
15-122: Principles of Imperative Computation Spring 2024

Recitation 05: A queue_t Interface Wednesday February 14th

Pointer manipulations

Pointers are one of the most useful constructs in languages like C0 and C. The value of an expression

of pointer type (like int*) is either a memory address or the special value NULL.

Consider the following memory diagram, where a has type int* and b has type int**:

The variable a points to a memory cell that contains the int value 122. Instead the variable b
points to a memory cell of pointer type that contains NULL � NULL is a valid value for cells of any

pointer type (instead, addresses must match the type the cell is declared as). Because the type of b
is int**, whenever this cell does not contain NULL it must contain the address of a cell to an int,
i.e., the cell pointed to by b has type is int*.

Give C0 instructions that result in the above diagram (assume you just started coin and the memory

is empty).

Pointer manipulations are counterintuitive at �rst, but with just a little bit of practice, they will

become second nature. A key insight is the following:

When you set a pointer equal to another pointer, you make the �rst pointer

point to where the second pointer points.

Thus, each line of C0 code modi�es at most one pointer.

Draw the memory diagram after executing the line of code

int* c = a;

© Carnegie Mellon University 2024

At this point, a and c are aliases: both variables point to the same memory cell, i.e., they contain

the same address.

2

Draw the memory diagram after executing the line of code

*b = a;

Now, *b (the contents of the cell b points to) is also an alias to a (and c).

Let's de�ne the following struct, nicknamed student:

struct student_header {
string name;
int grade;

};
typedef struct student_header student;

It has two �elds, name of type string and grade of type int. In C0, structs can only appear in

allocated memory.

Draw the memory diagram after executing the line of code

student* t = alloc(student);
t->name = "Alex";
t->grade = 100;

3

A wild struct appears

Suppose we have the following in a �le:

1 struct X {
2 int a;
3 struct Y* b;
4 };
5

6 struct Y {
7 int* a;
8 int b;
9 struct X* c;

10 };
11

12 void f(struct X* x, struct Y* y) {
13 x->b = y;
14 y->c = x;
15 y->c->a = 15
16 int** d = alloc(int*);
17 *d = alloc(int);
18 x->b->a = *d;
19 *(y->a) = x->a * 8 + 2;
20 x->b->b = 1000 * x->a + **d;
21 x = NULL;
22 y->c = NULL;
23 }
24

25 int main() {
26 struct X* foo = alloc(struct X);
27 struct Y* bar = alloc(struct Y);
28 f(foo, bar);
29 return 0;
30 }

Checkpoint 0

Fill out the state of the memory just before and just after f returns. What's the value of bar->b?
(For your own sanity, draw a picture!)

4

Stack and queue interfaces

Here's the stack interface discussed in lecture. It exposes the type stack_t and four functions:

// typedef ______* stack_t; /* Abstract type of stacks */

bool stack_empty(stack_t S) /* Check if stack S is empty, O(1) */
/*@requires S != NULL; @*/ ;

stack_t stack_new() /* Create a new empty stack, O(1) */
/*@ensures \result != NULL; @*/
/*@ensures stack_empty(\result); @*/ ;

void push(stack_t S, string x) /* Add item x at the top of stack S, O(1) */
/*@requires S != NULL; @*/
/*@ensures !stack_empty(S); @*/ ;

string pop(stack_t S) /* Remove and return the top of stack S, O(1) */
/*@requires S != NULL; @*/
/*@requires !stack_empty(S); @*/ ;

The queue interface exposes the type queue_t and four similar functions:

// typedef ______* queue_t; /* Abstract type of queues */

bool queue_empty(queue_t Q) /* Check if queue Q is empty, O(1) */
/*@requires Q != NULL; @*/ ;

queue_t queue_new() /* Create a new empty queue, O(1) */
/*@ensures \result != NULL; @*/
/*@ensures queue_empty(\result); @*/ ;

void enq(queue_t Q, string e) /* Add item e at the back of queue Q, O(1) */
/*@requires Q != NULL; @*/
/*@ensures !queue_empty(Q); @*/ ;

string deq(queue_t Q) /* Remove and return the front of queue Q, O(1) */
/*@requires Q != NULL; @*/
/*@requires !queue_empty(Q); @*/ ;

5

Checkpoint 1

Write a function to reverse a queue using only functions from the stack and queue interfaces.

1 void reverse(queue_t Q)

2 //@requires ;

3 {

4 // create temp data structure

5 while () {

6

7 }

8 while () {

9

10 }
11 }

Checkpoint 2

Write a recursive function to count the size of a stack. You may not destroy the stack in the process

� the stack's elements (and order) must be the same before and after calling this function. Assume

the stack contains elements of type string.

int size(stack_t S)

//@requires ;

{

}

Checkpoint 3

Why couldn't this function be used in contracts in C0? Hint: Contracts in C0 can't have side

e�ects.

6

