
If the images di�er, it will print the number of pixels that don't match:� �
% imagediff -i img/sample.png -j img/my-image.png -o img/diff.png
Loaded image img/sample.png. Dimensions are 800 by 600.
Loaded image img/my-imageg5.png. Dimensions are 800 by 600.
Number of pixels with different colors: 8384 out of 480000.
Saving output.
0� �
You can then inspect the image diff.png to get a sense of which pixels were di�erent.

© Carnegie Mellon University 2024

15-122 Programming Homework 3 Page 4 of 11

Figure 1: A sporty coupe before and after blue removal.

2.1 Removing blue

As an example of image manipulation, you should take a look at remove-blue.c0. The
core of this transformation is this function:

pixel_t[] remove_blue(pixel_t[] pixels, int width, int height)

An example of this transformation is given in Figure 1.
You should look at the �le remove-blue.c0 to get an idea of how this transformation

works, and you should look at README.txt to see how to compile and run this trans-
formation against remove-blue-main.c0. You are strongly encouraged to write some
smaller test cases for your programs. An example of what this should look like is given
in remove-blue-test.c0.

Note that remove-blue.c0 doesn't use the pixel or imageutil libraries. If your code
doesn't use the pixel or imageutil libraries, you will fail style grading! While it is not
required, you might want to try your hand at modifying remove-blue.c0 to use the pixel

and imageutil libraries.

© Carnegie Mellon University 2024

15-122 Programming Homework 3 Page 5 of 11

2.2 Hiding an Image inside Another

Given any pixel, the most signi�cant (i.e., leftmost) bit of every channel contributes 50% of
the color (and transparency) of the pixel. The next bit (the second leftmost) contributes
25%, the next after that contributes 12.5%, and so on up to the least signi�cant (rightmost)
bit which contributes a mere 0.4% of the appearance of the pixel. So, for example, the left
three bits of each channel contribute 50% + 25% + 12.5% = 87.5% of the appearance of
a pixel. This can be seen in the following �gure: the magni�ed pixel on the left has its
rightmost �ve bits set to 1 and the pixel on the right has them set to 0.

Observe that, to the naked eye, these two pixels look almost identical. The same would hold
true no matter what value had we used for the �ve least signi�cant bits of each channel.

We can exploit this observation to hide a (secret) pixel in another (the cover pixel). The
idea is to replace the �ve least signi�cant bits of each channel of the cover pixel with the �ve
most signi�cant bits of the corresponding channel of the secret pixel. Here's an example:

The resulting pixel, the stego pixel, is nearly indistinguishable from the cover pixel.
We can recover (a good approximation of) the secret pixel by taking the �ve least signif-

icant bits of each channel of the stego pixel and turning them into the �ve most signi�cant
bits of the recovered pixel. Here's the recovered pixel:

(it is common practice to set the remaining bits of the recovered pixel to 0).

© Carnegie Mellon University 2024

15-122 Programming Homework 3 Page 6 of 11

Since an image is a bunch of pixels, we can exploit this technique to hide a secret image

into a cover image with the same dimensions, then unsuspiciously post the resulting stego

image to, say, Instagram, and later have a friend or accomplice recover the secret image.
This is an instance of steganography, the art and science of hiding secret information in plain
sight.

Here's an example where we are hiding the picture of an ominous satellite dish in the
innocent image of a bee, pixel by pixel as we did earlier:

From it, we recover the secret image, again pixel by pixel, as we did previously:

If you look closely, you may notice that the recovered image does not look as good as
the secret image. The reason for this is that, this time, we used 5 bits of (each channel of)
the cover image and just 3 bits of the secret image. The number of most signi�cant bits
of the secret image to embed in the cover image is called the quality of the embedding: a
higher quality means the recovered image will be sharper, but the stego image will not look
as natural; a lower embedding quality makes it hard to tell that something is going on with
the stego image, but the recovered image will not be as good (which is often �ne).

Your turn! Your job is to implement the following functions:

pixel_t[] hide(pixel_t[] cover, pixel_t[] secret, int width, int height,
int quality);

pixel_t[] unhide(pixel_t[] stego, int width, int height, int quality);

The call hide(cover, secret, w, h, q) returns the stego image obtained by embedding
the secret image secret into the cover image cover as discussed above. Both secret and
cover have size w×h, and so does the returned image. The last argument, q, is the number
of bits of the secret image to embed in the cover image; it is a number between 1 and 7
inclusive.

© Carnegie Mellon University 2024

15-122 Programming Homework 3 Page 7 of 11

The call unhide(stego, w, h, q) returns the image recovered from the q least sig-
ni�cant bits of each pixel channel in stego. Both stego and the returned array have size
w × h.

If the various arrays do not exactly match the given size or if the quality is invalid, your
functions should abort with a precondition failure when compiled and run with the -d �ag.

Task 3 (6 points) Create a C0 �le stego.c0 implementing the functions hide and unhide.

You may include any auxiliary functions you need in the same �le (a hide_pixel and an
unhide_pixel may be a good idea), but you should not include a main() function.

You should look at README.txt to see how to compile and run this transformation
using stego-main.c0. You are also strongly encouraged to write some test cases for your
programs in images-test.c0.

2.3 Cropping an Image

The functions hide and unhide expect the cover and the secret image to have the exact
same size. But what if they do not?

In this section, we handle the situation where the width and height of the cover image
are larger than (or equal to) the width and height of the secret image. We do so by writing
a function to crop an image:

pixel_t[] crop(pixel_t[] pixels, int width, int height,
int left, int top, int new_width, int new_height)

Here, pixels is an image of size width × height. This function returns an image of size
new_width × new_height whose top-left corner is the pixel on column left and row top
of the original image. Here's an example:

As in this example, the cropped image should be entirely within the input image.
There are lots of ways the input parameters can be invalid. You should write strong

preconditions so that invalid inputs will abort the program when run with the -d �ag. You
should also write postconditions that allow using the returned image safely.

Task 4 (3 points) Create a C0 �le crop.c0 implementing the function crop. You may
include any auxiliary functions you need in the same �le, but you should not include a
main() function.

Look at README.txt to see how to compile and run this transformation using crop-main.c0.
You are also strongly encouraged to write some test cases for your programs in images-test.c0.

© Carnegie Mellon University 2024

15-122 Programming Homework 3 Page 8 of 11

2.4 Resizing an Image

Cropping helps when the cover image is bigger than the secret image, but what if it is
smaller? What we will do in this case is to resize the cover image, thereby obtaining an
enlarged cover image that we can then crop if needed so that it is the same size as the secret
image.

Resizing an image is non-trivial, at least if we want the resized imaged to look good.
In this section, we will examine an approach that, given a w × h image and an integer k,
produces an image that has size about kw×kh (in fact, ((k+1)w−k)× ((k+1)h−k) to be
speci�c). We will proceed in two steps: �rst we will resize the image horizontally (leaving its
height unchanged); then, we will resize this stretched-out image vertically, thereby obtaining
our fully resized image.

Let's begin with the �rst step, resizing the image horizontally. The idea is very simple:
we will insert k new pixels between every two pixels of the original image. Here's a view of
what happens to two adjacent pixels, p0 and q0, of the original image:

Observe that p0 and q0, are part of the resized image, but there are k new pixels between
them: p1, . . . pk. The same will happen between any two adjacent pixels of the original
image: on each row, k new pixels will be added after every pixel except the rightmost one
(which is left alone). So, if the original image has width w, the resized image has width
w + (w − 1)k = (k + 1)w − k � the height remains unchanged.

But what should be the value of the added pixels? The idea is have them gradually
transition from the value of p0 to the value of q0, channel by channel. So, if k = 1, then p1
would be half p0 and half q0. If k = 2, then p1 would be two thirds p0 and one third q0, while
p2 would be one third p0 and two thirds q0. In general the value of added pixel pi is given
by the following formula:

pi =
(k + 1− i)p0 + iq0

k + 1

This formula computes the weighted average of p0 and q0. (What does it reduce to when
i = 0?) We perform this computation independently for each of the channels of the involved
pixels � once for alpha, once for red, once for green and once for blue.

You will implement this �rst step of resizing an image by writing the C0 function

pixel_t[] stretch_horizontally(pixel_t[] pixels, int width, int height,
int k)

It returns the image obtained by inserting k pixels, computed as just described, between
every adjacent pixels of the input image. This function should fail a precondition if called
with an invalid image or a negative k. You will also want to have reasonable postconditions.

Once we have a horizontally resized an image by k, the second step is to do the exact
same thing vertically � you can write a stretch_vertically function or cleverly leverage
stretch_horizontally.

© Carnegie Mellon University 2024

15-122 Programming Homework 3 Page 9 of 11

We then combine these two steps in our �nal resize function,

pixel_t[] upsize(pixel_t[] pixels, int width, int height,
int k)

which returns an image that has �rst been stretched horizontally by k and then stretched
vertically by k.

Task 5 (9 points) Create a C0 �le resize.c0 implementing the functions stretch_horizontally
and upsize. You may include any auxiliary functions you need in the same �le, but you
should not include a main() function.

Hint: a function that transposes an image makes it very easy to write upsize once you

have stretch_horizontally.

Look at README.txt to see how to compile and run this transformation using resize-main.c0.
You are also strongly encouraged to write some test cases for your programs in images-test.c0.

At this point, you have all the pieces to hide any secret image into any cover image. If
you are up for the challenge, try to write an end-to-end function that takes these two images
as input and returns the resulting stego image. We will however not grade such function.

© Carnegie Mellon University 2024

15-122 Programming Homework 3 Page 10 of 11

2.5 Your own image processing algorithm (Optional)

In this task, you will perform an image manipulation of your choice. The core of this
transformation are three functions:

int result_width(int width, int height)
int result_height(int width, int height)
pixel_t[] manipulate(pixel_t[] pixels, int width, int height)

If I is the representation of an image with width w and height h, then the result of calling
manipulate(I,w,h) should be the representation of image of width result_width(w,h)
and height result_height(w,h).

Task 6 (bonus) Create a C0 �le manipulate.c0 implementing the three functions de-
scribed above: result_width, result_height, and manipulate. You may include any
auxiliary functions you need in the same �le, but you should not include a main() func-
tion. You may not add arguments to manipulate, but you can write a separate function
my_manipulate (or whatever) and then call your function from the manipulate function
with some speci�c arguments.

You should look at README.txt to see how to compile and run this transformation
against manipulate-main.c0.

If you choose to do this task, be creative! Submissions will be displayed on the Autolab
scoreboard and we will highlight exemplary submissions. If you include a (small!) �le
manipulate.png, we'll run your transformation against that image; otherwise we'll run
your transformation on g5.png.

Figure 2: Manipulate me!

© Carnegie Mellon University 2024

15-122 Programming Homework 3 Page 11 of 11

A REFERENCE: the Pixel Interface

/**************************** Interface ****************************/
// typedef _____ pixel_t;

int get_red(pixel_t p)
/*@ensures 0 <= \result && \result < 256; @*/ ;

int get_green(pixel_t p)
/*@ensures 0 <= \result && \result < 256; @*/ ;

int get_blue(pixel_t p)
/*@ensures 0 <= \result && \result < 256; @*/ ;

int get_alpha(pixel_t p)
/*@ensures 0 <= \result && \result < 256; @*/ ;

pixel_t make_pixel(int alpha, int red, int green, int blue)
/*@requires 0 <= alpha && alpha < 256; @*/
/*@requires 0 <= red && red < 256; @*/
/*@requires 0 <= green && green < 256; @*/
/*@requires 0 <= blue && blue < 256; @*/ ;

void pixel_print(pixel_t p);

You can also display this interface by running the terminal command� �
% cc0 -i pixel.o0� �

© Carnegie Mellon University 2024

	Image manipulation
	Image Transformations
	Removing blue
	Hiding an Image inside Another
	Cropping an Image
	Resizing an Image
	Your own image processing algorithm (Optional)

	REFERENCE: the Pixel Interface

