15-122: Principles of Imperative Computation, Spring 2024
Written Homework 7
Due on Gradescope: Monday 4" March, 2024 by 9pm

Name:

Andrew ID:

Section:

This written homework covers amortized analysis and hash tables.

Preparing your Submission You can prepare your submission with any PDF editor that
you like. Here are a few that prior-semester students recommended:

e Kami, Adobe Acrobat Online, or DocHub, some web-based PDF editors that work
from anywhere.

* Acrobat Pro, installed on all non-CS cluster machines, works on many platforms.
* iAnnotate works on any iOS and Android mobile device.

There are many more — use whatever works best for you. If you'd rather not edit a PDF,
you can always print this homework, write your answers neatly by hand, and scan it into
a PDF file — we don’t recommend this option, though.

Please do not add, remove or reorder pages.

Caution Recent versions of Preview on Mac are buggy: annotations get occasionally
deleted for no reason. Do not use Preview as a PDF editor.

Submitting your Work Once you are done, submit this assignment on Gradescope. Al-
ways check it was correctly uploaded. You have unlimited submissions.

Question: 1 2 3 4 Total
Points: 3.5 5 5 1.5 15

Score:

https://www.gradescope.com/courses/697481
https://www.kamiapp.com/
https://www.adobe.com/acrobat/online.html
https://dochub.com/
https://www.cmu.edu/computing/software/all/
https://www.iannotate.com/
https://www.gradescope.com/courses/697481

15-122 Written Homework 7 Page 1 0f 9

1pt

1pt

1. Remove Operation For Unbounded Arrays

The uba_add operation adds an element to the end of an unbounded array. Con-
versely, the uba_rem operation removes the element at the end. (Remember that the
“end” of the array is from the client’s perspective. There may be additional unused
positions in the array from the implementation’s perspective.) When removing, we
don’t need to resize the array to a smaller size, but we could. However, we need to
consider when to shrink the array in order to guarantee O(1) amortized runtime.

1.1 If the array resizes to be twice as large when size == limit after adding an ele-
ment (as in lecture), and resizes to be half as large as soon as it is strictly less than
half full, give a sequence of additions and removals, starting from a new array A
of size 3 (limit 6), that will cause the worst-case behavior. End your solution with
“...” after you clearly establish the repeating behavior, and after each operation
write the size, limit, and number of array writes for that operation. The first line
of the answer is shown. You may not need all lines provided.

// size = 3, limit = 6
uba_add (A, "z"); // size = 4, limit = 6, 1 array write
; // size= , limit= , array writes
; // size= , limit= , array writes
; // size= , limit= , array writes
; // size= , limit= , array writes
; // size= , limit= , array writes
; // size= , limit= , array writes
; // size= , limit= , array writes
; // size= , limit= , array writes

1.2 Generalizing, with the strategy above, what is the worst case runtime complexity,
using big-O notation, of performing £ operations on an array of size n, where
each operation is taken from the set {uba_add, uba_rem} ?

O()

Differently from lecture, this type of amortized analysis involves multiple oper-
ations, each costing a different number of tokens possibly. The amortized cost of
each operation is found by dividing the total cost by the number of operations.
Using this approach, what is the amortized cost of each of the k operations in the
worst case?

O()

© Carnegie Mellon University 2024

15-122 Written Homework 7 Page 2 of 9

1.5pts 1.3 Instead of resizing the array to be half as large as soon as it is strictly less than

half full, we could resize the array to half of its current size when it is exactly a
quarter full. This will lead to O(1) amortized cost per remove operation. Using
an array of size 11 (limit 12), show the effect of an add operation followed by the
sequence of remove operations that causes the array to resize once. Stop as soon
as it resizes, and do not write “...” anywhere. As before, show the size and limit
of the array after each operation, and indicate how many array writes each step
takes. The first two lines are given for you. You may not need all lines provided.

// size= 11, limit= 12
uba_add(A, "z"); // size= 12, limit= 24, 13 array writes
uba_rem(A); // size= 11, limit= 24, 0 array writes
; // size= , limit= , array writes
; // size= , limit= , array writes
; // size= , limit= , array writes
; // size= , limit= , array writes
; // size= , limit= , array writes
; // size= , limit= , array writes
; // size= , limit= , array writes
; // size= , limit= , array writes
; // size= , limit= , array writes
; // size= , limit= , array writes

In the answer above, the initial uba_add operation doubled the size of the array;,
consuming every banked token. Based on your answer above, what is the min-
imum number of tokens that should be charged for each uba_rem operation so
that enough tokens are banked for the resize of the array? In your analysis, the
only thing we have to pay for with tokens is array writes.

token(s).

© Carnegie Mellon University 2024

15-122 Written Homework 7 Page 3 of 9

2. A New Implementation of Queues

Recall the interface for a stack that stores elements of the type elem:

// typedef ______ * stack_t;

bool stack_empty(stack_t S) /x 0(1) =/
/*@requires S != NULL; @x/;

stack_t stack_new() /* 0(1) %/
/*@ensures \result != NULL; @x/
/*@ensures stack_empty(\result); @+/;

void push(stack_t S, elem x) /% 0(1) =/
/*@requires S != NULL; @x/;

elem pop(stack_t S) /* 0(1) %/
/*@requires S '= NULL; @/
/*@requires !stack_empty(S); @x/;

For this question you will analyze a different implementation of the queue interface.
Instead of a linked list, this implementation uses two stacks, called instack and
outstack. To enqueue an element, we push it on top of the instack. To dequeue
an element, we pop the top off of the outstack. If the outstack is empty when we
try to dequeue, then we will first move all of the elements from the instack to the
outstack, then pop the outstack.

For example, below is one possible configuration of a two-stack queue containing the
elements A through E (A is at the front and E is at the back of the abstract queue):

E

D A

C B
instack outstack

We will use the following CO code:

typedef struct stackqueue_header stackqueue;
struct stackqueue_header {

stack_t instack;

stack_t outstack;

};

typedef stackqueuex queue_t;

© Carnegie Mellon University 2024

15-122 Written Homework 7 Page 4 of 9

bool is_stackqueue(stackqueuex Q) {
return Q '= NULL && Q->instack '= NULL && Q->outstack != NULL;

}

stackqueuex queue_new()

//@ensures is_stackqueue(\result);

{
stackqueuex Q = alloc(stackqueue);
Q->instack = stack_new();
Q->outstack = stack_new();
return Q;

}

bool queue_empty(stackqueuex Q)
//@requires is_stackqueue(Q);
{
return stack_empty(Q->instack) && stack_empty(Q->outstack);

}

void enqg(stackqueuex Q, elem x)
//@requires is_stackqueue(Q);
//@ensures is_stackqueue(Q);
{

push(Q->instack, x);

}

elem deq(stackqueuex Q)
//@requires is_stackqueue(Q);
//@requires !queue_empty(Q);
//@ensures is_stackqueue(Q)
{
if (stack_empty(Q->outstack)) {
while ('stack_empty(Q->instack))

push(Q->outstack, pop(Q->instack));

’

’

}

return pop(Q->outstack);

}

0.5pts 2.1 Given a queue with £ elements in it, exactly how many different ways can this

queue be represented using two stacks, as a function of £?

way(s).

© Carnegie Mellon University 2024

15-122 Written Homework 7 Page 5 0of 9

2pts

2.5pts

2.2

2.3

We now determine the runtime complexity of the enq and deq operations. Let k
be the total number of elements in the queue.

What is the worst-case runtime complexity of each of the following queue opera-
tions based on the description of the data structure implementation given above?
Write ONE sentence that explains each answer.

eng: O(), because

deq: O(), because

Using amortized analysis, we can show that the worst-case complexity of a valid
sequence of n enqueue/dequeue operations starting from an empty queueis O(n).
This means that the amortized cost per operation is O(1), even though the worst-
case cost of an individual operation may not be constant.

Here, a valid sequence of queue operations must start with the empty queue, each
operation must be either an enq or a deq, and you must have enough tokens.
Assume that push and pop each consume one token (and emptiness tests are
free).

How many tokens should be charged to enqueue an element? How many to
dequeue an element? Give the smallest possible number of tokens so that the
amortized cost is O(1). Justify each answer by briefly stating for what purpose
of each token is used in each operation (you may not need all lines).

Cost of enq: token(s), to be used as follows:

1 token to

1 token to

1 token to

1 token to

Cost of deq: token(s), to be used as follows:

1 token to

1 token to

1 token to

1 token to

© Carnegie Mellon University 2024

15-122 Written Homework 7 Page 6 of 9

1pt

3. Hash Tables: Dealing with Collisions

In a hash table, when two keys hash to the same location, we have a collision. There
are multiple strategies for handling collisions:

3.1

Separate chaining: each location in the table stores a chain (typically a linked
list) of all keys that hashed to that location.

Open addressing: each location in the table stores a key directly. In case of a
collision when inserting, we probe the table to search for an available storage
location. Similarly, in case of a collision when looking up a key &, we probe to
search for k. Suppose our hash function is h, the capacity of the table is m, and
we are attempting to insert or look up the key k:

— Linear probing: on the i'" attempt (counting from 0), we look at index (h(k)+1)
mod m.

— Quadratic probing: on the i attempt (counting from 0), we look at index
(h(k) +i*) mod m.

For insertion, we are searching for an empty slot to put the key in. For lookup,
we are trying to find the key itself.

You are given a hash table of capacity m with n inserted keys. Collisions are
resolved using separate chaining. If n = 2m and the keys are not evenly dis-
tributed, what is the worst-case runtime complexity of searching for a specific
key using big-O notation?

O()

Under the same conditions, except that now the keys are evenly distributed, what
is the worst-case runtime complexity of searching for a specific key using big-O
notation?

O()

As usual, for both of the answers above, give the tightest, simplest bound.

© Carnegie Mellon University 2024

15-122 Written Homework 7

Page 7 of 9

1pt

For the next three questions, you are given a hash table of capacity m = 13. The hash
function is h(k) = k; after hashing we attempt to insert the key k at array index h(k)

mod m.

3.2 Assume the table resolves collisions using separate chaining. Show how the set
of keys below will be stored in the hash table by drawing the final state of each
chain of the table after all of the keys are inserted, one by one, in the order shown.

67, 23, 54, 88, 39, 75, 49, 5

You may insert keys either always at the beginning or always at the end of a
chain, but be consistent. Wherever they occur, you should indicate NULL pointers

explicitly: either draw

*—

-H-; or write NULL inside the box.

w e N Y s W N = O

[
o

[
[

[
)

© Carnegie Mellon University 2024

15-122 Written Homework 7 Page 8 of 9

In the next two tasks, recall that the capacity of the table is m = 13.

3.3 Show where the keys in the sequence below are stored in the same hash table if
they are inserted one by one, in the order shown, using linear probing to resolve
collisions. Leave cells with no data blank.

67, 23, 54, 88, 39, 75, 49, 5

o 1 2 3 4 5 6 7 &8 9 10 11 12

3.4 Show where the keys in the sequence below are stored in the same hash table
if they are inserted one by one, in the order shown, using quadratic probing to
resolve collisions. Leave cells with no data blank.

67, 23, 54, 88, 39, 75, 49, 5

o 1 2 3 4 5 6 7 8 9 10 11 12

3.5 Quadratic probing suffers from one problem that linear probing does not. Given

a non-full hash table, insertions with linear probing will always succeed, while
insertions with quadratic probing might not (i.e., they may never find an open
spot to insert).
Using h(k) = k as your hash function and m = 8 as your table capacity, give
an example of a table with load factor not above 2/3 and a key that cannot be
successfully inserted into the table. (Hint: start entering different multiples of 8.)
Leave cells with no data blank.

o 1 2 3 4 5 6 7

Key that cannot successfully be inserted:

© Carnegie Mellon University 2024

15-122 Written Homework 7 Page 9 of 9

4. Strings as Keys

In a popular programming language, non-empty strings are hashed using the follow-
ing function:

H(S) = (SO X 31|8|_1 + 81 X 31‘5‘_2 —+ ...+ S|s|]—2 X 311 + S|s|—1 X 310) % m,

where s; is the ASCII code (http://www.asciitable.com/) for the i character of
string s (starting at 0 and counting from left to right), |s| is the length of s, and m is
the size of the hash table. We consider 7-bit ASCII codes, which are the characters
with ASCII value between 0 and 127 (included).

0.5pts 4.1 If 15217 strings were stored in a hash table of size 412 using separate chaining,

what would the load factor of the table be? If the strings above were equally
distributed in the hash table, what does the load factor tell you about the possible
lengths of the chains?

The load factor is

Possible length(s) for each chain

1pt 4.2 Using the hash function above with a table size of 412, give an example of two
different strings s1 and s2 that would “collide” in the hash table and would be
stored in the same chain. Show your work. Use strings of up to 2 printable

characters.
sl = (type or write clearly and unambiguously)
s2 = (type or write clearly and unambiguously)

collide because

© Carnegie Mellon University 2024

http://www.asciitable.com/

