
15-122: Principles of Imperative Computation Spring 2024

Recitation 09: Rotating Rotation Thursday March 14th

Binary search trees

A binary tree, like a linked list, is a recursive data structure. The only di�erence is that a node can

have 0, 1, or 2 children, which can be other nodes or leaves. A leaf is a type of node that has no

children.

typedef struct tree_node tree;
struct tree_node {
tree* left;
elem data;
tree* right;

};

We call left and right subtrees.

A binary search tree (BST) has an additional invariant, the ordering invariant. For a node with key

k, all elements in the left subtree must have keys that are strictly less than than k, and all elements

in the right subtree must have keys that are strictly greater than k (By this de�nition, we do not

allow duplicate keys).

Checkpoint 0

Circle all of the nodes that contain keys that violate the ordering invariant.

© Carnegie Mellon University 2024



Balanced search tree

Let's take a look at two binary trees that contain the same elements.

The height of the left tree is 7, while the height of the right tree is only 3 � yet they contain the

same elements! Say we want to access the element 9. In the left tree, we need to travel down 7

levels, while on the right we only need to go down 3. Remember that we have to do a comparison

at each level, so we'd like our trees to be as short as possible.

This example illustrates two things:

� the cost of looking up a value in a tree is proportional to its height, and

� when looking up a value in an n-element tree, this operation will be faster on shorter trees

than on taller trees;

For this reason we are particularly interested in keeping trees short as we insert elements. An

n-element tree of height h is balanced if h ∈ O(log n). We will next explore one type of balanced

tree.

2



AVL trees

AVL trees add an additional invariant in order to ensure the tree is balanced. The height invariant

requires the height of the left and right subtrees only di�er by at most 1. How do we preserve this

invariant? Rotations.

We insert nodes just as we would with a plain BST, but then check to see if (and where) the height

invariant is violated. Say we insert 5 into the following tree:

Our tree is looking pretty unbalanced. But where is the violation? 6 and 9's subtrees only di�er by

1, but the left subtree of 15 has height 3, while the right has height 1. To �x this, we rotate right

at 15. Notice that 12 is now the left child of 15, rather than the right child of 9.

Checkpoint 1

Verify that the (bigger) tree on the left below is an AVL tree. Notice that the subtree rooted at

node 15 is exactly the tree we started with in the previous example. Let's now insert 5 into it. How

many violations are there on the tree on the right? What happens if you apply the exact same

rotation on node 15 as in the previous example?

3



Checkpoint 2

Now that you've seen rotations, let's write code.

tree* rotate_right(tree* T)
//@requires is_tree(T);
//@requires T != NULL && T->left !=NULL;
//@ensures is_tree(\result);
{

tree* L =

}

The code for rotate_left is simply the mirror of this function.

However, sometimes a single rotation is insu�cient to rebalance an AVL tree and we need to perform

two rotations. Consider inserting 13 into the following tree. Once again our tree is unbalanced at

node 15. However, if we rotate right as in the previous example, the tree is still unbalanced!

Checkpoint 3

What two rotations can we perform that will rebalance the above tree? Draw the resulting tree.

4



Checkpoint 4

Let's implement double rotations! Using rotate_right and rotate_left, implement the following

function which carries out the transformation you just used.

tree* rotate_left_right(tree* T)
//@requires is_tree(T);
//@requires ;
//@ensures is_tree(\result);
{

return T;
}

The code for the symmetric rotate_right_left is simply the mirror of this function.

Checkpoint 5

In general, in what situations is only one rotation necessary? In what situation do we need two

rotations?

Use the visualization at http://www.cs.usfca.edu/~galles/visualization/AVLtree.html to
insert 1, 2, 5, 3, 4 into an initially empty tree in the given order.

5

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html


Appendix: AVL Rotations

The diagram below summarizes the four AVL rotations. Each of them is performed when a new

node is inserted in the subtree highlighted in yellow and this causes a height violation in the node

highlighted in red � this must be the lowest violation.

A double rotation can be understood (and implemented!) as two single rotations performed in

sequence, as indicated by the vertical arrows.

6


