
15-122 Programming Homework 2 Page 1 of 8

15-122: Principles of Imperative Computation, Spring 2024

Programming Homework 2: Pixels

Due: Thursday 25th January, 2024 by 9pm

This second programming assignment is designed to get you used to writing some precon-
ditions and postconditions, deals with bitwise operations on integers, and introduces the
constituent parts of a library: the interface and the implementation.

Download the assignment handout from the course website or Autolab. The �le README.txt
in the code handout goes over the contents of the handout and explains how to hand the
assignment in. There is a EIGHT (8) PENALTY-FREE HANDIN LIMIT, with the idea
that for each task you can test your code, hand in, and then �x any bugs found by Autolab
while working on and testing the next task. Every additional handin will incur a small (5%)
penalty (even if using a late day). Your score for this assignment will be the score of your
last Autolab submission.

© Carnegie Mellon University 2024

https://cs.cmu.edu/~15122
https://autolab.andrew.cmu.edu/courses/15122-s24/
https://autolab.andrew.cmu.edu/courses/15122-s24/
https://autolab.andrew.cmu.edu/courses/15122-s24/


15-122 Programming Homework 2 Page 2 of 8

1 A Pixel Library

In the �rst part of this assignment, we will write a few functions that manipulate pixels.
To describe an individual pixel, we need to know two things: how opaque or transparent

it is, and what color it is. The transparency is an integer in the range [0, 256), where 0
means completely transparent and 255 means completely opaque. This is called the alpha

value of the pixel. The color of the pixel is expressed by three other integers, each also in
the range [0, 256), which respectively describe the intensity of the red, green, and blue color
in the pixel. This way of describing a pixel is called the ARGB color model1 from the �rst
letter of these four values. So, in the ARGB model, a pixel is described by four numbers
between 0 and 255 (both inclusive).

To manipulate pixels, all we need are an operation that manufactures a pixel given values
for its alpha, red, green, and blue components, and four operations that return the alpha,
the red, the green, and the blue component of a given pixel, respectively.

A pixel library provides a type so that we can refer to and use pixels in our programs,
and functions that implement these �ve operations. Here is what we need to know to use
the pixel library:

// typedef _______ pixel_t; // Type for pixels

// Returns a pixel_t representing an ARGB pixel consisting of the given
// alpha, red, green and blue intensity values.
pixel_t make_pixel(int alpha, int red, int green, int blue)
/* PRECONDITION: all intensity values must be between 0 and 255,

inclusive. */ ;

// Returns the alpha component of the given pixel p.
int get_alpha(pixel_t p)
/* POSTCONDITION: returned value is between 0 and 255, inclusive */ ;

// Returns the red component of the given pixel p.
int get_red(pixel_t p)
/* POSTCONDITION: returned value is between 0 and 255, inclusive */ ;

// Returns the green component of the given pixel p.
int get_green(pixel_t p)
/* POSTCONDITION: returned value is between 0 and 255, inclusive */ ;

// Returns the blue component of the given pixel p.
int get_blue(pixel_t p)
/* POSTCONDITION: returned value is between 0 and 255, inclusive */ ;

// Prints the given pixel p to terminal.
void pixel_print(pixel_t p);

1http://en.wikipedia.org/wiki/RGBA_color_model

© Carnegie Mellon University 2024

http://en.wikipedia.org/wiki/RGBA_color_model


15-122 Programming Homework 2 Page 3 of 8

This is called the interface of the library. It tells us that the type of pixels is called pixel_t
� this allows us to declare variables of type pixel_t so that we can work with pixels in our
programs. The interface also lists the functions the library provides to manipulate pixels. It
may appear funny that pre- and post-conditions are written as comments (in C0!). We will
address this shortly.
But what exactly is a pixel_t?

It turns out that we don't need to know! We can write lots of useful programs that
manipulate pixels by just using the type pixel_t and the above �ve functions. You don't
believe us? Let's give it a try.

Quantization is a transformation on pixels. It can be performed on all the pixels in an
image to reduce the total number of colors used in that image.

Given a pixel and a quantization level q in the range [0, 8], we quantize the pixel by taking
each color component (red, green and blue) and clearing the lowest q bits. For example,
suppose we have a pixel with red intensity R = 0x6B (decimal 107, binary 01101011), green
intensity G = 0xBE (decimal 190, binary 10111110), and blue intensity B = 0xD7 (decimal
215, binary 11010111). The color components of this pixel are represented by these bytes:

RED GREEN BLUE
01101011 10111110 11010111

If the quantization level is 5, then the resulting pixel should have the following color com-
ponents (note how the lower 5 bits are all cleared to 0):

RED GREEN BLUE
01100000 10100000 11000000

A pixel processed with a quantization level of 0 should not change. Quantization does not
change the alpha component of a pixel.

Task 1 (3 points) Complete function quantize in �le quantize.c0.

You can test your code in coin by running the command� �
% coin -d pixel.o0 quantize.c0� �
There, you can make a few pixels, call quantize with di�erent quantization levels on them,
and then check that the various components of the quantized pixels are what you expect.

The object �le pixel.o0 is a binary version of one of the many possible implementations
of the pixel library. Being a binary �le, it hides the de�nition of the type pixel_t and the
implementation of the �ve functions on pixels listed in the interface.

Running tests in coin gets tedious after a while. You are much better o� writing them
down in a way that makes it easy to run them over and over. This is what we'll do next.

Task 2 (3 points) Complete the function test_quantize in �le quantize.c0.

Now, a faster way to test your code is to compile and run it with� �
% cc0 -d -W -o quantize-test1 pixel.o0 quantize.c0 quantize-test.c0
% ./quantize-test1� �

© Carnegie Mellon University 2024



15-122 Programming Homework 2 Page 4 of 8

2 Implementing a Pixel Library

Libraries are a big deal in Computer Science. We will see a lot of libraries later in this
course, and we will implement many of them. As a preview (and as a way to practice several
concepts we saw so far in the course), we will consider a new implementation of the pixel
library, di�erent from the one in pixel.o0.

The implementation you will develop in this assignment represents a pixel as a single
C0 int. Since the value of each component of a pixel ranges from 0 to 255, eight bits are
su�cient to represent a component, and 4 × 8 = 32 is the number of bits in an int! We
pack the four intensities in a 32-bit int as follows:

a0a1a2a3a4a5a6a7 r0r1r2r3r4r5r6r7 g0g1g2g3g4g5g6g7 b0b1b2b3b4b5b6b7

where:

a0a1a2a3a4a5a6a7 represents the alpha value (how opaque the pixel is)
r0r1r2r3r4r5r6r7 represents the intensity of the red component of the pixel
g0g1g2g3g4g5g6g7 represents the intensity of the green component of the pixel
b0b1b2b3b4b5b6b7 represents the intensity of the blue component of the pixel

Each 8-bit component can range between a minimum of 0 (binary 00000000 or hex 0x00)
to a maximum of 255 (binary 11111111 or hex 0xFF).

But now that we have a new representation of pixels, we need to write the �ve functions
that operate on them (that's make_pixel and the four get_... functions). We will do so
in the �le pixel-int.c0. This �le contains the implementation of this new pixel library.
It has the same interface as pixel.o0 but a totally di�erent code for the type pixel_t and
the pixel operations.

Let's look at this �le. It starts with the line

typedef int pixel; // Library (concrete) view of a pixel

This de�nes the type pixel which the library implementation will use to refer to pixels
internally: it says that pixel is the same thing as int. (We could use int everywhere, but
we would get confused as int would stand both for a pixel and for its components.)

The �le pixel-int.c0 continues with the implementation of the pixel operations (which
currently all have an empty body except pixel_print).

This �le ends with the line

typedef pixel pixel_t; // Client (abstract) view of a pixel

which de�nes the type pixel_t mentioned in the interface as simply pixel. Why so many
types? This library is tiny and there would be little harm in using pixel_t throughout.
Libraries we will see later in this course are more complex, and keeping the type mentioned
in the interface (here pixel_t) distinct from the type used in the implementation (here
pixel) will have a number of advantages.

© Carnegie Mellon University 2024



15-122 Programming Homework 2 Page 5 of 8

Let's implement pixel-int.c0!

Task 3 (4 points) Complete the C0 �le pixel-int.c0. This has two parts:

� Translate the English contracts into C0 contracts.

� Translate the English description of the pixel functions into code. You may only use
bitwise operations and shifts.

The �rst part (the contracts) and half of the second part (the code) will be graded manually.
Because of this, 2.5 points will show up a couple of days after the submission deadline. You
do not need to do anything for pixel_print.

You can load your completed �le into coin. Remember to use the -d �ag to check
contracts.� �
% coin -d pixel-int.c0
--> make_pixel(255, 238, 127, 45);� �

In future libraries, we will write some contracts directly in the interface. Stay tuned!

3 Respecting the Interface

When using a library in an application, you should only use the types and functions men-
tioned in its interface. In particular, your application should not rely on the details of how
the library was implemented. This is called respecting the interface.

But why? Conceptually, a pixel is its own thing and the interface functions allow ma-
nipulating it as such � the interface provides us with a welcome abstraction of what a pixel
is. Practically, if you only use what is provided by the interface, we can swap the library
with a di�erent one with the same interface (for example pixel.o0 with pixel-int.c0)
and everything will work the same in your application.

Did the code you wrote in tasks 1�2 respect the interface? Carefully check that you only
used the type and functions mentioned in the interface! Then, try running� �
% cc0 -d -W -o quantize-test2 pixel-int.c0 quantize.c0 quantize-test.c0� �
(Notice that we swapped pixel.o0 with pixel-int.c0.) Your earlier code should still
compile with no errors. Furthermore, running ./quantize-test2 should produce the exact
same output as ./quantize-test1.

Task 4 (2 points) If the above command did not result in compilation errors and
./quantize-test2 worked just like ./quantize-test1, you may not need to do any-
thing in this task. Otherwise, you need to update the code you wrote in quantize.c0 (and
possibly quantize-test.c0) so that it respects the interface.

Hopefully, you wrote interface-respecting code from the get-go. Just in case, the next
task asks you to spot and �x code that doesn't.

Task 5 (2 points) Update the function remove_red in �le respect.c0 so that it respects
the interface of the pixel library. See README.txt for how to compile and run your code.

In this course, we will (nearly) always write code that respects the interface.

© Carnegie Mellon University 2024



15-122 Programming Homework 2 Page 6 of 8

4 Testing

Let's make a new implementation of the pixel library, but this time a broken one.
We can generally think about four ways that a program might fail:

1. Do something unsafe: access an array out of bounds, divide by zero, call a function
with inputs that violate the function's preconditions.

2. Violate a loop invariant, an assertion, or a postcondition.

3. Return the wrong answer without violating any contracts.

4. Fail to terminate.

For the mystery function we considered in lectures 1 and 2, failure #3 was impossible: the
postcondition speci�ed that exactly the right answer was returned. That won't always be
the case, and it isn't the case for the pixel library.

Task 6 (2 points) Make a copy of the pixel-int.c0 �le named pixel-bad.c0:� �
% cp pixel-int.c0 pixel-bad.c0� �
Edit this �le so that it contains a broken implementation of pixels. Keep the contracts the
same, and avoid failures #1 and #4 � the program should remain safe and should ter-
minate. However, at least one function should sometimes violate its postcondition (#2, a
contract failure) and at least one function should sometimes give the wrong answer with-
out violating a postcondition (#3, a contract exploit). Since you may make arbitrary
changes in pixel-bad.c0, we will test its get_... functions only on pixels returned by
its make_pixel.

Task 7 (7 points) The course sta� wrote a number of buggy implementations of the pixel
library on Autolab. In this task, your job will be to write test cases that expose our bugs.

In �le pixel-test.c0, write tests that check for both contract failures and contract
exploits in an implementation of the pixels interface. (See Appendix A, or the previous
programming homework for how to write tests.) At a minimum, your tests should run
without errors for a correct implementation of the pixel interface, and catch the bugs you
made intentionally in the previous task:� �
% cc0 -d pixel-int.c0 pixel-test.c0
% ./a.out

<Should run without errors>

% cc0 -d pixel-bad.c0 pixel-test.c0
% ./a.out

<An assertion should fail>� �

© Carnegie Mellon University 2024

https://autolab.andrew.cmu.edu/courses/15122-s24/


15-122 Programming Homework 2 Page 7 of 8

5 Arrays of Pixels

As you will see in the next programming assignment, an image is essentially an array of
pixels. And arrays can play tricks on you!

Task 8 (2 points) File multireturn.c0 contains the buggy function count_zeroes, some
correct helper functions, and some tests for count_zeroes. You can compile and run it as
follows:� �
% cc0 -d -W pixel.o0 multireturn.c0 multireturn-test.c0
% ./a.out� �
Identify the bug(s) in count_zeroes by using some of the debugging techniques seen in
class, such as tracing execution on a C0 memory diagram, or printing out the result array
and comparing it with what you expected. Write more tests! Do not make assumptions
about the inputs of count_zeroes other than what the preconditions say.

Once you have identi�ed what is wrong, �x the code and test your �xes. Make sure to
respect the pixel interface!

If you get lost as you make changes to multireturn.c0 and want to go back to the
original version, you can copy it from multireturn-backup.c0.

A Appendix: Testing GCD

This appendix demonstrates how to write a test �le with an example function.
Say we have a function that is supposed to �nd the greatest common divisor of two

positive integers. (We haven't talked about how to write such a function, but you've seen
bits and pieces; search for �Euclid's algorithm� if you'd like to implement this function.)

int gcd(int x, int y)
//@requires x > 0 && y > 0;
//@ensures 0 < \result && x % \result == 0 && y % \result == 0;

The postcondition isn't the best one we could write � it checks that the result is a divisor
of x and y, not their greatest common divisor. A function that ignores its inputs and always
returns 1 satis�es this contract but is nevertheless an incorrect implementation of gcd.

We'll write some tests in a �le gcd-test.c0 that includes a main function. To check for
contract exploits, we need to make extra assertions that the output of the function is correct.
We could do this with the @assert contract, but it's better to use the built-in assert()
function that runs whether or not -d is selected.

1 #use <util>
2 #use <conio>
3

4 int main() {
5 // Test some regular cases
6 assert(gcd(2, 5) == 1);
7 assert(gcd(19, 21) == 1);
8 assert(gcd(81, 9) == 9);
9 assert(gcd(16, 100) == 4);

© Carnegie Mellon University 2024



15-122 Programming Homework 2 Page 8 of 8

10

11 // Test some edge cases
12 assert(gcd(1, 1) == 1);
13 assert(gcd(1, int_max()) == 1); // This may take a while
14 assert(gcd(int_max(), int_max()) == int_max()); // This too
15 assert(gcd(int_max(), int_max() - 1) == 1);
16

17 printf("All tests passed!\n");
18 return 0;
19 }

Edge cases are inputs at the range boundaries, for example smallest and largest inputs. In
this case, the precondition requires that both of the inputs are positive, so the smallest they
can be is 1 and the largest is int_max().

Now we can use this test �le to test both good and bad implementations of GCD:� �
% cc0 -d gcd.c0 gcd-test.c0
% ./a.out
All tests passed!
0
% cc0 -d gcd-bad.c0 gcd-test.c0
% ./a.out
c0rt: gcd-test.c0: 12.6-12.29: assert failed
at main (gcd-test.c0: 12.6-12.29)
Aborted (core dumped)� �

© Carnegie Mellon University 2024


	A Pixel Library
	Implementing a Pixel Library
	Respecting the Interface
	Testing
	Arrays of Pixels
	Appendix: Testing GCD

