
15-122: Principles of Imperative Computation Spring 2024

Recitation 07: Array Disarray Thursday February 22nd

Unbounded arrays

When implementing unbounded arrays on an embedded device, a programmer is concerned that

doubling the size of the array when we reach its limit may use precious memory resources too

aggressively. So she decides to see if she can increase it by a factor of 3
2 = 1.5 instead, rounding

down if the result is not an integral number.

This means that it won't make sense for the limit to be less than , because otherwise you

might resize the array and get an array that wasn't any bigger. This needs to be re�ected in the

data structure invariant!

1 struct uba_header {
2 int size;
3 int limit;
4 string[] data;
5 };
6 typedef struct uba_header uba;
7

8 bool is_arr_expected_length(string[] A, int limit) {
9 //@assert \length(A) == limit;

10 return true;
11 }
12

13 bool is_uba(uba* A) {

14

15

16

17 }

© Carnegie Mellon University 2024

Checkpoint 0

Implement the function resize_if_needed(uba* A) for this version of unbounded arrays which

resizes the array A as described above. Give appropriate preconditions and postconditions, and use

an assertion to guard against over�ow. (You should not need all the lines provided.)

19 void resize_if_needed(uba* A)

20 //@requires ;

21 //@requires ;

22 //@ensures ;

23 {

24 if () return; // No resizing needed

25 assert(); // Failure: can’t handle bigger!

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 }

41

42 void uba_add(uba* A, string x)
43 //@requires is_uba(A);
44 //@ensures is_uba(A);
45 {
46 A->data[A->size] = x;
47 (A->size)++;
48

49 resize_if_needed(A);
50 }

2

Checkpoint 1

Di�erently from what we did in class, the remaining exercises assume that each array write costs

two tokens.

Right after an array resize, we should assume we'll have no tokens in reserve for an array with size

k and length 3k/2 (let's assume k is even).

We might have to resize again after as few as uba_add operations.

That next resize would force us to use tokens to copy everything into a larger array

(with size 9k/4). The adds that we do in the meantime add elements to the last third of the array,

which costs tokens over all operations. Therefore, in total, we need tokens

for all uba_add operations.

Each cell in that last third therefore needs to have tokens associated with it.

This gives uba_add an amortized cost of tokens.

Checkpoint 2

Repeat this analysis for the case where we triple the size of the array.

We might have to resize again after as few as uba_add operations.

That next resize would force us to use tokens to copy everything into a larger array

(with size 9k). The adds that we do in the meantime add elements to the last 2/3 of the array, which
costs tokens over all operations. Therefore, in total, we need tokens for

all uba_add operations.

Each cell in the last 2/3 therefore needs to have tokens associated with it.

This gives uba_add an amortized cost of .

Checkpoint 3

Our analysis indicates that a smaller resizing factor gives us a higher amortized cost, even if it's

still in O(1). This indicates that doing n operations on this array, while still in O(n), has a higher

constant attached to it. Does this make sense?

You will �nd in the course of your study in algorithms that, like in this example, achieving higher

space e�ciency often necessitates a tradeo� in time e�ciency, and vice versa.

3

